chore(rename): move llama_stack.distribution to llama_stack.core (#2975)

We would like to rename the term `template` to `distribution`. To
prepare for that, this is a precursor.

cc @leseb
This commit is contained in:
Ashwin Bharambe 2025-07-30 23:30:53 -07:00 committed by GitHub
parent f3d5459647
commit 2665f00102
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
211 changed files with 351 additions and 348 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,30 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
def redact_sensitive_fields(data: dict[str, Any]) -> dict[str, Any]:
"""Redact sensitive information from config before printing."""
sensitive_patterns = ["api_key", "api_token", "password", "secret"]
def _redact_value(v: Any) -> Any:
if isinstance(v, dict):
return _redact_dict(v)
elif isinstance(v, list):
return [_redact_value(i) for i in v]
return v
def _redact_dict(d: dict[str, Any]) -> dict[str, Any]:
result = {}
for k, v in d.items():
if any(pattern in k.lower() for pattern in sensitive_patterns):
result[k] = "********"
else:
result[k] = _redact_value(v)
return result
return _redact_dict(data)

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from pathlib import Path
LLAMA_STACK_CONFIG_DIR = Path(os.getenv("LLAMA_STACK_CONFIG_DIR", os.path.expanduser("~/.llama/")))
DISTRIBS_BASE_DIR = LLAMA_STACK_CONFIG_DIR / "distributions"
DEFAULT_CHECKPOINT_DIR = LLAMA_STACK_CONFIG_DIR / "checkpoints"
RUNTIME_BASE_DIR = LLAMA_STACK_CONFIG_DIR / "runtime"
EXTERNAL_PROVIDERS_DIR = LLAMA_STACK_CONFIG_DIR / "providers.d"

View file

@ -0,0 +1,125 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import StrEnum
from pathlib import Path
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="config_resolution")
TEMPLATE_DIR = Path(__file__).parent.parent.parent.parent / "llama_stack" / "templates"
class Mode(StrEnum):
RUN = "run"
BUILD = "build"
def resolve_config_or_template(
config_or_template: str,
mode: Mode = Mode.RUN,
) -> Path:
"""
Resolve a config/template argument to a concrete config file path.
Args:
config_or_template: User input (file path, template name, or built distribution)
mode: Mode resolving for ("run", "build", "server")
Returns:
Path to the resolved config file
Raises:
ValueError: If resolution fails
"""
# Strategy 1: Try as file path first
config_path = Path(config_or_template)
if config_path.exists() and config_path.is_file():
logger.info(f"Using file path: {config_path}")
return config_path.resolve()
# Strategy 2: Try as template name (if no .yaml extension)
if not config_or_template.endswith(".yaml"):
template_config = _get_template_config_path(config_or_template, mode)
if template_config.exists():
logger.info(f"Using template: {template_config}")
return template_config
# Strategy 3: Try as built distribution name
distrib_config = DISTRIBS_BASE_DIR / f"llamastack-{config_or_template}" / f"{config_or_template}-{mode}.yaml"
if distrib_config.exists():
logger.info(f"Using built distribution: {distrib_config}")
return distrib_config
distrib_config = DISTRIBS_BASE_DIR / f"{config_or_template}" / f"{config_or_template}-{mode}.yaml"
if distrib_config.exists():
logger.info(f"Using built distribution: {distrib_config}")
return distrib_config
# Strategy 4: Failed - provide helpful error
raise ValueError(_format_resolution_error(config_or_template, mode))
def _get_template_config_path(template_name: str, mode: Mode) -> Path:
"""Get the config file path for a template."""
return TEMPLATE_DIR / template_name / f"{mode}.yaml"
def _format_resolution_error(config_or_template: str, mode: Mode) -> str:
"""Format a helpful error message for resolution failures."""
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
template_path = _get_template_config_path(config_or_template, mode)
distrib_path = DISTRIBS_BASE_DIR / f"llamastack-{config_or_template}" / f"{config_or_template}-{mode}.yaml"
distrib_path2 = DISTRIBS_BASE_DIR / f"{config_or_template}" / f"{config_or_template}-{mode}.yaml"
available_templates = _get_available_templates()
templates_str = ", ".join(available_templates) if available_templates else "none found"
return f"""Could not resolve config or template '{config_or_template}'.
Tried the following locations:
1. As file path: {Path(config_or_template).resolve()}
2. As template: {template_path}
3. As built distribution: ({distrib_path}, {distrib_path2})
Available templates: {templates_str}
Did you mean one of these templates?
{_format_template_suggestions(available_templates, config_or_template)}
"""
def _get_available_templates() -> list[str]:
"""Get list of available template names."""
if not TEMPLATE_DIR.exists() and not DISTRIBS_BASE_DIR.exists():
return []
return list(
set(
[d.name for d in TEMPLATE_DIR.iterdir() if d.is_dir() and not d.name.startswith(".")]
+ [d.name for d in DISTRIBS_BASE_DIR.iterdir() if d.is_dir() and not d.name.startswith(".")]
)
)
def _format_template_suggestions(templates: list[str], user_input: str) -> str:
"""Format template suggestions for error messages, showing closest matches first."""
if not templates:
return " (no templates found)"
import difflib
# Get up to 3 closest matches with similarity threshold of 0.3 (lower = more permissive)
close_matches = difflib.get_close_matches(user_input, templates, n=3, cutoff=0.3)
display_templates = close_matches if close_matches else templates[:3]
suggestions = [f" - {t}" for t in display_templates]
return "\n".join(suggestions)

