mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
fix: enforce allowed_models during inference requests (#4197)
The `allowed_models` configuration was only being applied when listing
models via the `/v1/models` endpoint, but the actual inference requests
weren't checking this restriction. This meant users could directly
request any model the provider supports by specifying it in their
inference call, completely bypassing the intended cost controls.
The fix adds validation to all three inference methods (chat
completions, completions, and embeddings) that checks the requested
model against the allowed_models list before making the provider API
call.
Added unit tests
(cherry picked from commit d649c3663e)
Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
49a290e53e
commit
2712651403
2 changed files with 128 additions and 6 deletions
|
|
@ -12,7 +12,13 @@ from unittest.mock import AsyncMock, MagicMock, Mock, PropertyMock, patch
|
|||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import Model, OpenAIChatCompletionRequestWithExtraBody, OpenAIUserMessageParam
|
||||
from llama_stack.apis.inference import (
|
||||
Model,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
|
|
@ -733,3 +739,96 @@ class TestOpenAIMixinProviderDataApiKey:
|
|||
error_message = str(exc_info.value)
|
||||
assert "test_api_key" in error_message
|
||||
assert "x-llamastack-provider-data" in error_message
|
||||
|
||||
|
||||
class TestOpenAIMixinAllowedModelsInference:
|
||||
"""Test cases for allowed_models enforcement during inference requests"""
|
||||
|
||||
async def test_inference_with_allowed_models(self, mixin, mock_client_context):
|
||||
"""Test that all inference methods succeed with allowed models"""
|
||||
mixin.config.allowed_models = ["gpt-4", "text-davinci-003", "text-embedding-ada-002"]
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
|
||||
mock_client.completions.create = AsyncMock(return_value=MagicMock())
|
||||
mock_embedding_response = MagicMock()
|
||||
mock_embedding_response.data = [MagicMock(embedding=[0.1, 0.2, 0.3])]
|
||||
mock_embedding_response.usage = MagicMock(prompt_tokens=5, total_tokens=5)
|
||||
mock_client.embeddings.create = AsyncMock(return_value=mock_embedding_response)
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
# Test chat completion
|
||||
await mixin.openai_chat_completion(
|
||||
OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="gpt-4", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
|
||||
)
|
||||
)
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
|
||||
# Test completion
|
||||
await mixin.openai_completion(
|
||||
OpenAICompletionRequestWithExtraBody(model="text-davinci-003", prompt="Hello")
|
||||
)
|
||||
mock_client.completions.create.assert_called_once()
|
||||
|
||||
# Test embeddings
|
||||
await mixin.openai_embeddings(
|
||||
OpenAIEmbeddingsRequestWithExtraBody(model="text-embedding-ada-002", input="test text")
|
||||
)
|
||||
mock_client.embeddings.create.assert_called_once()
|
||||
|
||||
async def test_inference_with_disallowed_models(self, mixin, mock_client_context):
|
||||
"""Test that all inference methods fail with disallowed models"""
|
||||
mixin.config.allowed_models = ["gpt-4"]
|
||||
|
||||
mock_client = MagicMock()
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
# Test chat completion with disallowed model
|
||||
with pytest.raises(ValueError, match="Model 'gpt-4-turbo' is not in the allowed models list"):
|
||||
await mixin.openai_chat_completion(
|
||||
OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="gpt-4-turbo", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
|
||||
)
|
||||
)
|
||||
|
||||
# Test completion with disallowed model
|
||||
with pytest.raises(ValueError, match="Model 'text-davinci-002' is not in the allowed models list"):
|
||||
await mixin.openai_completion(
|
||||
OpenAICompletionRequestWithExtraBody(model="text-davinci-002", prompt="Hello")
|
||||
)
|
||||
|
||||
# Test embeddings with disallowed model
|
||||
with pytest.raises(ValueError, match="Model 'text-embedding-3-large' is not in the allowed models list"):
|
||||
await mixin.openai_embeddings(
|
||||
OpenAIEmbeddingsRequestWithExtraBody(model="text-embedding-3-large", input="test text")
|
||||
)
|
||||
|
||||
mock_client.chat.completions.create.assert_not_called()
|
||||
mock_client.completions.create.assert_not_called()
|
||||
mock_client.embeddings.create.assert_not_called()
|
||||
|
||||
async def test_inference_with_no_restrictions(self, mixin, mock_client_context):
|
||||
"""Test that inference succeeds when allowed_models is None or empty list blocks all"""
|
||||
# Test with None (no restrictions)
|
||||
assert mixin.config.allowed_models is None
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
await mixin.openai_chat_completion(
|
||||
OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="any-model", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
|
||||
)
|
||||
)
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
|
||||
# Test with empty list (blocks all models)
|
||||
mixin.config.allowed_models = []
|
||||
with mock_client_context(mixin, mock_client):
|
||||
with pytest.raises(ValueError, match="Model 'gpt-4' is not in the allowed models list"):
|
||||
await mixin.openai_chat_completion(
|
||||
OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="gpt-4", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
|
||||
)
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue