This commit is contained in:
Xi Yan 2025-03-05 17:36:02 -08:00
parent 6e65b9282d
commit 2541dcc162

View file

@ -57,158 +57,33 @@ def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
assert scoring_fn_id in response.scores assert scoring_fn_id in response.scores
# @pytest.mark.skip(reason="FIXME FIXME @yanxi0830 this needs to be migrated to use the API") @pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
# class Testeval: def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
# @pytest.mark.asyncio register_dataset(llama_stack_client, for_generation=True, dataset_id="test_dataset_for_eval_2")
# async def test_benchmarks_list(self, eval_stack): benchmark_id = str(uuid.uuid4())
# # NOTE: this needs you to ensure that you are starting from a clean state llama_stack_client.benchmarks.register(
# # but so far we don't have an unregister API unfortunately, so be careful benchmark_id=benchmark_id,
# benchmarks_impl = eval_stack[Api.benchmarks] dataset_id="test_dataset_for_eval_2",
# response = await benchmarks_impl.list_benchmarks() scoring_functions=[scoring_fn_id],
# assert isinstance(response, list) )
# @pytest.mark.asyncio response = llama_stack_client.eval.run_eval(
# async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model): benchmark_id=benchmark_id,
# eval_impl, benchmarks_impl, datasetio_impl, datasets_impl = ( benchmark_config={
# eval_stack[Api.eval], "eval_candidate": {
# eval_stack[Api.benchmarks], "type": "model",
# eval_stack[Api.datasetio], "model": text_model_id,
# eval_stack[Api.datasets], "sampling_params": {
# ) "temperature": 0.0,
},
},
},
)
assert response.job_id == "0"
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
assert job_status and job_status.value == "completed"
# await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval") eval_response = llama_stack_client.eval.jobs.result(job_id=response.job_id, benchmark_id=benchmark_id)
# response = await datasets_impl.list_datasets() assert eval_response is not None
assert len(eval_response.generations) == 5
# rows = await datasetio_impl.get_rows_paginated( assert scoring_fn_id in eval_response.scores
# dataset_id="test_dataset_for_eval",
# rows_in_page=3,
# )
# assert len(rows.rows) == 3
# scoring_functions = [
# "basic::equality",
# ]
# benchmark_id = "meta-reference::app_eval"
# await benchmarks_impl.register_benchmark(
# benchmark_id=benchmark_id,
# dataset_id="test_dataset_for_eval",
# scoring_functions=scoring_functions,
# )
# response = await eval_impl.evaluate_rows(
# benchmark_id=benchmark_id,
# input_rows=rows.rows,
# scoring_functions=scoring_functions,
# benchmark_config=dict(
# eval_candidate=ModelCandidate(
# model=inference_model,
# sampling_params=SamplingParams(),
# ),
# scoring_params={
# "meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
# judge_model=judge_model,
# prompt_template=JUDGE_PROMPT,
# judge_score_regexes=[
# r"Total rating: (\d+)",
# r"rating: (\d+)",
# r"Rating: (\d+)",
# ],
# )
# },
# ),
# )
# assert len(response.generations) == 3
# assert "basic::equality" in response.scores
# @pytest.mark.asyncio
# async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
# eval_impl, benchmarks_impl, datasets_impl = (
# eval_stack[Api.eval],
# eval_stack[Api.benchmarks],
# eval_stack[Api.datasets],
# )
# await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
# scoring_functions = [
# "basic::subset_of",
# ]
# benchmark_id = "meta-reference::app_eval-2"
# await benchmarks_impl.register_benchmark(
# benchmark_id=benchmark_id,
# dataset_id="test_dataset_for_eval",
# scoring_functions=scoring_functions,
# )
# response = await eval_impl.run_eval(
# benchmark_id=benchmark_id,
# benchmark_config=dict(
# eval_candidate=ModelCandidate(
# model=inference_model,
# sampling_params=SamplingParams(),
# ),
# ),
# )
# assert response.job_id == "0"
# job_status = await eval_impl.job_status(benchmark_id, response.job_id)
# assert job_status and job_status.value == "completed"
# eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
# assert eval_response is not None
# assert len(eval_response.generations) == 5
# assert "basic::subset_of" in eval_response.scores
# @pytest.mark.asyncio
# async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
# eval_impl, benchmarks_impl, datasets_impl = (
# eval_stack[Api.eval],
# eval_stack[Api.benchmarks],
# eval_stack[Api.datasets],
# )
# response = await datasets_impl.list_datasets()
# assert len(response) > 0
# if response[0].provider_id != "huggingface":
# pytest.skip("Only huggingface provider supports pre-registered remote datasets")
# await datasets_impl.register_dataset(
# dataset_id="mmlu",
# dataset_schema={
# "input_query": StringType(),
# "expected_answer": StringType(),
# "chat_completion_input": ChatCompletionInputType(),
# },
# url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
# metadata={
# "path": "llamastack/evals",
# "name": "evals__mmlu__details",
# "split": "train",
# },
# )
# # register eval task
# await benchmarks_impl.register_benchmark(
# benchmark_id="meta-reference-mmlu",
# dataset_id="mmlu",
# scoring_functions=["basic::regex_parser_multiple_choice_answer"],
# )
# # list benchmarks
# response = await benchmarks_impl.list_benchmarks()
# assert len(response) > 0
# benchmark_id = "meta-reference-mmlu"
# response = await eval_impl.run_eval(
# benchmark_id=benchmark_id,
# benchmark_config=dict(
# eval_candidate=ModelCandidate(
# model=inference_model,
# sampling_params=SamplingParams(),
# ),
# num_examples=3,
# ),
# )
# job_status = await eval_impl.job_status(benchmark_id, response.job_id)
# assert job_status and job_status.value == "completed"
# eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
# assert eval_response is not None
# assert len(eval_response.generations) == 3