View file

@ -0,0 +1,40 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from contextvars import ContextVar
def preserve_contexts_async_generator[T](
gen: AsyncGenerator[T, None], context_vars: list[ContextVar]
) -> AsyncGenerator[T, None]:
"""
Wraps an async generator to preserve context variables across iterations.
This is needed because we start a new asyncio event loop for each streaming request,
and we need to preserve the context across the event loop boundary.
"""
# Capture initial context values
initial_context_values = {context_var.name: context_var.get() for context_var in context_vars}
async def wrapper() -> AsyncGenerator[T, None]:
while True:
try:
# Restore context values before any await
for context_var in context_vars:
context_var.set(initial_context_values[context_var.name])
item = await gen.__anext__()
# Update our tracked values with any changes made during this iteration
for context_var in context_vars:
initial_context_values[context_var.name] = context_var.get()
yield item
except StopAsyncIteration:
break
return wrapper()

View file

@ -0,0 +1,13 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import importlib
def instantiate_class_type(fully_qualified_name):
module_name, class_name = fully_qualified_name.rsplit(".", 1)
module = importlib.import_module(module_name)
return getattr(module, class_name)

View file

@ -0,0 +1,143 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import os
import signal
import subprocess
import sys
from termcolor import cprint
log = logging.getLogger(__name__)
import importlib
import json
from pathlib import Path
from llama_stack.core.utils.image_types import LlamaStackImageType
def formulate_run_args(image_type: str, image_name: str) -> list[str]:
env_name = ""
if image_type == LlamaStackImageType.CONDA.value:
current_conda_env = os.environ.get("CONDA_DEFAULT_ENV")
env_name = image_name or current_conda_env
if not env_name:
cprint(
"No current conda environment detected, please specify a conda environment name with --image-name",
color="red",
file=sys.stderr,
)
return
def get_conda_prefix(env_name):
# Conda "base" environment does not end with "base" in the
# prefix, so should be handled separately.
if env_name == "base":
return os.environ.get("CONDA_PREFIX")
# Get conda environments info
conda_env_info = json.loads(subprocess.check_output(["conda", "info", "--envs", "--json"]).decode())
envs = conda_env_info["envs"]
for envpath in envs:
if os.path.basename(envpath) == env_name:
return envpath
return None
cprint(f"Using conda environment: {env_name}", color="green", file=sys.stderr)
conda_prefix = get_conda_prefix(env_name)
if not conda_prefix:
cprint(
f"Conda environment {env_name} does not exist.",
color="red",
file=sys.stderr,
)
return
build_file = Path(conda_prefix) / "llamastack-build.yaml"
if not build_file.exists():
cprint(
f"Build file {build_file} does not exist.\n\nPlease run `llama stack build` or specify the correct conda environment name with --image-name",
color="red",
file=sys.stderr,
)
return
else:
# else must be venv since that is the only valid option left.
current_venv = os.environ.get("VIRTUAL_ENV")
env_name = image_name or current_venv
if not env_name:
cprint(
"No current virtual environment detected, please specify a virtual environment name with --image-name",
color="red",
file=sys.stderr,
)
return
cprint(f"Using virtual environment: {env_name}", file=sys.stderr)
script = importlib.resources.files("llama_stack") / "core/start_stack.sh"
run_args = [
script,
image_type,
env_name,
]
return run_args
def in_notebook():
try:
from IPython import get_ipython
if "IPKernelApp" not in get_ipython().config: # pragma: no cover
return False
except ImportError:
return False
except AttributeError:
return False
return True
def run_command(command: list[str]) -> int:
"""
Run a command with interrupt handling and output capture.
Uses subprocess.run with direct stream piping for better performance.
Args:
command (list): The command to run.
Returns:
int: The return code of the command.
"""
original_sigint = signal.getsignal(signal.SIGINT)
ctrl_c_pressed = False
def sigint_handler(signum, frame):
nonlocal ctrl_c_pressed
ctrl_c_pressed = True
log.info("\nCtrl-C detected. Aborting...")
try:
# Set up the signal handler
signal.signal(signal.SIGINT, sigint_handler)
# Run the command with stdout/stderr piped directly to system streams
result = subprocess.run(
command,
text=True,
check=False,
)
return result.returncode
except subprocess.SubprocessError as e:
log.error(f"Subprocess error: {e}")
return 1
except Exception as e:
log.exception(f"Unexpected error: {e}")
return 1
finally:
# Restore the original signal handler
signal.signal(signal.SIGINT, original_sigint)

View file

@ -0,0 +1,13 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import enum
class LlamaStackImageType(enum.Enum):
CONTAINER = "container"
CONDA = "conda"
VENV = "venv"

View file

@ -0,0 +1,13 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from .config_dirs import DEFAULT_CHECKPOINT_DIR
def model_local_dir(descriptor: str) -> str:
return str(Path(DEFAULT_CHECKPOINT_DIR) / (descriptor.replace(":", "-")))

View file

@ -0,0 +1,282 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import inspect
import json
import logging
from enum import Enum
from typing import Annotated, Any, Literal, Union, get_args, get_origin
from pydantic import BaseModel
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefinedType
log = logging.getLogger(__name__)
def is_list_of_primitives(field_type):
"""Check if a field type is a List of primitive types."""
origin = get_origin(field_type)
if origin is list or origin is list:
args = get_args(field_type)
if len(args) == 1 and args[0] in (int, float, str, bool):
return True
return False
def is_basemodel_without_fields(typ):
return inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) == 0
def can_recurse(typ):
return inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) > 0
def get_literal_values(field):
"""Extract literal values from a field if it's a Literal type."""
if get_origin(field.annotation) is Literal:
return get_args(field.annotation)
return None
def is_optional(field_type):
"""Check if a field type is Optional."""
return get_origin(field_type) is Union and type(None) in get_args(field_type)
def get_non_none_type(field_type):
"""Get the non-None type from an Optional type."""
return next(arg for arg in get_args(field_type) if arg is not type(None))
def manually_validate_field(model: type[BaseModel], field_name: str, value: Any):
validators = model.__pydantic_decorators__.field_validators
for _name, validator in validators.items():
if field_name in validator.info.fields:
validator.func(value)
return value
def is_discriminated_union(typ) -> bool:
if isinstance(typ, FieldInfo):
return typ.discriminator
else:
if get_origin(typ) is not Annotated:
return False
args = get_args(typ)
return len(args) >= 2 and args[1].discriminator
def prompt_for_discriminated_union(
field_name,
typ,
existing_value,
):
if isinstance(typ, FieldInfo):
inner_type = typ.annotation
discriminator = typ.discriminator
default_value = typ.default
else:
args = get_args(typ)
inner_type = args[0]
discriminator = args[1].discriminator
default_value = args[1].default
union_types = get_args(inner_type)
# Find the discriminator field in each union type
type_map = {}
for t in union_types:
disc_field = t.__fields__[discriminator]
literal_values = get_literal_values(disc_field)
if literal_values:
for value in literal_values:
type_map[value] = t
while True:
prompt = f"Enter `{discriminator}` for {field_name} (options: {', '.join(type_map.keys())})"
if default_value is not None:
prompt += f" (default: {default_value})"
discriminator_value = input(f"{prompt}: ")
if discriminator_value == "" and default_value is not None:
discriminator_value = default_value
if discriminator_value in type_map:
chosen_type = type_map[discriminator_value]
log.info(f"\nConfiguring {chosen_type.__name__}:")
if existing_value and (getattr(existing_value, discriminator) != discriminator_value):
existing_value = None
sub_config = prompt_for_config(chosen_type, existing_value)
# Set the discriminator field in the sub-config
setattr(sub_config, discriminator, discriminator_value)
return sub_config
else:
log.error(f"Invalid {discriminator}. Please try again.")
# This is somewhat elaborate, but does not purport to be comprehensive in any way.
# We should add handling for the most common cases to tide us over.
#
# doesn't support List[nested_class] yet or Dicts of any kind. needs a bunch of
# unit tests for coverage.
def prompt_for_config(config_type: type[BaseModel], existing_config: BaseModel | None = None) -> BaseModel:
"""
Recursively prompt the user for configuration values based on a Pydantic BaseModel.
Args:
config_type: A Pydantic BaseModel class representing the configuration structure.
Returns:
An instance of the config_type with user-provided values.
"""
config_data = {}
for field_name, field in config_type.__fields__.items():
field_type = field.annotation
existing_value = getattr(existing_config, field_name) if existing_config else None
