mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: tool outputs metadata (#1155)
Summary: Allows tools to output metadata. This is useful for evaluating tool outputs, e.g. RAG tool will output document IDs, which can be used to score recall. Will need to make a similar change on the client side to support ClientTool outputting metadata. Test Plan: LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py
This commit is contained in:
parent
36162c8c82
commit
25fddccfd8
8 changed files with 141 additions and 28 deletions
78
docs/_static/llama-stack-spec.html
vendored
78
docs/_static/llama-stack-spec.html
vendored
|
@ -4521,6 +4521,31 @@
|
|||
},
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -6746,6 +6771,31 @@
|
|||
},
|
||||
"error_code": {
|
||||
"type": "integer"
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -7595,9 +7645,37 @@
|
|||
"properties": {
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "null"
|
||||
},
|
||||
{
|
||||
"type": "boolean"
|
||||
},
|
||||
{
|
||||
"type": "number"
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array"
|
||||
},
|
||||
{
|
||||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"metadata"
|
||||
],
|
||||
"title": "RAGQueryResult"
|
||||
},
|
||||
"QueryChunksRequest": {
|
||||
|
|
32
docs/_static/llama-stack-spec.yaml
vendored
32
docs/_static/llama-stack-spec.yaml
vendored
|
@ -2945,6 +2945,16 @@ components:
|
|||
- type: string
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
additionalProperties: false
|
||||
required:
|
||||
- call_id
|
||||
|
@ -4381,6 +4391,16 @@ components:
|
|||
type: string
|
||||
error_code:
|
||||
type: integer
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
additionalProperties: false
|
||||
required:
|
||||
- content
|
||||
|
@ -4954,7 +4974,19 @@ components:
|
|||
properties:
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
oneOf:
|
||||
- type: 'null'
|
||||
- type: boolean
|
||||
- type: number
|
||||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
additionalProperties: false
|
||||
required:
|
||||
- metadata
|
||||
title: RAGQueryResult
|
||||
QueryChunksRequest:
|
||||
type: object
|
||||
|
|
|
@ -165,6 +165,7 @@ class ToolResponse(BaseModel):
|
|||
call_id: str
|
||||
tool_name: Union[BuiltinTool, str]
|
||||
content: InterleavedContent
|
||||
metadata: Optional[Dict[str, Any]] = None
|
||||
|
||||
@field_validator("tool_name", mode="before")
|
||||
@classmethod
|
||||
|
|
|
@ -26,6 +26,7 @@ class RAGDocument(BaseModel):
|
|||
@json_schema_type
|
||||
class RAGQueryResult(BaseModel):
|
||||
content: Optional[InterleavedContent] = None
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -72,6 +72,7 @@ class ToolInvocationResult(BaseModel):
|
|||
content: InterleavedContent
|
||||
error_message: Optional[str] = None
|
||||
error_code: Optional[int] = None
|
||||
metadata: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
class ToolStore(Protocol):
|
||||
|
|
|
@ -62,7 +62,7 @@ from llama_stack.apis.inference import (
|
|||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.tools import RAGDocument, RAGQueryConfig, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.tools import RAGDocument, RAGQueryConfig, ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
|
@ -587,6 +587,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
call_id="",
|
||||
tool_name=MEMORY_QUERY_TOOL,
|
||||
content=retrieved_context or [],
|
||||
metadata=result.metadata,
|
||||
)
|
||||
],
|
||||
),
|
||||
|
@ -795,13 +796,21 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
},
|
||||
) as span:
|
||||
tool_execution_start_time = datetime.now()
|
||||
result_messages = await execute_tool_call_maybe(
|
||||
tool_call = message.tool_calls[0]
|
||||
tool_result = await execute_tool_call_maybe(
|
||||
self.tool_runtime_api,
|
||||
session_id,
|
||||
[message],
|
||||
tool_call,
|
||||
toolgroup_args,
|
||||
