mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
docs: Updated docs to show minimal RAG example and some other minor changes (#1935)
# What does this PR do? Incorporating some feedback into the docs. - **`docs/source/getting_started/index.md`:** - Demo actually does RAG now - Simplified the installation command for dependencies. - Updated demo script examples to align with the latest API changes. - Replaced manual document manipulation with `RAGDocument` for clarity and maintainability. - Introduced new logic for model and embedding selection using the Llama Stack Client SDK. - Enhanced examples to showcase proper agent initialization and logging. - **`docs/source/getting_started/detailed_tutorial.md`:** - Updated the section for listing models to include proper code formatting with `bash`. - Removed and reorganized the "Run the Demos" section for clarity. - Adjusted tab-item structures and added new instructions for demo scripts. - **`docs/_static/css/my_theme.css`:** - Updated heading styles to include `h2`, `h3`, and `h4` for consistent font weight. - Added a new style for `pre` tags to wrap text and break long words, this is particularly useful for rendering long output from generation. ## Test Plan Tested locally. Screenshot for reference: <img width="1250" alt="Screenshot 2025-04-10 at 10 12 12 PM" src="https://github.com/user-attachments/assets/ce1c8986-e072-4c6f-a697-ed0d8fb75b34" /> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
c1cb6aad11
commit
24d70cedca
3 changed files with 62 additions and 71 deletions
|
@ -173,9 +173,8 @@ You will see the below:
|
|||
Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:8321
|
||||
```
|
||||
|
||||
#### iii. List Available Models
|
||||
List the models
|
||||
```
|
||||
```bash
|
||||
llama-stack-client models list
|
||||
Available Models
|
||||
|
||||
|
@ -190,15 +189,6 @@ Available Models
|
|||
Total models: 2
|
||||
|
||||
```
|
||||
|
||||
## Step 4: Run the Demos
|
||||
|
||||
Note that these demos show the [Python Client SDK](../references/python_sdk_reference/index.md).
|
||||
Other SDKs are also available, please refer to the [Client SDK](../index.md#client-sdks) list for the complete options.
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} Basic Inference with the CLI
|
||||
You can test basic Llama inference completion using the CLI.
|
||||
|
||||
```bash
|
||||
|
@ -221,10 +211,16 @@ ChatCompletionResponse(
|
|||
],
|
||||
)
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} Basic Inference with a Script
|
||||
Alternatively, you can run inference using the Llama Stack client SDK.
|
||||
## Step 4: Run the Demos
|
||||
|
||||
Note that these demos show the [Python Client SDK](../references/python_sdk_reference/index.md).
|
||||
Other SDKs are also available, please refer to the [Client SDK](../index.md#client-sdks) list for the complete options.
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} Basic Inference
|
||||
Now you can run inference using the Llama Stack client SDK.
|
||||
|
||||
### i. Create the Script
|
||||
Create a file `inference.py` and add the following code:
|
||||
|
@ -269,7 +265,7 @@ Beauty in the bits
|
|||
:::
|
||||
|
||||
:::{tab-item} Build a Simple Agent
|
||||
Now we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server.
|
||||
Next we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server.
|
||||
### i. Create the Script
|
||||
Create a file `agent.py` and add the following code:
|
||||
|
||||
|
|
|
@ -12,9 +12,8 @@ as the inference [provider](../providers/index.md#inference) for a Llama Model.
|
|||
Install [uv](https://docs.astral.sh/uv/), setup your virtual environment, and run inference on a Llama model with
|
||||
[Ollama](https://ollama.com/download).
|
||||
```bash
|
||||
uv pip install llama-stack aiosqlite faiss-cpu ollama openai datasets opentelemetry-exporter-otlp-proto-http mcp autoevals
|
||||
uv pip install llama-stack
|
||||
source .venv/bin/activate
|
||||
export INFERENCE_MODEL="llama3.2:3b"
|
||||
ollama run llama3.2:3b --keepalive 60m
|
||||
```
|
||||
## Step 2: Run the Llama Stack Server
|
||||
|
@ -24,70 +23,62 @@ INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type ven
|
|||
## Step 3: Run the Demo
|
||||
Now open up a new terminal using the same virtual environment and you can run this demo as a script using `uv run demo_script.py` or in an interactive shell.
|
||||
```python
|
||||
from termcolor import cprint
|
||||
from llama_stack_client.types import Document
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
|
||||
vector_db = "faiss"
|
||||
vector_db_id = "test-vector-db"
|
||||
model_id = "llama3.2:3b-instruct-fp16"
|
||||
query = "Can you give me the arxiv link for Lora Fine Tuning in Pytorch?"
