fix(mypy): resolve model implementation typing issues

Fixes type errors across 4 model implementation files (Phase 2d):

- image_transform.py: Fix return type annotations and variable shadowing
  - Changed find_supported_resolutions return type from Tensor to list[tuple[int, int]]
  - Changed resize_without_distortion parameter/return from Tensor to Image.Image
  - Use separate variable names for list vs tensor (possible_resolutions_list/tensor)

- checkpoint.py: Replace deprecated torch.BFloat16Tensor usage
  - Use torch.set_default_dtype(torch.bfloat16) instead of deprecated tensor types
  - Rename ckpt_paths to ckpt_paths_array to avoid variable shadowing

- hadamard_utils.py: Add type assertion for nn.Linear
  - Assert isinstance check to narrow type from Module to Linear before accessing in_features

- encoder_utils.py: Fix variable shadowing
  - Use masks_list for list accumulation, masks for final Tensor result

Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Ashwin Bharambe 2025-10-27 22:35:24 -07:00
parent f34b6288cc
commit 257eaeb945
4 changed files with 17 additions and 15 deletions

View file

@ -38,18 +38,18 @@ def maybe_reshard_state_dict(
mmap: bool = True,
) -> dict[str, torch.Tensor]:
if str(map_location) == "cpu":
torch.set_default_tensor_type(torch.BFloat16Tensor)
torch.set_default_dtype(torch.bfloat16)
else:
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
torch.set_default_dtype(torch.bfloat16)
ckpt_paths = np.array(sorted(ckpt_paths))
ckpt_paths_array = np.array(sorted(ckpt_paths))
new_mp_size, new_mp_rank = get_model_parallel_world_size(), get_model_parallel_rank()
old_mp_size = len(ckpt_paths)
old_mp_size = len(ckpt_paths_array)
old_mp_ranks = map_mp_rank(old_mp_size, new_mp_size, new_mp_rank)
print(f"Loading checkpoint shards:\n{str(ckpt_paths[old_mp_ranks])}") # type: ignore
paths = ckpt_paths[old_mp_ranks] # type: ignore
print(f"Loading checkpoint shards:\n{str(ckpt_paths_array[old_mp_ranks])}") # type: ignore
paths = ckpt_paths_array[old_mp_ranks] # type: ignore
state_dicts = [torch.load(str(p), map_location=map_location, mmap=mmap) for p in paths]
if new_mp_size == old_mp_size:

View file

@ -79,6 +79,8 @@ def add_hadamard_transform_for_spinquant(model: torch.nn.Module, prefix: str = "
for module_name, module in model.named_children():
child_full_name = prefix + "." + module_name
if re.search(pattern_last_linear_ffn, child_full_name):
# Module matching this pattern should be nn.Linear with in_features
assert isinstance(module, nn.Linear), f"Expected nn.Linear, got {type(module)}"
new_module = nn.Sequential(HadamardModule(group_size=module.in_features), module)
del module
setattr(model, module_name, new_module)

View file

@ -141,15 +141,15 @@ def build_encoder_attention_mask(
"""
Build vision encoder attention mask that omits padding tokens.
"""
masks = []
masks_list = []
for arx in ar:
mask_i = torch.ones((num_chunks, x.shape[2], 1), dtype=x.dtype)
mask_i[: arx[0] * arx[1], :ntok] = 0
mask_i = mask_i.view(num_chunks * x.shape[2], -1)
mask_i = mask_i @ mask_i.T * get_negative_inf_value(x.dtype)
mask_i = mask_i.unsqueeze(0)
masks.append(mask_i)
masks = torch.stack(masks).to(x.device).expand(-1, n_heads, -1, -1)
masks_list.append(mask_i)
masks = torch.stack(masks_list).to(x.device).expand(-1, n_heads, -1, -1)
return masks

View file

@ -95,7 +95,7 @@ class VariableSizeImageTransform:
factors_set.add(n // i)
return factors_set
def find_supported_resolutions(self, max_num_chunks: int, patch_size: int) -> torch.Tensor:
def find_supported_resolutions(self, max_num_chunks: int, patch_size: int) -> list[tuple[int, int]]:
"""
Computes all of the allowed resoltuions for a fixed number of chunks
and patch_size. Useful for when dividing an image into chunks.
@ -198,10 +198,10 @@ class VariableSizeImageTransform:
def resize_without_distortion(
self,
image: torch.Tensor,
image: Image.Image,
target_size: tuple[int, int],
max_upscaling_size: int | None,
) -> torch.Tensor:
) -> Image.Image:
"""
Used to resize an image to target_resolution, without distortion.
@ -380,12 +380,12 @@ class VariableSizeImageTransform:
assert isinstance(image, Image.Image), type(image)
w, h = image.size
possible_resolutions = self.find_supported_resolutions(max_num_chunks=max_num_chunks, patch_size=self.size)
possible_resolutions = torch.tensor(possible_resolutions)
possible_resolutions_list = self.find_supported_resolutions(max_num_chunks=max_num_chunks, patch_size=self.size)
possible_resolutions_tensor = torch.tensor(possible_resolutions_list)
best_resolution = self.get_best_fit(
image_size=(w, h),
possible_resolutions=possible_resolutions,
possible_resolutions=possible_resolutions_tensor,
resize_to_max_canvas=resize_to_max_canvas,
)