if existing_value:
default_value = existing_value
else:
default_value = field.default if not isinstance(field.default, PydanticUndefinedType) else None
is_required = field.is_required
# Skip fields with Literal type
if get_origin(field_type) is Literal:
continue
# Skip fields with no type annotations
if is_basemodel_without_fields(field_type):
config_data[field_name] = field_type()
continue
if inspect.isclass(field_type) and issubclass(field_type, Enum):
prompt = f"Choose {field_name} (options: {', '.join(e.name for e in field_type)}):"
while True:
# this branch does not handle existing and default values yet
user_input = input(prompt + " ")
try:
value = field_type[user_input]
validated_value = manually_validate_field(config_type, field, value)
config_data[field_name] = validated_value
break
except KeyError:
log.error(f"Invalid choice. Please choose from: {', '.join(e.name for e in field_type)}")
continue
if is_discriminated_union(field):
config_data[field_name] = prompt_for_discriminated_union(field_name, field, existing_value)
continue
if is_optional(field_type) and can_recurse(get_non_none_type(field_type)):
prompt = f"Do you want to configure {field_name}? (y/n): "
if input(prompt).lower() == "n":
config_data[field_name] = None
continue
nested_type = get_non_none_type(field_type)
log.info(f"Entering sub-configuration for {field_name}:")
config_data[field_name] = prompt_for_config(nested_type, existing_value)
elif is_optional(field_type) and is_discriminated_union(get_non_none_type(field_type)):
prompt = f"Do you want to configure {field_name}? (y/n): "
if input(prompt).lower() == "n":
config_data[field_name] = None
continue
nested_type = get_non_none_type(field_type)
config_data[field_name] = prompt_for_discriminated_union(
field_name,
nested_type,
existing_value,
)
elif can_recurse(field_type):
log.info(f"\nEntering sub-configuration for {field_name}:")
config_data[field_name] = prompt_for_config(
field_type,
existing_value,
)
else:
prompt = f"Enter value for {field_name}"
if existing_value is not None:
prompt += f" (existing: {existing_value})"
elif default_value is not None:
prompt += f" (default: {default_value})"
if is_optional(field_type):
prompt += " (optional)"
elif is_required:
prompt += " (required)"
prompt += ": "
while True:
user_input = input(prompt)
if user_input == "":
if default_value is not None:
config_data[field_name] = default_value
break
elif is_optional(field_type) or not is_required:
config_data[field_name] = None
break
else:
log.error("This field is required. Please provide a value.")
continue
else:
try:
# Handle Optional types
if is_optional(field_type):
if user_input.lower() == "none":
value = None
else:
field_type = get_non_none_type(field_type)
value = user_input
# Handle List of primitives
elif is_list_of_primitives(field_type):
try:
value = json.loads(user_input)
if not isinstance(value, list):
raise ValueError("Input must be a JSON-encoded list")
element_type = get_args(field_type)[0]
value = [element_type(item) for item in value]
except json.JSONDecodeError:
log.error('Invalid JSON. Please enter a valid JSON-encoded list e.g., ["foo","bar"]')
continue
except ValueError as e:
log.error(f"{str(e)}")
continue
elif get_origin(field_type) is dict:
try:
value = json.loads(user_input)
if not isinstance(value, dict):
raise ValueError("Input must be a JSON-encoded dictionary")
except json.JSONDecodeError:
log.error("Invalid JSON. Please enter a valid JSON-encoded dict.")
continue
# Convert the input to the correct type
elif inspect.isclass(field_type) and issubclass(field_type, BaseModel):
# For nested BaseModels, we assume a dictionary-like string input
import ast
value = field_type(**ast.literal_eval(user_input))
else:
value = field_type(user_input)
except ValueError:
log.error(f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}")
continue
try:
# Validate the field using our manual validation function
validated_value = manually_validate_field(config_type, field_name, value)
config_data[field_name] = validated_value
break
except ValueError as e:
log.error(f"Validation error: {str(e)}")
return config_type(**config_data)

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from datetime import datetime
from enum import Enum
class EnumEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, Enum):
return obj.value
elif isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)