|
||||
documents = [
|
||||
Document(
|
||||
document_id="document_1",
|
||||
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/lora_finetune.rst",
|
||||
mime_type="text/plain",
|
||||
metadata={},
|
||||
)
|
||||
]
|
||||
from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient
|
||||
|
||||
vector_db_id = "my_demo_vector_db"
|
||||
client = LlamaStackClient(base_url="http://localhost:8321")
|
||||
client.vector_dbs.register(
|
||||
provider_id=vector_db,
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
)
|
||||
|
||||
models = client.models.list()
|
||||
|
||||
# Select the first LLM and first embedding models
|
||||
model_id = next(m for m in models if m.model_type == "llm").identifier
|
||||
embedding_model_id = (
|
||||
em := next(m for m in models if m.model_type == "embedding")
|
||||
).identifier
|
||||
embedding_dimension = em.metadata["embedding_dimension"]
|
||||
|
||||
_ = client.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=embedding_dimension,
|
||||
provider_id="faiss",
|
||||
)
|
||||
document = RAGDocument(
|
||||
document_id="document_1",
|
||||
content="https://www.paulgraham.com/greatwork.html",
|
||||
mime_type="text/html",
|
||||
metadata={},
|
||||
)
|
||||
client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
documents=[document],
|
||||
vector_db_id=vector_db_id,
|
||||
chunk_size_in_tokens=50,
|
||||
)
|
||||
|
||||
response = client.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[vector_db_id],
|
||||
content=query,
|
||||
agent = Agent(
|
||||
client,
|
||||
model=model_id,
|
||||
instructions="You are a helpful assistant",
|
||||
tools=[
|
||||
{
|
||||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {"vector_db_ids": [vector_db_id]},
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
cprint("" + "-" * 50, "yellow")
|
||||
cprint(f"Query> {query}", "red")
|
||||
cprint("" + "-" * 50, "yellow")
|
||||
for chunk in response.content:
|
||||
cprint(f"Chunk ID> {chunk.text}", "green")
|
||||
cprint("" + "-" * 50, "yellow")
|
||||
response = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "How do you do great work?"}],
|
||||
session_id=agent.create_session("rag_session"),
|
||||
)
|
||||
|
||||
for log in AgentEventLogger().log(response):
|
||||
log.print()
|
||||
```
|
||||
And you should see output like below.
|
||||
```
|
||||
--------------------------------------------------
|
||||
Query> Can you give me the arxiv link for Lora Fine Tuning in Pytorch?
|
||||
--------------------------------------------------
|
||||
Chunk ID> knowledge_search tool found 5 chunks:
|
||||
BEGIN of knowledge_search tool results.
|
||||
|
||||
--------------------------------------------------
|
||||
Chunk ID> Result 1:
|
||||
Document_id:docum
|
||||
Content: .. _lora_finetune_label:
|
||||
|
||||
============================
|
||||
Fine-Tuning Llama2 with LoRA
|
||||
============================
|
||||
|
||||
This guide will teach you about `LoRA <https://arxiv.org/abs/2106.09685>`_, a
|
||||
|
||||
--------------------------------------------------
|
||||
```bash
|
||||
inference> [knowledge_search(query="What does it mean to do great work")]
|
||||
tool_execution> Tool:knowledge_search Args:{'query': 'What does it mean to do great work'}
|
||||
tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text="Result 1:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text='Result 2:\nDocument_id:docum\nContent: [<a name="f1n"><font color=#000000>1</font></a>]\nI don\'t think you could give a precise definition of what\ncounts as great work. Doing great work means doing something important\nso well\n', type='text'), TextContentItem(text="Result 3:\nDocument_id:docum\nContent: . And if so\nyou're already further along than you might realize, because the\nset of people willing to want to is small.<br /><br />The factors in doing great work are factors in the literal,\nmathematical sense, and\n", type='text'), TextContentItem(text="Result 4:\nDocument_id:docum\nContent: \nincreases your morale and helps you do even better work. But this\ncycle also operates in the other direction: if you're not doing\ngood work, that can demoralize you and make it even harder to. Since\nit matters\n", type='text'), TextContentItem(text="Result 5:\nDocument_id:docum\nContent: to try to do\ngreat work. But that's what's going on subconsciously; they shy\naway from the question.<br /><br />So I'm going to pull a sneaky trick on you. Do you want to do great\n", type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')]
|
||||
```
|
||||
Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue