feat: azure ai inference support

This commit is contained in:
Facundo Santiago 2024-11-04 06:41:15 +00:00
parent bf4f97a2e1
commit 27a0545f5f
5 changed files with 317 additions and 0 deletions

View file

@ -0,0 +1,17 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .azure_ai_inference import AzureAIInferenceAdapter
from .config import AzureAIInferenceConfig
async def get_adapter_impl(config: AzureAIInferenceConfig, _deps):
assert isinstance(config, AzureAIInferenceConfig), f"Unexpected config type: {type(config)}"
impl = AzureAIInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,259 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from azure.ai.inference.aio import ChatCompletionsClient as ChatCompletionsClientAsync
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import HttpResponseError
from azure.identity import DefaultAzureCredential
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_messages,
)
from .config import AzureAIInferenceConfig
# Mapping of model names from the Llama model names to the Azure AI model catalog names
SUPPORTED_INSTRUCT_MODELS = {
"Llama3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"Llama3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
"Llama3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
"Llama3.2-1B-Instruct": "Llama-3.2-1B-Instruct",
"Llama3.2-3B-Instruct": "Llama-3.2-3B-Instruct",
"Llama3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct",
"Llama3.2-90B-Vision-Instruct": "Llama-3.2-90B-Vision-Instruct",
}
logger = logging.getLogger(__name__)
class AzureAIInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, config: AzureAIInferenceConfig) -> None:
tokenizer = Tokenizer.get_instance()
self.config = config
self.formatter = ChatFormat(tokenizer)
self._model_name = None
@property
def client(self) -> ChatCompletionsClientAsync:
if self.config.credential is None:
credential = DefaultAzureCredential()
else:
credential = AzureKeyCredential(self.config.credential)
if self.config.api_version:
return ChatCompletionsClientAsync(
endpoint=self.config.endpoint,
credential=credential,
user_agent="llama-stack",
api_version=self.config.api_version,
)
else:
return ChatCompletionsClientAsync(
endpoint=self.config.endpoint,
credential=credential,
user_agent="llama-stack",
)
async def initialize(self) -> None:
async with self.client as async_client:
try:
model_info = await async_client.get_model_info()
if model_info:
self._model_name = model_info.get("model_name", None)
logger.info(
f"Endpoint {self.config.endpoint} supports model {self._model_name}"
)
if self._model_name not in SUPPORTED_INSTRUCT_MODELS.values():
logger.warning(
f"Endpoints serves model {self._model_name} which may not be supported"
)
except HttpResponseError:
logger.info(
f"Endpoint {self.config.endpoint} supports multiple models"
)
self._model_name = None
async def shutdown(self) -> None:
pass
async def list_models(self) -> List[ModelDef]:
print("Model name: ", self._model_name)
if self._model_name is None:
return [
ModelDef(identifier=model_name, llama_model=azure_model_id)
for model_name, azure_model_id in SUPPORTED_INSTRUCT_MODELS.items()
]
else:
# find if there is a value in the SUPPORTED_INSTRUCT_MODELS that matches the model name
supported_model = next(
(model for model in SUPPORTED_INSTRUCT_MODELS if SUPPORTED_INSTRUCT_MODELS[model] == self._model_name),
None
)
return [
ModelDef(
identifier=supported_model or self._model_name,
llama_model=self._model_name
)
]
async def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model or self.config.model_name,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
params = self._get_params(request)
if stream:
return self._stream_chat_completion(params)
else:
return await self._nonstream_chat_completion(params)
async def _nonstream_chat_completion(
self, params: dict
) -> ChatCompletionResponse:
async with self.client as client:
r = await client.complete(**params)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, params: dict
) -> AsyncGenerator:
async with self.client as client:
stream = await client.complete(**params, stream=True)
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
yield chunk
@staticmethod
def _get_sampling_options(
params: SamplingParams,
logprobs: Optional[LogProbConfig] = None
) -> dict:
options = {}
model_extras = {}
if params:
# repetition_penalty is not supported by Azure AI inference API
for attr in {"temperature", "top_p", "max_tokens"}:
if getattr(params, attr):
options[attr] = getattr(params, attr)
if params.top_k is not None and params.top_k != 0:
model_extras["top_k"] = params.top_k
if logprobs is not None:
model_extras["logprobs"] = params.logprobs
if model_extras:
options["model_extras"] = model_extras
return options
@staticmethod
def _to_azure_ai_messages(messages: List[Message]) -> List[dict]:
"""
Convert the messages to the format expected by the Azure AI API.
"""
azure_ai_messages = []
for message in messages:
role = message.role
content = message.content
if role == "user":
azure_ai_messages.append({"role": role, "content": content})
elif role == "assistant":
azure_ai_messages.append({"role": role, "content": content, "tool_calls": message.tool_calls})
elif role == "system":
azure_ai_messages.append({"role": role, "content": content})
elif role == "ipython":
azure_ai_messages.append(
{
"role": "tool",
"content": content,
"tool_call_id": message.call_id
}
)
return azure_ai_messages
def _get_params(self, request: ChatCompletionRequest) -> dict:
"""
Gets the parameters for the Azure AI model inference API from the Chat completions request.
Parameters are returned as a dictionary.
"""
options = self._get_sampling_options(request.sampling_params, request.logprobs)
messages = self._to_azure_ai_messages(chat_completion_request_to_messages(request))
if (self._model_name):
# If the model name is already resolved, then the endpoint
# is serving a single model and we don't need to specify it
return {
"messages": messages,
**options
}
else:
return {
"messages": messages,
"model": SUPPORTED_INSTRUCT_MODELS.get(request.model, request.model),
**options
}
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -0,0 +1,26 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import * # noqa: F403
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class AzureAIInferenceConfig(BaseModel):
endpoint: str = Field(
default=None,
description="The endpoint URL where the model(s) is/are deployed.",
)
credential: Optional[str] = Field(
default=None,
description="The secret to access the model. If None, then `DefaultAzureCredential` is attempted.",
)
api_version: Optional[str] = Field(
default=None,
description="The API version to use in the endpoint. Indicating None will use the default version in the "
"`azure-ai-inference` package. Default use environment variable: AZURE_AI_API_VERSION",
)

View file

@ -140,6 +140,15 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.adapters.inference.databricks.DatabricksImplConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="azure-ai-inference",
pip_packages=["azure-ai-inference", "azure-identity", "aiohttp"],
module="llama_stack.providers.adapters.inference.azure_ai_inference",
config_class="llama_stack.providers.adapters.inference.azure_ai_inference.AzureAIInferenceConfig",
),
),
InlineProviderSpec(
api=Api.inference,
provider_type="vllm",

View file

@ -45,6 +45,9 @@ def get_sampling_options(params: SamplingParams) -> dict:
def text_from_choice(choice) -> str:
if hasattr(choice, "delta") and choice.delta:
return choice.delta.content
if hasattr(choice, "message"):
return choice.message.content
return choice.text
@ -158,6 +161,9 @@ async def process_chat_completion_stream_response(
break
text = text_from_choice(choice)
if not text:
continue
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True