tool_to_group,
|
||||
)
|
||||
result_messages = [
|
||||
ToolResponseMessage(
|
||||
call_id=tool_call.call_id,
|
||||
tool_name=tool_call.tool_name,
|
||||
content=tool_result.content,
|
||||
)
|
||||
]
|
||||
assert len(result_messages) == 1, "Currently not supporting multiple messages"
|
||||
result_message = result_messages[0]
|
||||
span.set_attribute("output", result_message.model_dump_json())
|
||||
|
@ -820,6 +829,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
call_id=result_message.call_id,
|
||||
tool_name=result_message.tool_name,
|
||||
content=result_message.content,
|
||||
metadata=tool_result.metadata,
|
||||
)
|
||||
],
|
||||
started_at=tool_execution_start_time,
|
||||
|
@ -1058,19 +1068,10 @@ async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessa
|
|||
async def execute_tool_call_maybe(
|
||||
tool_runtime_api: ToolRuntime,
|
||||
session_id: str,
|
||||
messages: List[CompletionMessage],
|
||||
tool_call: ToolCall,
|
||||
toolgroup_args: Dict[str, Dict[str, Any]],
|
||||
tool_to_group: Dict[str, str],
|
||||
) -> List[ToolResponseMessage]:
|
||||
# While Tools.run interface takes a list of messages,
|
||||
# All tools currently only run on a single message
|
||||
# When this changes, we can drop this assert
|
||||
# Whether to call tools on each message and aggregate
|
||||
# or aggregate and call tool once, reamins to be seen.
|
||||
assert len(messages) == 1, "Expected single message"
|
||||
message = messages[0]
|
||||
|
||||
tool_call = message.tool_calls[0]
|
||||
) -> ToolInvocationResult:
|
||||
name = tool_call.tool_name
|
||||
group_name = tool_to_group.get(name, None)
|
||||
if group_name is None:
|
||||
|
@ -1091,14 +1092,7 @@ async def execute_tool_call_maybe(
|
|||
**tool_call_args,
|
||||
),
|
||||
)
|
||||
|
||||
return [
|
||||
ToolResponseMessage(
|
||||
call_id=tool_call.call_id,
|
||||
tool_name=tool_call.tool_name,
|
||||
content=result.content,
|
||||
)
|
||||
]
|
||||
return result
|
||||
|
||||
|
||||
def _interpret_content_as_attachment(
|
||||
|
|
|
@ -119,10 +119,10 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
|
||||
# sort by score
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False)
|
||||
|
||||
chunks = chunks[: query_config.max_chunks]
|
||||
tokens = 0
|
||||
picked = []
|
||||
for c in chunks[: query_config.max_chunks]:
|
||||
for c in chunks:
|
||||
metadata = c.metadata
|
||||
tokens += metadata["token_count"]
|
||||
if tokens > query_config.max_tokens_in_context:
|
||||
|
@ -146,6 +146,9 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
text="\n=== END-RETRIEVED-CONTEXT ===\n",
|
||||
),
|
||||
],
|
||||
metadata={
|
||||
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
|
||||
},
|
||||
)
|
||||
|
||||
async def list_runtime_tools(
|
||||
|
|
|
@ -457,6 +457,7 @@ def test_rag_agent(llama_stack_client, agent_config):
|
|||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
provider_id="faiss",
|
||||
)
|
||||
llama_stack_client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
|
@ -492,11 +493,13 @@ def test_rag_agent(llama_stack_client, agent_config):
|
|||
response = rag_agent.create_turn(
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
session_id=session_id,
|
||||
stream=False,
|
||||
)
|
||||
logs = [str(log) for log in EventLogger().log(response) if log is not None]
|
||||
logs_str = "".join(logs)
|
||||
assert "Tool:query_from_memory" in logs_str
|
||||
assert expected_kw in logs_str.lower()
|
||||
# rag is called
|
||||
assert response.steps[0].tool_calls[0].tool_name == "query_from_memory"
|
||||
# document ids are present in metadata
|
||||
assert "num-0" in response.steps[0].tool_responses[0].metadata["document_ids"]
|
||||
assert expected_kw in response.output_message.content
|
||||
|
||||
|
||||
def test_rag_and_code_agent(llama_stack_client, agent_config):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue