Merge branch 'main' into add-watsonx-inference-adapter

This commit is contained in:
Sajikumar JS 2025-03-20 10:18:05 +05:30
commit 28e6c8478b
308 changed files with 33749 additions and 5102 deletions

View file

@ -1,9 +0,0 @@
---
description: General rules always applicable across the project
globs:
alwaysApply: true
---
# Style
- Comments must add value to code. Don't write filler comments explaining what you are doing next; they just add noise.
- Add a comment to clarify surprising behavior which would not be obvious. Good variable naming and clear code organization is more important.

2
.github/TRIAGERS.md vendored Normal file
View file

@ -0,0 +1,2 @@
# This file documents Triage members in the Llama Stack community
@franciscojavierarceo @leseb

View file

@ -5,4 +5,19 @@ updates:
- package-ecosystem: "github-actions"
directory: "/" # Will use the default workflow location of `.github/workflows`
schedule:
interval: "daily"
interval: "weekly"
day: "saturday"
commit-message:
prefix: chore(github-deps)
- package-ecosystem: "uv"
directory: "/"
schedule:
interval: "weekly"
day: "saturday"
# ignore all non-security updates: https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file#open-pull-requests-limit
open-pull-requests-limit: 0
labels:
- type/dependencies
- python
commit-message:
prefix: chore(python-deps)

29
.github/workflows/changelog.yml vendored Normal file
View file

@ -0,0 +1,29 @@
name: Update Changelog
on:
release:
types: [published, unpublished, created, edited, deleted, released]
permissions:
contents: read
jobs:
generate_changelog:
name: Generate changelog
permissions:
contents: write # for peter-evans/create-pull-request to create branch
pull-requests: write # for peter-evans/create-pull-request to create a PR
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
ref: main
fetch-depth: 0
- run: |
python ./scripts/gen-changelog.py
- uses: peter-evans/create-pull-request@v7
with:
title: 'docs: update CHANGELOG.md for ${{ github.ref_name }}'
commit-message: 'docs: update CHANGELOG.md for ${{ github.ref_name }}'
branch: create-pull-request/changelog
signoff: true

97
.github/workflows/integration-tests.yml vendored Normal file
View file

@ -0,0 +1,97 @@
name: Integration Tests
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
paths:
- 'distributions/**'
- 'llama_stack/**'
- 'tests/integration/**'
- 'uv.lock'
- 'pyproject.toml'
- 'requirements.txt'
- '.github/workflows/integration-tests.yml' # This workflow
jobs:
test-matrix:
runs-on: ubuntu-latest
strategy:
matrix:
# Listing tests manually since some of them currently fail
# TODO: generate matrix list from tests/integration when fixed
test-type: [inference, datasets, inspect, scoring, post_training, providers]
fail-fast: false # we want to run all tests regardless of failure
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v5
with:
python-version: "3.10"
- name: Install Ollama
run: |
curl -fsSL https://ollama.com/install.sh | sh
- name: Pull Ollama image
run: |
ollama pull llama3.2:3b-instruct-fp16
- name: Start Ollama in background
run: |
nohup ollama run llama3.2:3b-instruct-fp16 > ollama.log 2>&1 &
- name: Set Up Environment and Install Dependencies
run: |
uv sync --extra dev --extra test
uv pip install ollama faiss-cpu
# always test against the latest version of the client
uv pip install git+https://github.com/meta-llama/llama-stack-client-python.git@main
uv pip install -e .
llama stack build --template ollama --image-type venv
- name: Wait for Ollama to start
run: |
echo "Waiting for Ollama..."
for i in {1..30}; do
if curl -s http://localhost:11434 | grep -q "Ollama is running"; then
echo "Ollama is running!"
exit 0
fi
sleep 1
done
echo "Ollama failed to start"
ollama ps
ollama.log
exit 1
- name: Start Llama Stack server in background
env:
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
run: |
source .venv/bin/activate
nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv > server.log 2>&1 &
- name: Wait for Llama Stack server to be ready
run: |
echo "Waiting for Llama Stack server..."
for i in {1..30}; do
if curl -s http://localhost:8321/v1/health | grep -q "OK"; then
echo "Llama Stack server is up!"
exit 0
fi
sleep 1
done
echo "Llama Stack server failed to start"
cat server.log
exit 1
- name: Run Integration Tests
env:
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
run: |
uv run pytest -v tests/integration/${{ matrix.test-type }} --stack-config=ollama --text-model="meta-llama/Llama-3.2-3B-Instruct" --embedding-model=all-MiniLM-L6-v2

79
.github/workflows/providers-build.yml vendored Normal file
View file

@ -0,0 +1,79 @@
name: Test Llama Stack Build
on:
push:
branches:
- main
paths:
- 'llama_stack/cli/stack/build.py'
- 'llama_stack/cli/stack/_build.py'
- 'llama_stack/distribution/build.*'
- 'llama_stack/distribution/*.sh'
- '.github/workflows/providers-build.yml'
pull_request:
paths:
- 'llama_stack/cli/stack/build.py'
- 'llama_stack/cli/stack/_build.py'
- 'llama_stack/distribution/build.*'
- 'llama_stack/distribution/*.sh'
- '.github/workflows/providers-build.yml'
jobs:
generate-matrix:
runs-on: ubuntu-latest
outputs:
templates: ${{ steps.set-matrix.outputs.templates }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Generate Template List
id: set-matrix
run: |
templates=$(ls llama_stack/templates/*/*build.yaml | awk -F'/' '{print $(NF-1)}' | jq -R -s -c 'split("\n")[:-1]')
echo "templates=$templates" >> "$GITHUB_OUTPUT"
build:
needs: generate-matrix
runs-on: ubuntu-latest
strategy:
matrix:
template: ${{ fromJson(needs.generate-matrix.outputs.templates) }}
image-type: [venv, container]
fail-fast: false # We want to run all jobs even if some fail
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Install uv
uses: astral-sh/setup-uv@v5
with:
python-version: "3.10"
- name: Install LlamaStack
run: |
uv venv
source .venv/bin/activate
uv pip install -e .
- name: Print build dependencies
run: |
uv run llama stack build --template ${{ matrix.template }} --image-type ${{ matrix.image-type }} --image-name test --print-deps-only
- name: Run Llama Stack Build
run: |
# USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead
# LLAMA_STACK_DIR is set to the current directory so we are building from the source
USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --template ${{ matrix.template }} --image-type ${{ matrix.image-type }} --image-name test
- name: Print dependencies in the image
if: matrix.image-type == 'venv'
run: |
source test/bin/activate
uv pip list

45
.github/workflows/stale_bot.yml vendored Normal file
View file

@ -0,0 +1,45 @@
name: Close stale issues and PRs
on:
schedule:
- cron: '0 0 * * *' # every day at midnight
env:
LC_ALL: en_US.UTF-8
defaults:
run:
shell: bash
permissions:
contents: read
jobs:
stale:
permissions:
issues: write
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: Stale Action
uses: actions/stale@v9
with:
stale-issue-label: 'stale'
stale-issue-message: >
This issue has been automatically marked as stale because it has not had activity within 60 days.
It will be automatically closed if no further activity occurs within 30 days.
close-issue-message: >
This issue has been automatically closed due to inactivity.
Please feel free to reopen if you feel it is still relevant!
days-before-issue-stale: 60
days-before-issue-close: 30
stale-pr-label: 'stale'
stale-pr-message: >
This pull request has been automatically marked as stale because it has not had activity within 60 days.
It will be automatically closed if no further activity occurs within 30 days.
close-pr-message: >
This pull request has been automatically closed due to inactivity.
Please feel free to reopen if you intend to continue working on it!
days-before-pr-stale: 60
days-before-pr-close: 30
operations-per-run: 300

View file

@ -1,36 +1,55 @@
name: Unit Tests
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
paths:
- 'distributions/**'
- 'llama_stack/**'
- 'tests/unit/**'
- 'uv.lock'
- 'pyproject.toml'
- 'requirements.txt'
- '.github/workflows/unit-tests.yml' # This workflow
workflow_dispatch:
jobs:
unit-tests:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python:
- "3.10"
- "3.11"
- "3.12"
- "3.13"
steps:
- uses: actions/checkout@v4
- name: Set up Python
- name: Set up Python ${{ matrix.python }}
uses: actions/setup-python@v5
with:
python-version: '3.10.16'
python-version: ${{ matrix.python }}
- uses: astral-sh/setup-uv@v5
with:
python-version: '3.10.16'
python-version: ${{ matrix.python }}
enable-cache: false
- name: Run unit tests
run: |
uv run -p 3.10.16 --with . --with ".[dev]" --with ".[test]" pytest -s -v tests/unit/ --junitxml=pytest-report.xml
PYTHON_VERSION=${{ matrix.python }} ./scripts/unit-tests.sh --cov=llama_stack --junitxml=pytest-report-${{ matrix.python }}.xml --cov-report=html:htmlcov-${{ matrix.python }}
- name: Upload test results
if: always()
uses: actions/upload-artifact@v4
with:
name: test-results
name: test-results-${{ matrix.python }}
path: |
.pytest_cache/
pytest-report.xml
pytest-report-${{ matrix.python }}.xml
htmlcov-${{ matrix.python }}/
retention-days: 7

2
.gitignore vendored
View file

@ -21,3 +21,5 @@ docs/src
pyrightconfig.json
venv/
pytest-report.xml
.coverage
.python-version

View file

@ -8,6 +8,7 @@ repos:
rev: v5.0.0 # Latest stable version
hooks:
- id: check-merge-conflict
args: ['--assume-in-merge']
- id: trailing-whitespace
exclude: '\.py$' # Exclude Python files as Ruff already handles them
- id: check-added-large-files
@ -76,12 +77,23 @@ repos:
name: Distribution Template Codegen
additional_dependencies:
- uv==0.6.0
entry: uv run --extra codegen python -m llama_stack.scripts.distro_codegen
entry: uv run --extra codegen ./scripts/distro_codegen.py
language: python
pass_filenames: false
require_serial: true
files: ^llama_stack/templates/.*$|^llama_stack/providers/.*/inference/.*/models\.py$
- repo: local
hooks:
- id: openapi-codegen
name: API Spec Codegen
additional_dependencies:
- uv==0.6.2
entry: sh -c 'uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh > /dev/null 2>&1'
language: python
pass_filenames: false
require_serial: true
ci:
autofix_commit_msg: 🎨 [pre-commit.ci] Auto format from pre-commit.com hooks
autoupdate_commit_msg: ⬆ [pre-commit.ci] pre-commit autoupdate

View file

@ -1 +0,0 @@
3.10

View file

@ -61,6 +61,7 @@ outlined on that page and do not file a public issue.
We use [uv](https://github.com/astral-sh/uv) to manage python dependencies and virtual environments.
You can install `uv` by following this [guide](https://docs.astral.sh/uv/getting-started/installation/).
You can install the dependencies by running:
```bash
@ -70,6 +71,11 @@ uv pip install -e .
source .venv/bin/activate
```
> [!NOTE]
> You can pin a specific version of Python to use for `uv` by adding a `.python-version` file in the root project directory.
> Otherwise, `uv` will automatically select a Python version according to the `requires-python` section of the `pyproject.toml`.
> For more info, see the [uv docs around Python versions](https://docs.astral.sh/uv/concepts/python-versions/).
Note that you can create a dotenv file `.env` that includes necessary environment variables:
```
LLAMA_STACK_BASE_URL=http://localhost:8321
@ -80,7 +86,7 @@ LLAMA_STACK_CONFIG=
And then use this dotenv file when running client SDK tests via the following:
```bash
uv run --env-file .env -- pytest -v tests/api/inference/test_text_inference.py
uv run --env-file .env -- pytest -v tests/integration/inference/test_text_inference.py
```
## Pre-commit Hooks
@ -102,6 +108,22 @@ uv run pre-commit run --all-files
> [!CAUTION]
> Before pushing your changes, make sure that the pre-commit hooks have passed successfully.
## Running unit tests
You can run the unit tests by running:
```bash
source .venv/bin/activate
./scripts/unit-tests.sh
```
If you'd like to run for a non-default version of Python (currently 3.10), pass `PYTHON_VERSION` variable as follows:
```
source .venv/bin/activate
PYTHON_VERSION=3.13 ./scripts/unit-tests.sh
```
## Adding a new dependency to the project
To add a new dependency to the project, you can use the `uv` command. For example, to add `foo` to the project, you can run:
@ -137,7 +159,7 @@ LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama
### Updating Provider Configurations
If you have made changes to a provider's configuration in any form (introducing a new config key, or changing models, etc.), you should run `python llama_stack/scripts/distro_codegen.py` to re-generate various YAML files as well as the documentation. You should not change `docs/source/.../distributions/` files manually as they are auto-generated.
If you have made changes to a provider's configuration in any form (introducing a new config key, or changing models, etc.), you should run `./scripts/distro_codegen.py` to re-generate various YAML files as well as the documentation. You should not change `docs/source/.../distributions/` files manually as they are auto-generated.
### Building the Documentation
@ -159,8 +181,7 @@ uv run sphinx-autobuild source build/html --write-all
If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command:
```bash
uv sync --extra dev
uv run ./docs/openapi_generator/run_openapi_generator.sh
uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh
```
The generated API documentation will be available in `docs/_static/`. Make sure to review the changes before committing.

View file

@ -4,6 +4,8 @@
[![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-stack)](https://pypi.org/project/llama-stack/)
[![License](https://img.shields.io/pypi/l/llama_stack.svg)](https://github.com/meta-llama/llama-stack/blob/main/LICENSE)
[![Discord](https://img.shields.io/discord/1257833999603335178)](https://discord.gg/llama-stack)
[![Unit Tests](https://github.com/meta-llama/llama-stack/actions/workflows/unit-tests.yml/badge.svg?branch=main)](https://github.com/meta-llama/llama-stack/actions/workflows/unit-tests.yml?query=branch%3Amain)
[![Integration Tests](https://github.com/meta-llama/llama-stack/actions/workflows/integration-tests.yml/badge.svg?branch=main)](https://github.com/meta-llama/llama-stack/actions/workflows/integration-tests.yml?query=branch%3Amain)
[**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Colab Notebook**](./docs/getting_started.ipynb)
@ -50,6 +52,10 @@ Here is a list of the various API providers and available distributions that can
| PG Vector | Single Node | | | ✅ | | |
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | |
| vLLM | Hosted and Single Node | | ✅ | | | |
| OpenAI | Hosted | | ✅ | | | |
| Anthropic | Hosted | | ✅ | | | |
| Gemini | Hosted | | ✅ | | | |
### Distributions
@ -67,26 +73,6 @@ A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/fireworks.html) |
| vLLM | [llamastack/distribution-remote-vllm](https://hub.docker.com/repository/docker/llamastack/distribution-remote-vllm/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/remote-vllm.html) |
### Installation
You have two ways to install this repository:
* **Install as a package**:
You can install the repository directly from [PyPI](https://pypi.org/project/llama-stack/) by running the following command:
```bash
pip install llama-stack
```
* **Install from source**:
If you prefer to install from the source code, we recommend using [uv](https://github.com/astral-sh/uv).
Then, run the following commands:
```bash
git clone git@github.com:meta-llama/llama-stack.git
cd llama-stack
uv sync
uv pip install -e .
```
### Documentation

View file

@ -7,10 +7,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -23,6 +25,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -30,6 +33,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"cerebras": [
@ -40,10 +44,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"nltk",
"numpy",
@ -55,6 +61,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -62,6 +69,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -73,10 +81,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"fastapi",
"fire",
"fireworks-ai",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -89,6 +99,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -97,6 +108,7 @@
"sqlite-vec",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -109,11 +121,13 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"langdetect",
"matplotlib",
"nltk",
"numpy",
@ -125,6 +139,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -132,6 +147,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -143,10 +159,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"fastapi",
"fire",
"fireworks-ai",
"httpx",
"langdetect",
"litellm",
"matplotlib",
"mcp",
@ -160,6 +178,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -168,6 +187,7 @@
"sqlite-vec",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -179,11 +199,13 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"fireworks-ai",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -196,6 +218,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -203,6 +226,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -213,10 +237,12 @@
"blobfile",
"chardet",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"litellm",
"matplotlib",
"nltk",
@ -229,6 +255,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -236,6 +263,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"hf-endpoint": [
@ -246,11 +274,13 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -263,6 +293,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -270,6 +301,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"hf-serverless": [
@ -280,11 +312,13 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -297,6 +331,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -304,6 +339,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -316,11 +352,13 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"fairscale",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"lm-format-enforcer",
"matplotlib",
"mcp",
@ -334,6 +372,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -344,6 +383,7 @@
"torchvision",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"zmq"
],
@ -355,12 +395,14 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"fairscale",
"faiss-cpu",
"fastapi",
"fbgemm-gpu",
"fire",
"httpx",
"langdetect",
"lm-format-enforcer",
"matplotlib",
"mcp",
@ -374,6 +416,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -385,21 +428,21 @@
"torchvision",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"zmq"
],
"nvidia": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
@ -410,6 +453,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -417,6 +461,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"ollama": [
@ -427,9 +472,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -443,27 +491,30 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"sqlite-vec",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"remote-vllm": [
"open-benchmark": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"faiss-cpu",
"emoji",
"fastapi",
"fire",
"httpx",
"langdetect",
"litellm",
"matplotlib",
"mcp",
"nltk",
@ -476,6 +527,45 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"sqlite-vec",
"together",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn"
],
"passthrough": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -483,6 +573,45 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
],
"remote-vllm": [
"aiosqlite",
"autoevals",
"blobfile",
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
"numpy",
"openai",
"opentelemetry-exporter-otlp-proto-http",
"opentelemetry-sdk",
"pandas",
"pillow",
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
"scipy",
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -524,11 +653,13 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"huggingface_hub",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -541,6 +672,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -548,6 +680,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -559,10 +692,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -575,6 +710,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -583,6 +719,7 @@
"together",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"sentence-transformers --no-deps",
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
@ -594,10 +731,12 @@
"chardet",
"chromadb-client",
"datasets",
"emoji",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"langdetect",
"matplotlib",
"mcp",
"nltk",
@ -610,6 +749,7 @@
"psycopg2-binary",
"pymongo",
"pypdf",
"pythainlp",
"redis",
"requests",
"scikit-learn",
@ -617,6 +757,7 @@
"sentencepiece",
"tqdm",
"transformers",
"tree_sitter",
"uvicorn",
"vllm",
"sentence-transformers --no-deps",

Binary file not shown.

View file

@ -71,7 +71,6 @@ services:
condition: service_healthy
- vllm-${VLLM_SAFETY_MODEL:+safety}:
condition: service_healthy
# image: llamastack/distribution-remote-vllm
image: llamastack/distribution-remote-vllm:test-0.0.52rc3
volumes:
- ~/.llama:/root/.llama

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1267,7 +1267,6 @@
}
],
"source": [
"# NBVAL_SKIP\n",
"from pydantic import BaseModel\n",
"\n",
"\n",
@ -1279,7 +1278,7 @@
"\n",
"user_input = \"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003. Extract this information into JSON for me. \"\n",
"response = client.inference.completion(\n",
" model_id=model_id,\n",
" model_id=\"meta-llama/Llama-3.1-8B-Instruct\",\n",
" content=user_input,\n",
" stream=False,\n",
" sampling_params={\n",
@ -1640,7 +1639,7 @@
"agent = Agent(\n",
" client, \n",
" model=model_id,\n",
" instructions=\"You are a helpful assistant\",\n",
" instructions=\"You are a helpful assistant. Use websearch tool to help answer questions.\",\n",
" tools=[\"builtin::websearch\"],\n",
")\n",
"user_prompts = [\n",

File diff suppressed because one or more lines are too long

View file

@ -84,16 +84,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Not in Google Colab environment\n",
"\u001b[33mWarning: `bwrap` is not available. Code interpreter tool will not work correctly.\u001b[0m\n"
"Not in Google Colab environment\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/envs/master/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
"Warning: `bwrap` is not available. Code interpreter tool will not work correctly.\n"
]
},
{
@ -117,76 +115,146 @@
"- datasetio\n",
"- eval\n",
"- inference\n",
"- memory\n",
"- safety\n",
"- scoring\n",
"- telemetry\n",
"- tool_runtime\n",
"datasets: <span style=\"font-weight: bold\">[]</span>\n",
"container_image: null\n",
"- vector_io\n",
"benchmarks: <span style=\"font-weight: bold\">[]</span>\n",
"container_image: null\n",
"datasets: <span style=\"font-weight: bold\">[]</span>\n",
"image_name: together\n",
"memory_banks: <span style=\"font-weight: bold\">[]</span>\n",
"logging: null\n",
"metadata_store:\n",
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">registry.db</span>\n",
" namespace: null\n",
" type: sqlite\n",
"models:\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-FP8\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Meta-Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision-Turbo\n",
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
" model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision-Turbo\n",
"- metadata:\n",
" context_length: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8192</span>\n",
" embedding_dimension: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">768</span>\n",
" model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - embedding\n",
" provider_id: together\n",
" provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
"- metadata:\n",
" context_length: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">32768</span>\n",
" embedding_dimension: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">768</span>\n",
" model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - embedding\n",
" provider_id: together\n",
" provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
"- metadata:\n",
" embedding_dimension: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">384</span>\n",
" model_id: all-MiniLM-L6-v2\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
@ -203,14 +271,26 @@
" provider_id: meta-reference\n",
" provider_type: inline::meta-reference\n",
" datasetio:\n",
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" - config:\n",
" kvstore:\n",
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">huggingface_datasetio.db</span>\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: huggingface\n",
" provider_type: remote::huggingface\n",
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" - config:\n",
" kvstore:\n",
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">localfs_datasetio.db</span>\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: localfs\n",
" provider_type: inline::localfs\n",
" eval:\n",
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" - config:\n",
" kvstore:\n",
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">meta_reference_eval.db</span>\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: meta-reference\n",
" provider_type: inline::meta-reference\n",
" inference:\n",
@ -222,16 +302,9 @@
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" provider_id: sentence-transformers\n",
" provider_type: inline::sentence-transformers\n",
" memory:\n",
" - config:\n",
" kvstore:\n",
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">faiss_store.db</span>\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: faiss\n",
" provider_type: inlin<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::fa</span>iss\n",
" safety:\n",
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" - config:\n",
" excluded_categories: <span style=\"font-weight: bold\">[]</span>\n",
" provider_id: llama-guard\n",
" provider_type: inline::llama-guard\n",
" scoring:\n",
@ -269,7 +342,26 @@
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" provider_id: rag-runtime\n",
" provider_type: inline::rag-runtime\n",
" - config: <span style=\"font-weight: bold\">{}</span>\n",
" provider_id: model-context-protocol\n",
" provider_type: remote::model-context-protocol\n",
" - config:\n",
" api_key: <span style=\"color: #008000; text-decoration-color: #008000\">'********'</span>\n",
" provider_id: wolfram-alpha\n",
" provider_type: remote::wolfram-alpha\n",
" vector_io:\n",
" - config:\n",
" kvstore:\n",
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">faiss_store.db</span>\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: faiss\n",
" provider_type: inlin<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::fa</span>iss\n",
"scoring_fns: <span style=\"font-weight: bold\">[]</span>\n",
"server:\n",
" port: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8321</span>\n",
" tls_certfile: null\n",
" tls_keyfile: null\n",
"shields:\n",
"- params: null\n",
" provider_id: null\n",
@ -288,6 +380,11 @@
" mcp_endpoint: null\n",
" provider_id: code-interpreter\n",
" toolgroup_id: builtin::code_interpreter\n",
"- args: null\n",
" mcp_endpoint: null\n",
" provider_id: wolfram-alpha\n",
" toolgroup_id: builtin::wolfram_alpha\n",
"vector_dbs: <span style=\"font-weight: bold\">[]</span>\n",
"version: <span style=\"color: #008000; text-decoration-color: #008000\">'2'</span>\n",
"\n",
"</pre>\n"
@ -298,76 +395,146 @@
"- datasetio\n",
"- eval\n",
"- inference\n",
"- memory\n",
"- safety\n",
"- scoring\n",
"- telemetry\n",
"- tool_runtime\n",
"datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
"container_image: null\n",
"- vector_io\n",
"benchmarks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
"container_image: null\n",
"datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
"image_name: together\n",
"memory_banks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
"logging: null\n",
"metadata_store:\n",
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mregistry.db\u001b[0m\n",
" namespace: null\n",
" type: sqlite\n",
"models:\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n",
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - llm\n",
" provider_id: together\n",
" provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n",
"- metadata:\n",
" context_length: \u001b[1;36m8192\u001b[0m\n",
" embedding_dimension: \u001b[1;36m768\u001b[0m\n",
" model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - embedding\n",
" provider_id: together\n",
" provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
"- metadata:\n",
" context_length: \u001b[1;36m32768\u001b[0m\n",
" embedding_dimension: \u001b[1;36m768\u001b[0m\n",
" model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
" - embedding\n",
" provider_id: together\n",
" provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
"- metadata:\n",
" embedding_dimension: \u001b[1;36m384\u001b[0m\n",
" model_id: all-MiniLM-L6-v2\n",
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
@ -384,14 +551,26 @@
" provider_id: meta-reference\n",
" provider_type: inline::meta-reference\n",
" datasetio:\n",
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" - config:\n",
" kvstore:\n",
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mhuggingface_datasetio.db\u001b[0m\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: huggingface\n",
" provider_type: remote::huggingface\n",
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" - config:\n",
" kvstore:\n",
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mlocalfs_datasetio.db\u001b[0m\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: localfs\n",
" provider_type: inline::localfs\n",
" eval:\n",
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" - config:\n",
" kvstore:\n",
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mmeta_reference_eval.db\u001b[0m\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: meta-reference\n",
" provider_type: inline::meta-reference\n",
" inference:\n",
@ -403,16 +582,9 @@
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" provider_id: sentence-transformers\n",
" provider_type: inline::sentence-transformers\n",
" memory:\n",
" - config:\n",
" kvstore:\n",
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: faiss\n",
" provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n",
" safety:\n",
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" - config:\n",
" excluded_categories: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
" provider_id: llama-guard\n",
" provider_type: inline::llama-guard\n",
" scoring:\n",
@ -450,7 +622,26 @@
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" provider_id: rag-runtime\n",
" provider_type: inline::rag-runtime\n",
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
" provider_id: model-context-protocol\n",
" provider_type: remote::model-context-protocol\n",
" - config:\n",
" api_key: \u001b[32m'********'\u001b[0m\n",
" provider_id: wolfram-alpha\n",
" provider_type: remote::wolfram-alpha\n",
" vector_io:\n",
" - config:\n",
" kvstore:\n",
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n",
" namespace: null\n",
" type: sqlite\n",
" provider_id: faiss\n",
" provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n",
"scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
"server:\n",
" port: \u001b[1;36m8321\u001b[0m\n",
" tls_certfile: null\n",
" tls_keyfile: null\n",
"shields:\n",
"- params: null\n",
" provider_id: null\n",
@ -469,6 +660,11 @@
" mcp_endpoint: null\n",
" provider_id: code-interpreter\n",
" toolgroup_id: builtin::code_interpreter\n",
"- args: null\n",
" mcp_endpoint: null\n",
" provider_id: wolfram-alpha\n",
" toolgroup_id: builtin::wolfram_alpha\n",
"vector_dbs: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
"version: \u001b[32m'2'\u001b[0m\n",
"\n"
]
@ -532,7 +728,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@ -643,17 +839,7 @@
"id": "DJkmoG2kq1_P",
"outputId": "8493ee59-c6ff-4bb6-d787-f295944db1cf"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Generating dev split: 100%|██████████| 5/5 [00:00<00:00, 139.81 examples/s]\n",
"Generating validation split: 100%|██████████| 30/30 [00:00<00:00, 258.29 examples/s]\n",
"Generating test split: 100%|██████████| 287/287 [00:01<00:00, 197.69 examples/s]\n"
]
}
],
"outputs": [],
"source": [
"import datasets\n",
"\n",
@ -676,7 +862,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@ -691,7 +877,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 5/5 [00:42<00:00, 8.60s/it]\n"
"100%|██████████| 5/5 [00:33<00:00, 6.71s/it]\n"
]
},
{
@ -699,16 +885,18 @@
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">EvaluateResponse</span><span style=\"font-weight: bold\">(</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">generations</span>=<span style=\"font-weight: bold\">[</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'Answer: D'</span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'The image shows a sunflower leaf with small, dark spots and white powdery patches. The dark spots are likely caused by a fungal pathogen, such as rust or septoria leaf spot, while the white powdery patches are likely caused by a fungal pathogen, such as powdery mildew.\\n\\nSince there are two distinct types of lesions on the leaf, it is likely that there are two different pathogens infecting the leaf.\\n\\n**Answer:** B) Two pathogens'</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle (Leptinotarsa decemlineata)**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle (Leptinotarsa juncta)**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"The question requires the identification of the reason behind the massive gum production on the trunks of grapefruit trees in Cyprus, despite appearing healthy from a distance. The correct answer can be deduced by analyzing the symptoms and considering the possible causes.\\n\\nTo determine the correct answer, let's evaluate each option:\\n\\nA) Don't know or not sure: This option is incorrect because it does not provide a specific reason for the gum production.\\n\\nB) Physiological stress: This option is also incorrect because it is too broad and does not specifically explain the gum production.\\n\\nC) Bacterial disease: This option is incorrect because bacterial diseases typically cause different symptoms such as leaf spots, blights, or wilting.\\n\\nD) Harvesting damage when cutting with knives: This option is incorrect because harvesting damage would likely cause wounds or scars on the tree, but it would not lead to massive gum production.\\n\\nE) Fungal gummosis: This option is the most likely cause of the gum production. Fungal gummosis is a common disease in citrus trees, including grapefruit, that causes the production of gum or sap on the trunks and branches. The disease is typically caused by fungi such as Phytophthora or Diplodia, which infect the tree through wounds or natural openings. The gum production is a defense mechanism by the tree to try to seal off the infection and prevent further damage.\\n\\nTherefore, the correct answer is:\\n\\nAnswer: E\"</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B) Two pathogens\"</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom (gum production), we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress (B) could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis (E) is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage (harvesting) or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'Answer: D'</span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'**Causes of Splitting Petioles in Rhubarb**\\n\\nThe following factors can cause the petioles of rhubarb to split:\\n\\n* **Physiological Problems**: Issues such as water stress, nutrient deficiencies, or extreme temperatures can lead to splitting.\\n* **Phytoplasma Infection**: A bacterial infection caused by phytoplasma can lead to splitting of the petioles.\\n* **Animal Damage**: Pests like slugs, snails, or rodents can damage the plant and cause splitting.\\n* **Bacterial Infection**: Bacterial infections can also cause splitting.\\n\\nAs a result, the correct answer is:\\n\\n*Answer*: A) Physiological problems'</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n* **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n* **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n* **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n* **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed (A) Physiological problems, B) Phytoplasma infection, D) Animal damage, and E) Bacteria) could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C) I don't know and don't want to guess.\"</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">]</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">scores</span>=<span style=\"font-weight: bold\">{</span>\n",
@ -723,16 +911,18 @@
"text/plain": [
"\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n",
"\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Answer: D'\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The image shows a sunflower leaf with small, dark spots and white powdery patches. The dark spots are likely caused by a fungal pathogen, such as rust or septoria leaf spot, while the white powdery patches are likely caused by a fungal pathogen, such as powdery mildew.\\n\\nSince there are two distinct types of lesions on the leaf, it is likely that there are two different pathogens infecting the leaf.\\n\\n**Answer:** B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Two pathogens'\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa decemlineata\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa juncta\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The question requires the identification of the reason behind the massive gum production on the trunks of grapefruit trees in Cyprus, despite appearing healthy from a distance. The correct answer can be deduced by analyzing the symptoms and considering the possible causes.\\n\\nTo determine the correct answer, let's evaluate each option:\\n\\nA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Don't know or not sure: This option is incorrect because it does not provide a specific reason for the gum production.\\n\\nB\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Physiological stress: This option is also incorrect because it is too broad and does not specifically explain the gum production.\\n\\nC\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Bacterial disease: This option is incorrect because bacterial diseases typically cause different symptoms such as leaf spots, blights, or wilting.\\n\\nD\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Harvesting damage when cutting with knives: This option is incorrect because harvesting damage would likely cause wounds or scars on the tree, but it would not lead to massive gum production.\\n\\nE\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Fungal gummosis: This option is the most likely cause of the gum production. Fungal gummosis is a common disease in citrus trees, including grapefruit, that causes the production of gum or sap on the trunks and branches. The disease is typically caused by fungi such as Phytophthora or Diplodia, which infect the tree through wounds or natural openings. The gum production is a defense mechanism by the tree to try to seal off the infection and prevent further damage.\\n\\nTherefore, the correct answer is:\\n\\nAnswer: E\"\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Two pathogens\"\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom \u001b[0m\u001b[32m(\u001b[0m\u001b[32mgum production\u001b[0m\u001b[32m)\u001b[0m\u001b[32m, we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress \u001b[0m\u001b[32m(\u001b[0m\u001b[32mB\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis \u001b[0m\u001b[32m(\u001b[0m\u001b[32mE\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage \u001b[0m\u001b[32m(\u001b[0m\u001b[32mharvesting\u001b[0m\u001b[32m)\u001b[0m\u001b[32m or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Answer: D'\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'**Causes of Splitting Petioles in Rhubarb**\\n\\nThe following factors can cause the petioles of rhubarb to split:\\n\\n* **Physiological Problems**: Issues such as water stress, nutrient deficiencies, or extreme temperatures can lead to splitting.\\n* **Phytoplasma Infection**: A bacterial infection caused by phytoplasma can lead to splitting of the petioles.\\n* **Animal Damage**: Pests like slugs, snails, or rodents can damage the plant and cause splitting.\\n* **Bacterial Infection**: Bacterial infections can also cause splitting.\\n\\nAs a result, the correct answer is:\\n\\n*Answer*: A\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Physiological problems'\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n* **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n* **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n* **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n* **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed \u001b[0m\u001b[32m(\u001b[0m\u001b[32mA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Physiological problems, B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Phytoplasma infection, D\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Animal damage, and E\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Bacteria\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C\u001b[0m\u001b[32m)\u001b[0m\u001b[32m I don't know and don't want to guess.\"\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n",
"\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n",
"\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n",
@ -815,7 +1005,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 5,
"metadata": {
"id": "HXmZf3Ymw-aX"
},
@ -823,39 +1013,33 @@
"source": [
"simpleqa_dataset_id = \"huggingface::simpleqa\"\n",
"\n",
"_ = client.datasets.register(\n",
"register_dataset_response = client.datasets.register(\n",
" purpose=\"eval/messages-answer\",\n",
" source={\n",
" \"type\": \"uri\",\n",
" \"uri\": \"huggingface://datasets/llamastack/simpleqa?split=train\",\n",
" },\n",
" dataset_id=simpleqa_dataset_id,\n",
" provider_id=\"huggingface\",\n",
" url={\"uri\": \"https://huggingface.co/datasets/llamastack/simpleqa\"},\n",
" metadata={\n",
" \"path\": \"llamastack/simpleqa\",\n",
" \"split\": \"train\",\n",
" },\n",
" dataset_schema={\n",
" \"input_query\": {\"type\": \"string\"},\n",
" \"expected_answer\": {\"type\": \"string\"},\n",
" \"chat_completion_input\": {\"type\": \"chat_completion_input\"},\n",
" },\n",
")\n"
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"metadata": {
"id": "Gc8azb4Rxr5J"
},
"outputs": [],
"source": [
"eval_rows = client.datasetio.get_rows_paginated(\n",
"eval_rows = client.datasets.iterrows(\n",
" dataset_id=simpleqa_dataset_id,\n",
" rows_in_page=5,\n",
")\n"
" limit=5,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@ -876,7 +1060,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 5/5 [00:31<00:00, 6.38s/it]\n"
"100%|██████████| 5/5 [00:13<00:00, 2.71s/it]\n"
]
},
{
@ -889,14 +1073,14 @@
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'I do not have information on the Leipzig 1877 tournament.'</span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'</span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">]</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">scores</span>=<span style=\"font-weight: bold\">{</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'llm-as-judge::405b-simpleqa'</span>: <span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">ScoringResult</span><span style=\"font-weight: bold\">(</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">aggregated_results</span>=<span style=\"font-weight: bold\">{}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">aggregated_results</span>=<span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'categorical_count'</span>: <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'categorical_count'</span>: <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'A'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span><span style=\"font-weight: bold\">}}}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">score_rows</span>=<span style=\"font-weight: bold\">[</span>\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span><span style=\"font-weight: bold\">}</span>,\n",
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span><span style=\"font-weight: bold\">}</span>,\n",
@ -917,14 +1101,14 @@
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'I do not have information on the Leipzig 1877 tournament.'\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n",
"\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n",
"\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n",
"\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'A'\u001b[0m: \u001b[1;36m1\u001b[0m, \u001b[32m'C'\u001b[0m: \u001b[1;36m4\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n",
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n",
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n",
@ -957,7 +1141,7 @@
"\n",
"response = client.eval.evaluate_rows_alpha(\n",
" benchmark_id=\"meta-reference::simpleqa\",\n",
" input_rows=eval_rows.rows,\n",
" input_rows=eval_rows.data,\n",
" scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n",
" benchmark_config={\n",
" \"type\": \"benchmark\",\n",
@ -1106,7 +1290,7 @@
"\n",
"response = client.eval.evaluate_rows_alpha(\n",
" benchmark_id=\"meta-reference::simpleqa\",\n",
" input_rows=eval_rows.rows,\n",
" input_rows=eval_rows.data,\n",
" scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n",
" benchmark_config={\n",
" \"type\": \"benchmark\",\n",

View file

@ -1,9 +1 @@
The RFC Specification (OpenAPI format) is generated from the set of API endpoints located in `llama_stack/distribution/server/endpoints.py` using the `generate.py` utility.
Please install the following packages before running the script:
```
pip install fire PyYAML
```
Then simply run `sh run_openapi_generator.sh`

View file

@ -12,7 +12,7 @@
from datetime import datetime
from pathlib import Path
import sys
import fire
import ruamel.yaml as yaml
@ -21,7 +21,7 @@ from llama_stack.distribution.stack import LlamaStack # noqa: E402
from .pyopenapi.options import Options # noqa: E402
from .pyopenapi.specification import Info, Server # noqa: E402
from .pyopenapi.utility import Specification # noqa: E402
from .pyopenapi.utility import Specification, validate_api_method_return_types # noqa: E402
def str_presenter(dumper, data):
@ -39,6 +39,14 @@ def main(output_dir: str):
if not output_dir.exists():
raise ValueError(f"Directory {output_dir} does not exist")
# Validate API protocols before generating spec
print("Validating API method return types...")
return_type_errors = validate_api_method_return_types()
if return_type_errors:
print("\nAPI Method Return Type Validation Errors:\n")
for error in return_type_errors:
print(error)
sys.exit(1)
now = str(datetime.now())
print(
"Converting the spec to YAML (openapi.yaml) and HTML (openapi.html) at " + now

View file

@ -435,7 +435,7 @@ class Generator:
)
self.schema_builder = SchemaBuilder(schema_generator)
self.responses = {}
# Create standard error responses
self._create_standard_error_responses()
@ -446,7 +446,7 @@ class Generator:
"""
# Get the Error schema
error_schema = self.schema_builder.classdef_to_ref(Error)
# Create standard error responses
self.responses["BadRequest400"] = Response(
description="The request was invalid or malformed",
@ -457,11 +457,11 @@ class Generator:
"status": 400,
"title": "Bad Request",
"detail": "The request was invalid or malformed",
}
},
)
}
},
)
self.responses["TooManyRequests429"] = Response(
description="The client has sent too many requests in a given amount of time",
content={
@ -471,11 +471,11 @@ class Generator:
"status": 429,
"title": "Too Many Requests",
"detail": "You have exceeded the rate limit. Please try again later.",
}
},
)
}
},
)
self.responses["InternalServerError500"] = Response(
description="The server encountered an unexpected error",
content={
@ -485,11 +485,11 @@ class Generator:
"status": 500,
"title": "Internal Server Error",
"detail": "An unexpected error occurred. Our team has been notified.",
}
},
)
}
},
)
# Add a default error response for any unhandled error cases
self.responses["DefaultError"] = Response(
description="An unexpected error occurred",
@ -500,9 +500,9 @@ class Generator:
"status": 0,
"title": "Error",
"detail": "An unexpected error occurred",
}
},
)
}
},
)
def _build_type_tag(self, ref: str, schema: Schema) -> Tag:
@ -547,11 +547,14 @@ class Generator:
"SyntheticDataGeneration",
"PostTraining",
"BatchInference",
"Files",
]:
op.defining_class.__name__ = f"{op.defining_class.__name__} (Coming Soon)"
print(op.defining_class.__name__)
# TODO (xiyan): temporary fix for datasetio inner impl + datasets api
# if op.defining_class.__name__ in ["DatasetIO"]:
# op.defining_class.__name__ = "Datasets"
doc_string = parse_type(op.func_ref)
doc_params = dict(
(param.name, param.description) for param in doc_string.params.values()
@ -598,7 +601,9 @@ class Generator:
# data passed in request body as raw bytes cannot have request parameters
if raw_bytes_request_body and op.request_params:
raise ValueError("Cannot have both raw bytes request body and request parameters")
raise ValueError(
"Cannot have both raw bytes request body and request parameters"
)
# data passed in request body as raw bytes
if raw_bytes_request_body:
@ -719,7 +724,7 @@ class Generator:
responses.update(response_builder.build_response(response_options))
assert len(responses.keys()) > 0, f"No responses found for {op.name}"
# Add standard error response references
if self.options.include_standard_error_responses:
if "400" not in responses:
@ -730,7 +735,7 @@ class Generator:
responses["500"] = ResponseRef("InternalServerError500")
if "default" not in responses:
responses["default"] = ResponseRef("DefaultError")
if op.event_type is not None:
builder = ContentBuilder(self.schema_builder)
callbacks = {

View file

@ -6,8 +6,8 @@
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>OpenAPI specification</title>
<link href="https://fonts.googleapis.com/css?family=Montserrat:300,400,700|Roboto:300,400,700" rel="stylesheet">
<script type="module" src="https://unpkg.com/@stoplight/elements/web-components.min.js"></script>
<link rel="stylesheet" href="https://unpkg.com/@stoplight/elements/styles.min.css">
<script type="module" src="https://cdn.jsdelivr.net/npm/@stoplight/elements/web-components.min.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@stoplight/elements/styles.min.css">
<style>
body {
margin: 0;

View file

@ -6,16 +6,19 @@
import json
import typing
import inspect
import os
from pathlib import Path
from typing import TextIO
from typing import Any, Dict, List, Optional, Protocol, Type, Union, get_type_hints, get_origin, get_args
from llama_stack.strong_typing.schema import object_to_json, StrictJsonType
from llama_stack.distribution.resolver import api_protocol_map
from .generator import Generator
from .options import Options
from .specification import Document
THIS_DIR = Path(__file__).parent
@ -114,3 +117,37 @@ class Specification:
)
f.write(html)
def is_optional_type(type_: Any) -> bool:
"""Check if a type is Optional."""
origin = get_origin(type_)
args = get_args(type_)
return origin is Optional or (origin is Union and type(None) in args)
def validate_api_method_return_types() -> List[str]:
"""Validate that all API methods have proper return types."""
errors = []
protocols = api_protocol_map()
for protocol_name, protocol in protocols.items():
methods = inspect.getmembers(protocol, predicate=inspect.isfunction)
for method_name, method in methods:
if not hasattr(method, '__webmethod__'):
continue
# Only check GET methods
if method.__webmethod__.method != "GET":
continue
hints = get_type_hints(method)
if 'return' not in hints:
errors.append(f"Method {protocol_name}.{method_name} has no return type annotation")
else:
return_type = hints['return']
if is_optional_type(return_type):
errors.append(f"Method {protocol_name}.{method_name} returns Optional type")
return errors

View file

@ -23,9 +23,12 @@ In this example, we will show you how to:
##### Building a Search Agent
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
@ -33,7 +36,7 @@ agent = Agent(
tools=["builtin::websearch"],
)
user_prompts = [
"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.",
"Which teams played in the NBA Western Conference Finals of 2024. Search the web for the answer.",
"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.",
"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.",
]

View file

@ -110,10 +110,18 @@ MCP tools are special tools that can interact with llama stack over model contex
Refer to [https://github.com/modelcontextprotocol/servers](https://github.com/modelcontextprotocol/servers) for available MCP servers.
```shell
# start your MCP server
mkdir /tmp/content
touch /tmp/content/foo
touch /tmp/content/bar
npx -y supergateway --port 8000 --stdio 'npx -y @modelcontextprotocol/server-filesystem /tmp/content'
```
Then register the MCP server as a tool group,
```python
# Register MCP tools
client.toolgroups.register(
toolgroup_id="builtin::filesystem",
toolgroup_id="mcp::filesystem",
provider_id="model-context-protocol",
mcp_endpoint=URL(uri="http://localhost:8000/sse"),
)

View file

@ -71,4 +71,4 @@ While there is a lot of flexibility to mix-and-match providers, often users will
**Locally Hosted Distro**: You may want to run Llama Stack on your own hardware. Typically though, you still need to use Inference via an external service. You can use providers like HuggingFace TGI, Fireworks, Together, etc. for this purpose. Or you may have access to GPUs and can run a [vLLM](https://github.com/vllm-project/vllm) or [NVIDIA NIM](https://build.nvidia.com/nim?filters=nimType%3Anim_type_run_anywhere&q=llama) instance. If you "just" have a regular desktop machine, you can use [Ollama](https://ollama.com/) for inference. To provide convenient quick access to these options, we provide a number of such pre-configured locally-hosted Distros.
**On-device Distro**: Finally, you may want to run Llama Stack directly on an edge device (mobile phone or a tablet.) We provide Distros for iOS and Android (coming soon.)
**On-device Distro**: To run Llama Stack directly on an edge device (mobile phone or a tablet), we provide Distros for [iOS](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/ios_sdk.html) and [Android](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/android_sdk.html)

View file

@ -6,7 +6,7 @@ This guide will walk you through the process of adding a new API provider to Lla
- Begin by reviewing the [core concepts](../concepts/index.md) of Llama Stack and choose the API your provider belongs to (Inference, Safety, VectorIO, etc.)
- Determine the provider type ({repopath}`Remote::llama_stack/providers/remote` or {repopath}`Inline::llama_stack/providers/inline`). Remote providers make requests to external services, while inline providers execute implementation locally.
- Add your provider to the appropriate {repopath}`Registry::llama_stack/providers/registry/`. Specify pip dependencies necessary.
- Update any distribution {repopath}`Templates::llama_stack/templates/` build.yaml and run.yaml files if they should include your provider by default. Run {repopath}`llama_stack/scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
- Update any distribution {repopath}`Templates::llama_stack/templates/` build.yaml and run.yaml files if they should include your provider by default. Run {repopath}`./scripts/distro_codegen.py` if necessary. Note that `distro_codegen.py` will fail if the new provider causes any distribution template to attempt to import provider-specific dependencies. This usually means the distribution's `get_distribution_template()` code path should only import any necessary Config or model alias definitions from each provider and not the provider's actual implementation.
Here are some example PRs to help you get started:

View file

@ -33,6 +33,8 @@ Can be set to any of the following log levels:
The default global log level is `info`. `all` sets the log level for all components.
A user can also set `LLAMA_STACK_LOG_FILE` which will pipe the logs to the specified path as well as to the terminal. An example would be: `export LLAMA_STACK_LOG_FILE=server.log`
### Llama Stack Build
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
@ -183,8 +185,12 @@ llama stack build --config llama_stack/templates/ollama/build.yaml
:::
:::{tab-item} Building Container
> [!TIP]
> Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
```{admonition} Podman Alternative
:class: tip
Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
```
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.

View file

@ -8,12 +8,12 @@ Features:
- Remote Inferencing: Perform inferencing tasks remotely with Llama models hosted on a remote connection (or serverless localhost).
- Simple Integration: With easy-to-use APIs, a developer can quickly integrate Llama Stack in their Android app. The difference with local vs remote inferencing is also minimal.
Latest Release Notes: [v0.0.58](https://github.com/meta-llama/llama-stack-client-kotlin/releases/tag/v0.0.58)
Latest Release Notes: [link](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release)
*Tagged releases are stable versions of the project. While we strive to maintain a stable main branch, it's not guaranteed to be free of bugs or issues.*
## Android Demo App
Check out our demo app to see how to integrate Llama Stack into your Android app: [Android Demo App](https://github.com/meta-llama/llama-stack-apps/tree/android-kotlin-app-latest/examples/android_app)
Check out our demo app to see how to integrate Llama Stack into your Android app: [Android Demo App](https://github.com/meta-llama/llama-stack-client-kotlin/tree/examples/android_app)
The key files in the app are `ExampleLlamaStackLocalInference.kt`, `ExampleLlamaStackRemoteInference.kts`, and `MainActivity.java`. With encompassed business logic, the app shows how to use Llama Stack for both the environments.
@ -24,7 +24,7 @@ The key files in the app are `ExampleLlamaStackLocalInference.kt`, `ExampleLlama
Add the following dependency in your `build.gradle.kts` file:
```
dependencies {
implementation("com.llama.llamastack:llama-stack-client-kotlin:0.0.58")
implementation("com.llama.llamastack:llama-stack-client-kotlin:0.1.4.2")
}
```
This will download jar files in your gradle cache in a directory like `~/.gradle/caches/modules-2/files-2.1/com.llama.llamastack/`
@ -36,13 +36,13 @@ If you plan on doing remote inferencing this is sufficient to get started.
For local inferencing, it is required to include the ExecuTorch library into your app.
Include the ExecuTorch library by:
1. Download the `download-prebuilt-et-lib.sh` script file from the [llama-stack-client-kotlin-client-local](https://github.com/meta-llama/llama-stack-client-kotlin/blob/release/0.0.58/llama-stack-client-kotlin-client-local/download-prebuilt-et-lib.sh) directory to your local machine.
1. Download the `download-prebuilt-et-lib.sh` script file from the [llama-stack-client-kotlin-client-local](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release/llama-stack-client-kotlin-client-local/download-prebuilt-et-lib.sh) directory to your local machine.
2. Move the script to the top level of your Android app where the app directory resides:
<p align="center">
<img src="https://raw.githubusercontent.com/meta-llama/llama-stack-client-kotlin/refs/heads/release/0.0.58/doc/img/example_android_app_directory.png" style="width:300px">
<img src="https://github.com/meta-llama/llama-stack-client-kotlin/blob/latest-release/doc/img/example_android_app_directory.png" style="width:300px">
</p>
3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate with commit: [0a12e33](https://github.com/pytorch/executorch/commit/0a12e33d22a3d44d1aa2af5f0d0673d45b962553).
3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate.
4. Add the `executorch.aar` dependency in your `build.gradle.kts` file:
```
dependencies {
@ -60,10 +60,10 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th
```
conda create -n stack-fireworks python=3.10
conda activate stack-fireworks
pip install llama-stack=0.0.58
pip install --no-cache llama-stack==0.1.4
llama stack build --template fireworks --image-type conda
export FIREWORKS_API_KEY=<SOME_KEY>
llama stack run /Users/<your_username>/.llama/distributions/llamastack-fireworks/fireworks-run.yaml --port=5050
llama stack run fireworks --port 5050
```
Ensure the Llama Stack server version is the same as the Kotlin SDK Library for maximum compatibility.
@ -146,7 +146,7 @@ The purpose of this section is to share more details with users that would like
### Prerequisite
You must complete the following steps:
1. Clone the repo (`git clone https://github.com/meta-llama/llama-stack-client-kotlin.git -b release/0.0.58`)
1. Clone the repo (`git clone https://github.com/meta-llama/llama-stack-client-kotlin.git -b latest-release`)
2. Port the appropriate ExecuTorch libraries over into your Llama Stack Kotlin library environment.
```
cd llama-stack-client-kotlin-client-local

View file

@ -1,9 +1,8 @@
# iOS SDK
We offer both remote and on-device use of Llama Stack in Swift via two components:
1. [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/)
2. [LocalInferenceImpl](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/ios/inference)
We offer both remote and on-device use of Llama Stack in Swift via a single SDK [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/) that contains two components:
1. LlamaStackClient for remote
2. Local Inference for on-device
```{image} ../../../_static/remote_or_local.gif
:alt: Seamlessly switching between local, on-device inference and remote hosted inference
@ -42,7 +41,7 @@ let request = Components.Schemas.CreateAgentTurnRequest(
// ...
```
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-client-swift/tree/main/examples/ios_calendar_assistant) for a complete app demo.
## LocalInference
@ -58,7 +57,7 @@ let inference = LocalInference(queue: runnerQueue)
let agents = LocalAgents(inference: self.inference)
```
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-client-swift/tree/main/examples/ios_calendar_assistant) for a complete app demo.
### Installation
@ -68,47 +67,6 @@ We're working on making LocalInference easier to set up. For now, you'll need t
1. Install [Cmake](https://cmake.org/) for the executorch build`
1. Drag `LocalInference.xcodeproj` into your project
1. Add `LocalInference` as a framework in your app target
1. Add a package dependency on https://github.com/pytorch/executorch (branch latest)
1. Add all the kernels / backends from executorch (but not exectuorch itself!) as frameworks in your app target:
- backend_coreml
- backend_mps
- backend_xnnpack
- kernels_custom
- kernels_optimized
- kernels_portable
- kernels_quantized
1. In "Build Settings" > "Other Linker Flags" > "Any iOS Simulator SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
1. In "Build Settings" > "Other Linker Flags" > "Any iOS SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
### Preparing a model

View file

@ -6,13 +6,13 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| datasetio | `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::nvidia` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| safety | `remote::nvidia` |
| scoring | `inline::basic` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| tool_runtime | `inline::rag-runtime` |
| vector_io | `inline::faiss` |
@ -20,8 +20,10 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
### Models

View file

@ -40,7 +40,6 @@ The following models are available by default:
- `accounts/fireworks/models/llama-v3p1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `accounts/fireworks/models/llama-v3p1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `accounts/fireworks/models/llama-v3p1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `accounts/fireworks/models/llama-v3p2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
- `accounts/fireworks/models/llama-v3p2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `accounts/fireworks/models/llama-v3p2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `accounts/fireworks/models/llama-v3p2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`

View file

@ -23,7 +23,7 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::sqlite-vec`, `remote::chromadb`, `remote::pgvector` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
@ -130,7 +130,7 @@ llama stack run ./run-with-safety.yaml \
### (Optional) Update Model Serving Configuration
```{note}
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/models.py) for the supported Ollama models.
```
To serve a new model with `ollama`

View file

@ -0,0 +1,42 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Passthrough Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-passthrough` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::passthrough`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `PASSTHROUGH_API_KEY`: Passthrough API Key (default: ``)
- `PASSTHROUGH_URL`: Passthrough URL (default: ``)
### Models
The following models are available by default:
- `llama3.1-8b-instruct `
- `llama3.2-11b-vision-instruct `

View file

@ -88,11 +88,19 @@ docker run -it \
:::{dropdown} Installing the Llama Stack client CLI and SDK
You can interact with the Llama Stack server using various client SDKs. We will use the Python SDK which you can install using the following command. Note that you must be using Python 3.10 or newer:
You can interact with the Llama Stack server using various client SDKs. Note that you must be using Python 3.10 or newer. We will use the Python SDK which you can install via `conda` or `virtualenv`.
For `conda`:
```bash
yes | conda create -n stack-client python=3.10
conda activate stack-client
pip install llama-stack-client
```
For `virtualenv`:
```bash
python -m venv stack-client
source stack-client/bin/activate
pip install llama-stack-client
```
@ -173,6 +181,13 @@ response = client.inference.chat_completion(
print(response.completion_message.content)
```
To run the above example, put the code in a file called `inference.py`, ensure your `conda` or `virtualenv` environment is active, and run the following:
```bash
pip install llama_stack
llama stack build --template ollama --image-type <conda|venv>
python inference.py
```
### 4. Your first RAG agent
Here is an example of a simple RAG (Retrieval Augmented Generation) chatbot agent which can answer questions about TorchTune documentation.
@ -273,6 +288,13 @@ for prompt in user_prompts:
log.print()
```
To run the above example, put the code in a file called `rag.py`, ensure your `conda` or `virtualenv` environment is active, and run the following:
```bash
pip install llama_stack
llama stack build --template ollama --image-type <conda|venv>
python rag.py
```
## Next Steps
- Learn more about Llama Stack [Concepts](../concepts/index.md)

View file

@ -15,8 +15,6 @@ Llama Stack defines and standardizes the core building blocks needed to bring ge
- **Multiple developer interfaces** like CLI and SDKs for Python, Node, iOS, and Android
- **Standalone applications** as examples for how to build production-grade AI applications with Llama Stack
We focus on making it easy to build production applications with the Llama model family - from the latest Llama 3.3 to specialized models like Llama Guard for safety.
```{image} ../_static/llama-stack.png
:alt: Llama Stack
:width: 400px
@ -38,9 +36,9 @@ We have a number of client-side SDKs available for different languages.
| **Language** | **Client SDK** | **Package** |
| :----: | :----: | :----: |
| Python | [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python) | [![PyPI version](https://img.shields.io/pypi/v/llama_stack_client.svg)](https://pypi.org/project/llama_stack_client/)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Swift | [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/tree/latest-release) | [![Swift Package Index](https://img.shields.io/endpoint?url=https%3A%2F%2Fswiftpackageindex.com%2Fapi%2Fpackages%2Fmeta-llama%2Fllama-stack-client-swift%2Fbadge%3Ftype%3Dswift-versions)](https://swiftpackageindex.com/meta-llama/llama-stack-client-swift)
| Node | [llama-stack-client-node](https://github.com/meta-llama/llama-stack-client-node) | [![NPM version](https://img.shields.io/npm/v/llama-stack-client.svg)](https://npmjs.org/package/llama-stack-client)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
| Kotlin | [llama-stack-client-kotlin](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release) | [![Maven version](https://img.shields.io/maven-central/v/com.llama.llamastack/llama-stack-client-kotlin)](https://central.sonatype.com/artifact/com.llama.llamastack/llama-stack-client-kotlin)
## Supported Llama Stack Implementations
@ -61,6 +59,10 @@ A number of "adapters" are available for some popular Inference and Vector Store
| Groq | Hosted |
| SambaNova | Hosted |
| PyTorch ExecuTorch | On-device iOS, Android |
| OpenAI | Hosted |
| Anthropic | Hosted |
| Gemini | Hosted |
**Vector IO API**
| **Provider** | **Environments** |

View file

@ -48,7 +48,7 @@ Llama Stack addresses these challenges through a service-oriented, API-first app
**Robust Ecosystem**
- Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies).
- Ecosystem offers tailored infrastructure, software, and services for deploying Llama models.
- Ecosystem offers tailored infrastructure, software, and services for deploying a variety of models.
### Our Philosophy
@ -57,7 +57,6 @@ Llama Stack addresses these challenges through a service-oriented, API-first app
- **Composability**: Every component is independent but works together seamlessly
- **Production Ready**: Built for real-world applications, not just demos
- **Turnkey Solutions**: Easy to deploy built in solutions for popular deployment scenarios
- **Llama First**: Explicit focus on Meta's Llama models and partnering ecosystem
With Llama Stack, you can focus on building your application while we handle the infrastructure complexity, essential capabilities, and provider integrations.

View file

@ -92,6 +92,8 @@ Interactive pages for users to play with and explore Llama Stack API capabilitie
## Starting the Llama Stack Playground
### Llama CLI
To start the Llama Stack Playground, run the following commands:
1. Start up the Llama Stack API server
@ -107,3 +109,28 @@ cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py
```
### Docker
Playground can also be started in a docker image:
```sh
export LLAMA_STACK_URL=http://localhost:11434
docker run \
-p 8501:8501 \
-e LLAMA_STACK_ENDPOINT=$LLAMA_STACK_URL \
quay.io/jland/llama-stack-playground
```
## Configurable Environment Variables
## Environment Variables
| Environment Variable | Description | Default Value |
|----------------------------|------------------------------------|---------------------------|
| LLAMA_STACK_ENDPOINT | The endpoint for the Llama Stack | http://localhost:8321 |
| FIREWORKS_API_KEY | API key for Fireworks provider | (empty string) |
| TOGETHER_API_KEY | API key for Together provider | (empty string) |
| SAMBANOVA_API_KEY | API key for SambaNova provider | (empty string) |
| OPENAI_API_KEY | API key for OpenAI provider | (empty string) |

View file

@ -3,21 +3,36 @@ orphan: true
---
# Qdrant
[Qdrant](https://qdrant.tech/documentation/) is a remote vector database provider for Llama Stack. It
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
That means you'll get fast and efficient vector retrieval.
> By default, Qdrant stores vectors in RAM, delivering incredibly fast access for datasets that fit comfortably in
> memory. But when your dataset exceeds RAM capacity, Qdrant offers Memmap as an alternative.
>
> \[[An Introduction to Vector Databases](https://qdrant.tech/articles/what-is-a-vector-database/)\]
## Features
- Easy to use
- Lightweight and easy to use
- Fully integrated with Llama Stack
- Apache 2.0 license terms
- Store embeddings and their metadata
- Supports search by
[Keyword](https://qdrant.tech/articles/qdrant-introduces-full-text-filters-and-indexes/)
and [Hybrid](https://qdrant.tech/articles/hybrid-search/#building-a-hybrid-search-system-in-qdrant) search
- [Multilingual and Multimodal retrieval](https://qdrant.tech/documentation/multimodal-search/)
- [Medatata filtering](https://qdrant.tech/articles/vector-search-filtering/)
- [GPU support](https://qdrant.tech/documentation/guides/running-with-gpu/)
## Usage
To use Qdrant in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use Faiss.
2. Configure your Llama Stack project to use Qdrant.
3. Start storing and querying vectors.
## Installation

View file

@ -114,23 +114,17 @@ pprint(response)
simpleqa_dataset_id = "huggingface::simpleqa"
_ = client.datasets.register(
purpose="eval/messages-answer",
source={
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
dataset_id=simpleqa_dataset_id,
provider_id="huggingface",
url={"uri": "https://huggingface.co/datasets/llamastack/simpleqa"},
metadata={
"path": "llamastack/simpleqa",
"split": "train",
},
dataset_schema={
"input_query": {"type": "string"},
"expected_answer": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
},
)
eval_rows = client.datasetio.get_rows_paginated(
eval_rows = client.datasets.iterrows(
dataset_id=simpleqa_dataset_id,
rows_in_page=5,
limit=5,
)
```
@ -143,7 +137,7 @@ client.benchmarks.register(
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
input_rows=eval_rows.data,
scoring_functions=["llm-as-judge::405b-simpleqa"],
benchmark_config={
"eval_candidate": {
@ -191,7 +185,7 @@ agent_config = {
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
input_rows=eval_rows.data,
scoring_functions=["llm-as-judge::405b-simpleqa"],
benchmark_config={
"eval_candidate": {

View file

@ -1,6 +1,6 @@
# llama (server-side) CLI Reference
The `llama` CLI tool helps you setup and use the Llama Stack. It should be available on your path after installing the `llama-stack` package.
The `llama` CLI tool helps you set up and use the Llama Stack. The CLI is available on your path after installing the `llama-stack` package.
## Installation
@ -27,9 +27,9 @@ You have two ways to install Llama Stack:
## `llama` subcommands
1. `download`: `llama` cli tools supports downloading the model from Meta or Hugging Face.
2. `model`: Lists available models and their properties.
3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](../../distributions/building_distro).
1. `download`: Supports downloading models from Meta or Hugging Face. [Downloading models](#downloading-models)
2. `model`: Lists available models and their properties. [Understanding models](#understand-the-models)
3. `stack`: Allows you to build a stack using the `llama stack` distribution and run a Llama Stack server. You can read more about how to build a Llama Stack distribution in the [Build your own Distribution](../../distributions/building_distro) documentation.
### Sample Usage
@ -117,7 +117,7 @@ You should see a table like this:
+----------------------------------+------------------------------------------+----------------+
```
To download models, you can use the llama download command.
To download models, you can use the `llama download` command.
### Downloading from [Meta](https://llama.meta.com/llama-downloads/)
@ -191,7 +191,7 @@ You should see a table like this:
The `llama model` command helps you explore the models interface.
1. `download`: Download the model from different sources. (meta, huggingface)
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
2. `list`: Lists all the models available for download with hardware requirements for deploying the models.
3. `prompt-format`: Show llama model message formats.
4. `describe`: Describes all the properties of the model.
@ -262,13 +262,12 @@ llama model prompt-format -m Llama3.2-3B-Instruct
![alt text](../../../resources/prompt-format.png)
You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios.
**NOTE**: Outputs in terminal are color printed to show special tokens.
### Remove model
You can run `llama model remove` to remove unecessary model:
You can run `llama model remove` to remove an unnecessary model:
```
llama model remove -m Llama-Guard-3-8B-int8

View file

@ -6,17 +6,32 @@ The `llama-stack-client` CLI allows you to query information about the distribut
### `llama-stack-client`
```bash
llama-stack-client -h
llama-stack-client
Usage: llama-stack-client [OPTIONS] COMMAND [ARGS]...
usage: llama-stack-client [-h] {models,memory_banks,shields} ...
Welcome to the LlamaStackClient CLI
Welcome to the LlamaStackClient CLI
Options:
--version Show the version and exit.
--endpoint TEXT Llama Stack distribution endpoint
--api-key TEXT Llama Stack distribution API key
--config TEXT Path to config file
--help Show this message and exit.
options:
-h, --help show this help message and exit
subcommands:
{models,memory_banks,shields}
Commands:
configure Configure Llama Stack Client CLI.
datasets Manage datasets.
eval Run evaluation tasks.
eval_tasks Manage evaluation tasks.
inference Inference (chat).
inspect Inspect server configuration.
models Manage GenAI models.
post_training Post-training.
providers Manage API providers.
scoring_functions Manage scoring functions.
shields Manage safety shield services.
toolgroups Manage available tool groups.
vector_dbs Manage vector databases.
```
### `llama-stack-client configure`
@ -127,11 +142,11 @@ llama-stack-client vector_dbs list
llama-stack-client vector_dbs register <vector-db-id> [--provider-id <provider-id>] [--provider-vector-db-id <provider-vector-db-id>] [--embedding-model <embedding-model>] [--embedding-dimension <embedding-dimension>]
```
Options:
- `--provider-id`: Optional. Provider ID for the vector db
- `--provider-vector-db-id`: Optional. Provider's vector db ID
- `--embedding-model`: Optional. Embedding model to use. Default: "all-MiniLM-L6-v2"
- `--embedding-dimension`: Optional. Dimension of embeddings. Default: 384
Optional arguments:
- `--provider-id`: Provider ID for the vector db
- `--provider-vector-db-id`: Provider's vector db ID
- `--embedding-model`: Embedding model to use. Default: "all-MiniLM-L6-v2"
- `--embedding-dimension`: Dimension of embeddings. Default: 384
### `llama-stack-client vector_dbs unregister`
```bash
@ -157,11 +172,13 @@ llama-stack-client shields list
llama-stack-client shields register --shield-id <shield-id> [--provider-id <provider-id>] [--provider-shield-id <provider-shield-id>] [--params <params>]
```
Options:
- `--shield-id`: Required. ID of the shield
- `--provider-id`: Optional. Provider ID for the shield
- `--provider-shield-id`: Optional. Provider's shield ID
- `--params`: Optional. JSON configuration parameters for the shield
Required arguments:
- `--shield-id`: ID of the shield
Optional arguments:
- `--provider-id`: Provider ID for the shield
- `--provider-shield-id`: Provider's shield ID
- `--params`: JSON configuration parameters for the shield
## Eval Task Management
@ -175,13 +192,15 @@ llama-stack-client benchmarks list
llama-stack-client benchmarks register --eval-task-id <eval-task-id> --dataset-id <dataset-id> --scoring-functions <function1> [<function2> ...] [--provider-id <provider-id>] [--provider-eval-task-id <provider-eval-task-id>] [--metadata <metadata>]
```
Options:
- `--eval-task-id`: Required. ID of the eval task
- `--dataset-id`: Required. ID of the dataset to evaluate
- `--scoring-functions`: Required. One or more scoring functions to use for evaluation
- `--provider-id`: Optional. Provider ID for the eval task
- `--provider-eval-task-id`: Optional. Provider's eval task ID
- `--metadata`: Optional. Metadata for the eval task in JSON format
Required arguments:
- `--eval-task-id`: ID of the eval task
- `--dataset-id`: ID of the dataset to evaluate
- `--scoring-functions`: One or more scoring functions to use for evaluation
Optional arguments:
- `--provider-id`: Provider ID for the eval task
- `--provider-eval-task-id`: Provider's eval task ID
- `--metadata`: Metadata for the eval task in JSON format
## Eval execution
### `llama-stack-client eval run-benchmark`
@ -189,11 +208,13 @@ Options:
llama-stack-client eval run-benchmark <eval-task-id1> [<eval-task-id2> ...] --eval-task-config <config-file> --output-dir <output-dir> [--num-examples <num>] [--visualize]
```
Options:
- `--eval-task-config`: Required. Path to the eval task config file in JSON format
- `--output-dir`: Required. Path to the directory where evaluation results will be saved
- `--num-examples`: Optional. Number of examples to evaluate (useful for debugging)
- `--visualize`: Optional flag. If set, visualizes evaluation results after completion
Required arguments:
- `--eval-task-config`: Path to the eval task config file in JSON format
- `--output-dir`: Path to the directory where evaluation results will be saved
Optional arguments:
- `--num-examples`: Number of examples to evaluate (useful for debugging)
- `--visualize`: If set, visualizes evaluation results after completion
Example benchmark_config.json:
```json
@ -214,11 +235,13 @@ Example benchmark_config.json:
llama-stack-client eval run-scoring <eval-task-id> --eval-task-config <config-file> --output-dir <output-dir> [--num-examples <num>] [--visualize]
```
Options:
- `--eval-task-config`: Required. Path to the eval task config file in JSON format
- `--output-dir`: Required. Path to the directory where scoring results will be saved
- `--num-examples`: Optional. Number of examples to evaluate (useful for debugging)
- `--visualize`: Optional flag. If set, visualizes scoring results after completion
Required arguments:
- `--eval-task-config`: Path to the eval task config file in JSON format
- `--output-dir`: Path to the directory where scoring results will be saved
Optional arguments:
- `--num-examples`: Number of examples to evaluate (useful for debugging)
- `--visualize`: If set, visualizes scoring results after completion
## Tool Group Management
@ -230,11 +253,11 @@ llama-stack-client toolgroups list
+---------------------------+------------------+------+---------------+
| identifier | provider_id | args | mcp_endpoint |
+===========================+==================+======+===============+
| builtin::code_interpreter | code-interpreter | None | None |
| builtin::code_interpreter | code-interpreter | None | None |
+---------------------------+------------------+------+---------------+
| builtin::rag | rag-runtime | None | None |
| builtin::rag | rag-runtime | None | None |
+---------------------------+------------------+------+---------------+
| builtin::websearch | tavily-search | None | None |
| builtin::websearch | tavily-search | None | None |
+---------------------------+------------------+------+---------------+
```
@ -250,11 +273,11 @@ Shows detailed information about a specific toolgroup. If the toolgroup is not f
llama-stack-client toolgroups register <toolgroup_id> [--provider-id <provider-id>] [--provider-toolgroup-id <provider-toolgroup-id>] [--mcp-config <mcp-config>] [--args <args>]
```
Options:
- `--provider-id`: Optional. Provider ID for the toolgroup
- `--provider-toolgroup-id`: Optional. Provider's toolgroup ID
- `--mcp-config`: Optional. JSON configuration for the MCP endpoint
- `--args`: Optional. JSON arguments for the toolgroup
Optional arguments:
- `--provider-id`: Provider ID for the toolgroup
- `--provider-toolgroup-id`: Provider's toolgroup ID
- `--mcp-config`: JSON configuration for the MCP endpoint
- `--args`: JSON arguments for the toolgroup
### `llama-stack-client toolgroups unregister`
```bash

View file

@ -40,7 +40,7 @@ If you're looking for more specific topics, we have a [Zero to Hero Guide](#next
ollama run llama3.2:3b-instruct-fp16 --keepalive -1m
```
**Note**:
- The supported models for llama stack for now is listed in [here](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L43)
- The supported models for llama stack for now is listed in [here](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/models.py)
- `keepalive -1m` is used so that ollama continues to keep the model in memory indefinitely. Otherwise, ollama frees up memory and you would have to run `ollama run` again.
---

View file

@ -189,13 +189,11 @@ class AgentToolGroupWithArgs(BaseModel):
args: Dict[str, Any]
AgentToolGroup = register_schema(
Union[
str,
AgentToolGroupWithArgs,
],
name="AgentTool",
)
AgentToolGroup = Union[
str,
AgentToolGroupWithArgs,
]
register_schema(AgentToolGroup, name="AgentTool")
class AgentConfigCommon(BaseModel):
@ -234,6 +232,23 @@ class AgentConfig(AgentConfigCommon):
response_format: Optional[ResponseFormat] = None
@json_schema_type
class Agent(BaseModel):
agent_id: str
agent_config: AgentConfig
created_at: datetime
@json_schema_type
class ListAgentsResponse(BaseModel):
data: List[Agent]
@json_schema_type
class ListAgentSessionsResponse(BaseModel):
data: List[Session]
class AgentConfigOverridablePerTurn(AgentConfigCommon):
instructions: Optional[str] = None
@ -295,20 +310,18 @@ class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
turn: Turn
AgentTurnResponseEventPayload = register_schema(
Annotated[
Union[
AgentTurnResponseStepStartPayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseTurnStartPayload,
AgentTurnResponseTurnCompletePayload,
AgentTurnResponseTurnAwaitingInputPayload,
],
Field(discriminator="event_type"),
AgentTurnResponseEventPayload = Annotated[
Union[
AgentTurnResponseStepStartPayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseTurnStartPayload,
AgentTurnResponseTurnCompletePayload,
AgentTurnResponseTurnAwaitingInputPayload,
],
name="AgentTurnResponseEventPayload",
)
Field(discriminator="event_type"),
]
register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPayload")
@json_schema_type
@ -353,7 +366,7 @@ class AgentTurnResumeRequest(BaseModel):
agent_id: str
session_id: str
turn_id: str
tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]]
tool_responses: List[ToolResponse]
stream: Optional[bool] = False
@ -432,7 +445,7 @@ class Agents(Protocol):
agent_id: str,
session_id: str,
turn_id: str,
tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
tool_responses: List[ToolResponse],
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
"""Resume an agent turn with executed tool call responses.
@ -443,7 +456,6 @@ class Agents(Protocol):
:param session_id: The ID of the session to resume.
:param turn_id: The ID of the turn to resume.
:param tool_responses: The tool call responses to resume the turn with.
NOTE: ToolResponseMessage will be deprecated. Use ToolResponse.
:param stream: Whether to stream the response.
:returns: A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk objects.
"""
@ -541,3 +553,32 @@ class Agents(Protocol):
:param agent_id: The ID of the agent to delete.
"""
...
@webmethod(route="/agents", method="GET")
async def list_agents(self) -> ListAgentsResponse:
"""List all agents.
:returns: A ListAgentsResponse.
"""
...
@webmethod(route="/agents/{agent_id}", method="GET")
async def get_agent(self, agent_id: str) -> Agent:
"""Describe an agent by its ID.
:param agent_id: ID of the agent.
:returns: An Agent of the agent.
"""
...
@webmethod(route="/agents/{agent_id}/sessions", method="GET")
async def list_agent_sessions(
self,
agent_id: str,
) -> ListAgentSessionsResponse:
"""List all session(s) of a given agent.
:param agent_id: The ID of the agent to list sessions for.
:returns: A ListAgentSessionsResponse.
"""
...

View file

@ -52,7 +52,7 @@ class Benchmarks(Protocol):
async def get_benchmark(
self,
benchmark_id: str,
) -> Optional[Benchmark]: ...
) -> Benchmark: ...
@webmethod(route="/eval/benchmarks", method="POST")
async def register_benchmark(

View file

@ -63,19 +63,15 @@ class TextContentItem(BaseModel):
# other modalities can be added here
InterleavedContentItem = register_schema(
Annotated[
Union[ImageContentItem, TextContentItem],
Field(discriminator="type"),
],
name="InterleavedContentItem",
)
InterleavedContentItem = Annotated[
Union[ImageContentItem, TextContentItem],
Field(discriminator="type"),
]
register_schema(InterleavedContentItem, name="InterleavedContentItem")
# accept a single "str" as a special case since it is common
InterleavedContent = register_schema(
Union[str, InterleavedContentItem, List[InterleavedContentItem]],
name="InterleavedContent",
)
InterleavedContent = Union[str, InterleavedContentItem, List[InterleavedContentItem]]
register_schema(InterleavedContent, name="InterleavedContent")
@json_schema_type
@ -109,10 +105,8 @@ class ToolCallDelta(BaseModel):
# streaming completions send a stream of ContentDeltas
ContentDelta = register_schema(
Annotated[
Union[TextDelta, ImageDelta, ToolCallDelta],
Field(discriminator="type"),
],
name="ContentDelta",
)
ContentDelta = Annotated[
Union[TextDelta, ImageDelta, ToolCallDelta],
Field(discriminator="type"),
]
register_schema(ContentDelta, name="ContentDelta")

View file

@ -72,24 +72,22 @@ class DialogType(BaseModel):
type: Literal["dialog"] = "dialog"
ParamType = register_schema(
Annotated[
Union[
StringType,
NumberType,
BooleanType,
ArrayType,
ObjectType,
JsonType,
UnionType,
ChatCompletionInputType,
CompletionInputType,
AgentTurnInputType,
],
Field(discriminator="type"),
ParamType = Annotated[
Union[
StringType,
NumberType,
BooleanType,
ArrayType,
ObjectType,
JsonType,
UnionType,
ChatCompletionInputType,
CompletionInputType,
AgentTurnInputType,
],
name="ParamType",
)
Field(discriminator="type"),
]
register_schema(ParamType, name="ParamType")
"""
# TODO: recursive definition of ParamType in these containers

View file

@ -13,19 +13,16 @@ from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class PaginatedRowsResult(BaseModel):
class IterrowsResponse(BaseModel):
"""
A paginated list of rows from a dataset.
:param rows: The rows in the current page.
:param total_count: The total number of rows in the dataset.
:param next_page_token: The token to get the next page of rows.
:param data: The rows in the current page.
:param next_start_index: Index into dataset for the first row in the next page. None if there are no more rows.
"""
# the rows obey the DatasetSchema for the given dataset
rows: List[Dict[str, Any]]
total_count: int
next_page_token: Optional[str] = None
data: List[Dict[str, Any]]
next_start_index: Optional[int] = None
class DatasetStore(Protocol):
@ -37,22 +34,21 @@ class DatasetIO(Protocol):
# keeping for aligning with inference/safety, but this is not used
dataset_store: DatasetStore
@webmethod(route="/datasetio/rows", method="GET")
async def get_rows_paginated(
# TODO(xiyan): there's a flakiness here where setting route to "/datasets/" here will not result in proper routing
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET")
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
"""Get a paginated list of rows from a dataset.
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
"""Get a paginated list of rows from a dataset. Uses cursor-based pagination.
:param dataset_id: The ID of the dataset to get the rows from.
:param rows_in_page: The number of rows to get per page.
:param page_token: The token to get the next page of rows.
:param filter_condition: (Optional) A condition to filter the rows by.
:param start_index: Index into dataset for the first row to get. Get all rows if None.
:param limit: The number of rows to get.
"""
...
@webmethod(route="/datasetio/rows", method="POST")
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST")
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None: ...

View file

@ -4,19 +4,100 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol
from enum import Enum
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, Field
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
class DatasetPurpose(str, Enum):
"""
Purpose of the dataset. Each purpose has a required input data schema.
:cvar post-training/messages: The dataset contains messages used for post-training.
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
:cvar eval/question-answer: The dataset contains a question column and an answer column.
{
"question": "What is the capital of France?",
"answer": "Paris"
}
:cvar eval/messages-answer: The dataset contains a messages column with list of messages and an answer column.
{
"messages": [
{"role": "user", "content": "Hello, my name is John Doe."},
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
{"role": "user", "content": "What's my name?"},
],
"answer": "John Doe"
}
"""
post_training_messages = "post-training/messages"
eval_question_answer = "eval/question-answer"
eval_messages_answer = "eval/messages-answer"
# TODO: add more schemas here
class DatasetType(Enum):
"""
Type of the dataset source.
:cvar uri: The dataset can be obtained from a URI.
:cvar rows: The dataset is stored in rows.
"""
uri = "uri"
rows = "rows"
@json_schema_type
class URIDataSource(BaseModel):
"""A dataset that can be obtained from a URI.
:param uri: The dataset can be obtained from a URI. E.g.
- "https://mywebsite.com/mydata.jsonl"
- "lsfs://mydata.jsonl"
- "data:csv;base64,{base64_content}"
"""
type: Literal["uri"] = "uri"
uri: str
@json_schema_type
class RowsDataSource(BaseModel):
"""A dataset stored in rows.
:param rows: The dataset is stored in rows. E.g.
- [
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
]
"""
type: Literal["rows"] = "rows"
rows: List[Dict[str, Any]]
DataSource = Annotated[
Union[URIDataSource, RowsDataSource],
Field(discriminator="type"),
]
register_schema(DataSource, name="DataSource")
class CommonDatasetFields(BaseModel):
dataset_schema: Dict[str, ParamType]
url: URL
"""
Common fields for a dataset.
"""
purpose: DatasetPurpose
source: DataSource
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
@ -38,8 +119,6 @@ class Dataset(CommonDatasetFields, Resource):
class DatasetInput(CommonDatasetFields, BaseModel):
dataset_id: str
provider_id: Optional[str] = None
provider_dataset_id: Optional[str] = None
class ListDatasetsResponse(BaseModel):
@ -50,19 +129,75 @@ class Datasets(Protocol):
@webmethod(route="/datasets", method="POST")
async def register_dataset(
self,
dataset_id: str,
dataset_schema: Dict[str, ParamType],
url: URL,
provider_dataset_id: Optional[str] = None,
provider_id: Optional[str] = None,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
) -> None: ...
dataset_id: Optional[str] = None,
) -> Dataset:
"""
Register a new dataset.
:param purpose: The purpose of the dataset. One of
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
- "eval/question-answer": The dataset contains a question column and an answer column for evaluation.
{
"question": "What is the capital of France?",
"answer": "Paris"
}
- "eval/messages-answer": The dataset contains a messages column with list of messages and an answer column for evaluation.
{
"messages": [
{"role": "user", "content": "Hello, my name is John Doe."},
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
{"role": "user", "content": "What's my name?"},
],
"answer": "John Doe"
}
:param source: The data source of the dataset. Ensure that the data source schema is compatible with the purpose of the dataset. Examples:
- {
"type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl"
}
- {
"type": "uri",
"uri": "lsfs://mydata.jsonl"
}
- {
"type": "uri",
"uri": "data:csv;base64,{base64_content}"
}
- {
"type": "uri",
"uri": "huggingface://llamastack/simpleqa?split=train"
}
- {
"type": "rows",
"rows": [
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
]
}
:param metadata: The metadata for the dataset.
- E.g. {"description": "My dataset"}
:param dataset_id: The ID of the dataset. If not provided, an ID will be generated.
"""
...
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
async def get_dataset(
self,
dataset_id: str,
) -> Optional[Dataset]: ...
) -> Dataset: ...
@webmethod(route="/datasets", method="GET")
async def list_datasets(self) -> ListDatasetsResponse: ...

View file

@ -14,6 +14,7 @@ from llama_stack.schema_utils import json_schema_type
@json_schema_type
class Api(Enum):
providers = "providers"
inference = "inference"
safety = "safety"
agents = "agents"

View file

@ -43,10 +43,8 @@ class AgentCandidate(BaseModel):
config: AgentConfig
EvalCandidate = register_schema(
Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")],
name="EvalCandidate",
)
EvalCandidate = Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")]
register_schema(EvalCandidate, name="EvalCandidate")
@json_schema_type
@ -117,7 +115,7 @@ class Eval(Protocol):
"""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
async def job_status(self, benchmark_id: str, job_id: str) -> Optional[JobStatus]:
async def job_status(self, benchmark_id: str, job_id: str) -> JobStatus:
"""Get the status of a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.

View file

@ -115,7 +115,7 @@ class Files(Protocol):
async def get_upload_session_info(
self,
upload_id: str,
) -> Optional[FileUploadResponse]:
) -> FileUploadResponse:
"""
Returns information about an existsing upload session

View file

@ -117,13 +117,11 @@ class ToolResponseMessage(BaseModel):
:param role: Must be "tool" to identify this as a tool response
:param call_id: Unique identifier for the tool call this response is for
:param tool_name: Name of the tool that was called
:param content: The response content from the tool
"""
role: Literal["tool"] = "tool"
call_id: str
tool_name: Union[BuiltinTool, str]
content: InterleavedContent
@ -146,18 +144,16 @@ class CompletionMessage(BaseModel):
tool_calls: Optional[List[ToolCall]] = Field(default_factory=list)
Message = register_schema(
Annotated[
Union[
UserMessage,
SystemMessage,
ToolResponseMessage,
CompletionMessage,
],
Field(discriminator="role"),
Message = Annotated[
Union[
UserMessage,
SystemMessage,
ToolResponseMessage,
CompletionMessage,
],
name="Message",
)
Field(discriminator="role"),
]
register_schema(Message, name="Message")
@json_schema_type
@ -265,13 +261,11 @@ class GrammarResponseFormat(BaseModel):
bnf: Dict[str, Any]
ResponseFormat = register_schema(
Annotated[
Union[JsonSchemaResponseFormat, GrammarResponseFormat],
Field(discriminator="type"),
],
name="ResponseFormat",
)
ResponseFormat = Annotated[
Union[JsonSchemaResponseFormat, GrammarResponseFormat],
Field(discriminator="type"),
]
register_schema(ResponseFormat, name="ResponseFormat")
# This is an internally used class
@ -285,7 +279,7 @@ class CompletionRequest(BaseModel):
@json_schema_type
class CompletionResponse(BaseModel):
class CompletionResponse(MetricResponseMixin):
"""Response from a completion request.
:param content: The generated completion text
@ -299,7 +293,7 @@ class CompletionResponse(BaseModel):
@json_schema_type
class CompletionResponseStreamChunk(BaseModel):
class CompletionResponseStreamChunk(MetricResponseMixin):
"""A chunk of a streamed completion response.
:param delta: New content generated since last chunk. This can be one or more tokens.
@ -368,7 +362,7 @@ class ChatCompletionRequest(BaseModel):
@json_schema_type
class ChatCompletionResponseStreamChunk(MetricResponseMixin, BaseModel):
class ChatCompletionResponseStreamChunk(MetricResponseMixin):
"""A chunk of a streamed chat completion response.
:param event: The event containing the new content
@ -378,7 +372,7 @@ class ChatCompletionResponseStreamChunk(MetricResponseMixin, BaseModel):
@json_schema_type
class ChatCompletionResponse(MetricResponseMixin, BaseModel):
class ChatCompletionResponse(MetricResponseMixin):
"""Response from a chat completion request.
:param completion_message: The complete response message

View file

@ -11,13 +11,6 @@ from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class ProviderInfo(BaseModel):
api: str
provider_id: str
provider_type: str
@json_schema_type
class RouteInfo(BaseModel):
route: str
@ -36,19 +29,12 @@ class VersionInfo(BaseModel):
version: str
class ListProvidersResponse(BaseModel):
data: List[ProviderInfo]
class ListRoutesResponse(BaseModel):
data: List[RouteInfo]
@runtime_checkable
class Inspect(Protocol):
@webmethod(route="/inspect/providers", method="GET")
async def list_providers(self) -> ListProvidersResponse: ...
@webmethod(route="/inspect/routes", method="GET")
async def list_routes(self) -> ListRoutesResponse: ...

View file

@ -66,7 +66,7 @@ class Models(Protocol):
async def get_model(
self,
model_id: str,
) -> Optional[Model]: ...
) -> Model: ...
@webmethod(route="/models", method="POST")
async def register_model(

View file

@ -6,7 +6,7 @@
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from typing import Any, Dict, List, Literal, Optional, Protocol
from pydantic import BaseModel, Field
from typing_extensions import Annotated
@ -88,10 +88,8 @@ class QATFinetuningConfig(BaseModel):
group_size: int
AlgorithmConfig = register_schema(
Annotated[Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")],
name="AlgorithmConfig",
)
AlgorithmConfig = Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")]
register_schema(AlgorithmConfig, name="AlgorithmConfig")
@json_schema_type
@ -184,7 +182,7 @@ class PostTraining(Protocol):
description="Model descriptor from `llama model list`",
),
checkpoint_dir: Optional[str] = None,
algorithm_config: Optional[AlgorithmConfig] = None,
algorithm_config: Optional[LoraFinetuningConfig | QATFinetuningConfig] = None,
) -> PostTrainingJob: ...
@webmethod(route="/post-training/preference-optimize", method="POST")
@ -202,10 +200,10 @@ class PostTraining(Protocol):
async def get_training_jobs(self) -> ListPostTrainingJobsResponse: ...
@webmethod(route="/post-training/job/status", method="GET")
async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]: ...
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse: ...
@webmethod(route="/post-training/job/cancel", method="POST")
async def cancel_training_job(self, job_uuid: str) -> None: ...
@webmethod(route="/post-training/job/artifacts", method="GET")
async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]: ...
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse: ...

View file

@ -4,9 +4,4 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class SampleConfig(BaseModel):
host: str = "localhost"
port: int = 9999
from .providers import * # noqa: F401 F403

View file

@ -0,0 +1,36 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Protocol, runtime_checkable
from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class ProviderInfo(BaseModel):
api: str
provider_id: str
provider_type: str
config: Dict[str, Any]
class ListProvidersResponse(BaseModel):
data: List[ProviderInfo]
@runtime_checkable
class Providers(Protocol):
"""
Providers API for inspecting, listing, and modifying providers and their configurations.
"""
@webmethod(route="/providers", method="GET")
async def list_providers(self) -> ListProvidersResponse: ...
@webmethod(route="/providers/{provider_id}", method="GET")
async def inspect_provider(self, provider_id: str) -> ProviderInfo: ...

View file

@ -36,6 +36,7 @@ class ScoringFnParamsType(Enum):
@json_schema_type
class AggregationFunctionType(Enum):
average = "average"
weighted_average = "weighted_average"
median = "median"
categorical_count = "categorical_count"
accuracy = "accuracy"
@ -78,17 +79,15 @@ class BasicScoringFnParams(BaseModel):
)
ScoringFnParams = register_schema(
Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
Field(discriminator="type"),
ScoringFnParams = Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
name="ScoringFnParams",
)
Field(discriminator="type"),
]
register_schema(ScoringFnParams, name="ScoringFnParams")
class CommonScoringFnFields(BaseModel):
@ -135,7 +134,7 @@ class ScoringFunctions(Protocol):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse: ...
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="GET")
async def get_scoring_function(self, scoring_fn_id: str, /) -> Optional[ScoringFn]: ...
async def get_scoring_function(self, scoring_fn_id: str, /) -> ScoringFn: ...
@webmethod(route="/scoring-functions", method="POST")
async def register_scoring_function(

View file

@ -49,7 +49,7 @@ class Shields(Protocol):
async def list_shields(self) -> ListShieldsResponse: ...
@webmethod(route="/shields/{identifier:path}", method="GET")
async def get_shield(self, identifier: str) -> Optional[Shield]: ...
async def get_shield(self, identifier: str) -> Shield: ...
@webmethod(route="/shields", method="POST")
async def register_shield(

View file

@ -96,6 +96,13 @@ class MetricEvent(EventCommon):
unit: str
@json_schema_type
class MetricInResponse(BaseModel):
metric: str
value: Union[int, float]
unit: Optional[str] = None
# This is a short term solution to allow inference API to return metrics
# The ideal way to do this is to have a way for all response types to include metrics
# and all metric events logged to the telemetry API to be inlcuded with the response
@ -117,7 +124,7 @@ class MetricEvent(EventCommon):
class MetricResponseMixin(BaseModel):
metrics: Optional[List[MetricEvent]] = None
metrics: Optional[List[MetricInResponse]] = None
@json_schema_type
@ -139,16 +146,14 @@ class SpanEndPayload(BaseModel):
status: SpanStatus
StructuredLogPayload = register_schema(
Annotated[
Union[
SpanStartPayload,
SpanEndPayload,
],
Field(discriminator="type"),
StructuredLogPayload = Annotated[
Union[
SpanStartPayload,
SpanEndPayload,
],
name="StructuredLogPayload",
)
Field(discriminator="type"),
]
register_schema(StructuredLogPayload, name="StructuredLogPayload")
@json_schema_type
@ -157,17 +162,15 @@ class StructuredLogEvent(EventCommon):
payload: StructuredLogPayload
Event = register_schema(
Annotated[
Union[
UnstructuredLogEvent,
MetricEvent,
StructuredLogEvent,
],
Field(discriminator="type"),
Event = Annotated[
Union[
UnstructuredLogEvent,
MetricEvent,
StructuredLogEvent,
],
name="Event",
)
Field(discriminator="type"),
]
register_schema(Event, name="Event")
@json_schema_type

View file

@ -17,6 +17,15 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
@json_schema_type
class RAGDocument(BaseModel):
"""
A document to be used for document ingestion in the RAG Tool.
:param document_id: The unique identifier for the document.
:param content: The content of the document.
:param mime_type: The MIME type of the document.
:param metadata: Additional metadata for the document.
"""
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
@ -49,16 +58,14 @@ class LLMRAGQueryGeneratorConfig(BaseModel):
template: str
RAGQueryGeneratorConfig = register_schema(
Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
Field(discriminator="type"),
RAGQueryGeneratorConfig = Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
name="RAGQueryGeneratorConfig",
)
Field(discriminator="type"),
]
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
@json_schema_type

View file

@ -50,7 +50,7 @@ class VectorDBs(Protocol):
async def get_vector_db(
self,
vector_db_id: str,
) -> Optional[VectorDB]: ...
) -> VectorDB: ...
@webmethod(route="/vector-dbs", method="POST")
async def register_vector_db(

View file

@ -10,7 +10,7 @@ import json
import os
import shutil
from dataclasses import dataclass
from datetime import datetime
from datetime import datetime, timezone
from functools import partial
from pathlib import Path
from typing import Dict, List, Optional
@ -404,7 +404,7 @@ def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
d = json.load(f)
manifest = Manifest(**d)
if datetime.now() > manifest.expires_on:
if datetime.now(timezone.utc) > manifest.expires_on:
raise ValueError(f"Manifest URLs have expired on {manifest.expires_on}")
console = Console()

View file

@ -41,8 +41,8 @@ class ModelPromptFormat(Subcommand):
"-m",
"--model-name",
type=str,
default="llama3_1",
help="Model Family (llama3_1, llama3_X, etc.)",
help="Example: Llama3.1-8B or Llama3.2-11B-Vision, etc\n"
"(Run `llama model list` to see a list of valid model names)",
)
self.parser.add_argument(
"-l",
@ -60,7 +60,6 @@ class ModelPromptFormat(Subcommand):
]
model_list = [m.value for m in supported_model_ids]
model_str = "\n".join(model_list)
if args.list:
headers = ["Model(s)"]
@ -81,10 +80,16 @@ class ModelPromptFormat(Subcommand):
try:
model_id = CoreModelId(args.model_name)
except ValueError:
self.parser.error(f"{args.model_name} is not a valid Model. Choose one from --\n{model_str}")
self.parser.error(
f"{args.model_name} is not a valid Model. Choose one from the list of valid models. "
f"Run `llama model list` to see the valid model names."
)
if model_id not in supported_model_ids:
self.parser.error(f"{model_id} is not a valid Model. Choose one from --\n {model_str}")
self.parser.error(
f"{model_id} is not a valid Model. Choose one from the list of valid models. "
f"Run `llama model list` to see the valid model names."
)
llama_3_1_file = ROOT_DIR / "models" / "llama" / "llama3_1" / "prompt_format.md"
llama_3_2_text_file = ROOT_DIR / "models" / "llama" / "llama3_2" / "text_prompt_format.md"

View file

@ -38,8 +38,8 @@ from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.resolver import InvalidProviderError
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.distribution.utils.exec import formulate_run_args, run_with_pty
from llama_stack.distribution.utils.image_types import ImageType
from llama_stack.distribution.utils.exec import formulate_run_args, run_command
from llama_stack.distribution.utils.image_types import LlamaStackImageType
from llama_stack.providers.datatypes import Api
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates"
@ -170,7 +170,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
)
sys.exit(1)
if build_config.image_type == ImageType.container.value and not args.image_name:
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not args.image_name:
cprint(
"Please specify --image-name when building a container from a config file",
color="red",
@ -213,7 +213,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
config = parse_and_maybe_upgrade_config(config_dict)
run_args = formulate_run_args(args.image_type, args.image_name, config, args.template)
run_args.extend([run_config, str(os.getenv("LLAMA_STACK_PORT", 8321))])
run_with_pty(run_args)
run_command(run_args)
def _generate_run_config(
@ -226,7 +226,7 @@ def _generate_run_config(
"""
apis = list(build_config.distribution_spec.providers.keys())
run_config = StackRunConfig(
container_image=(image_name if build_config.image_type == ImageType.container.value else None),
container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None),
image_name=image_name,
apis=apis,
providers={},
@ -279,16 +279,16 @@ def _run_stack_build_command_from_build_config(
template_name: Optional[str] = None,
config_path: Optional[str] = None,
) -> str:
if build_config.image_type == ImageType.container.value:
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
if template_name:
image_name = f"distribution-{template_name}"
else:
if not image_name:
raise ValueError("Please specify an image name when building a container image without a template")
elif build_config.image_type == ImageType.conda.value:
elif build_config.image_type == LlamaStackImageType.CONDA.value:
if not image_name:
raise ValueError("Please specify an image name when building a conda image")
elif build_config.image_type == ImageType.venv.value:
elif build_config.image_type == LlamaStackImageType.VENV.value:
if not image_name and os.environ.get("UV_SYSTEM_PYTHON"):
image_name = "__system__"
if not image_name:

View file

@ -82,7 +82,7 @@ class StackRun(Subcommand):
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.distribution.utils.exec import formulate_run_args, run_with_pty
from llama_stack.distribution.utils.exec import formulate_run_args, run_command
config_file = Path(args.config)
has_yaml_suffix = args.config.endswith(".yaml")
@ -136,4 +136,4 @@ class StackRun(Subcommand):
if args.tls_keyfile and args.tls_certfile:
run_args.extend(["--tls-keyfile", args.tls_keyfile, "--tls-certfile", args.tls_certfile])
run_with_pty(run_args)
run_command(run_args)

View file

@ -0,0 +1,81 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_stack.distribution.datatypes import RoutableObjectWithProvider
from llama_stack.log import get_logger
logger = get_logger(__name__, category="core")
def check_access(obj: RoutableObjectWithProvider, user_attributes: Optional[Dict[str, Any]] = None) -> bool:
"""Check if the current user has access to the given object, based on access attributes.
Access control algorithm:
1. If the resource has no access_attributes, access is GRANTED to all authenticated users
2. If the user has no attributes, access is DENIED to any object with access_attributes defined
3. For each attribute category in the resource's access_attributes:
a. If the user lacks that category, access is DENIED
b. If the user has the category but none of the required values, access is DENIED
c. If the user has at least one matching value in each required category, access is GRANTED
Example:
# Resource requires:
access_attributes = AccessAttributes(
roles=["admin", "data-scientist"],
teams=["ml-team"]
)
# User has:
user_attributes = {
"roles": ["data-scientist", "engineer"],
"teams": ["ml-team", "infra-team"],
"projects": ["llama-3"]
}
# Result: Access GRANTED
# - User has the "data-scientist" role (matches one of the required roles)
# - AND user is part of the "ml-team" (matches the required team)
# - The extra "projects" attribute is ignored
Args:
obj: The resource object to check access for
Returns:
bool: True if access is granted, False if denied
"""
# If object has no access attributes, allow access by default
if not hasattr(obj, "access_attributes") or not obj.access_attributes:
return True
# If no user attributes, deny access to objects with access control
if not user_attributes:
return False
obj_attributes = obj.access_attributes.model_dump(exclude_none=True)
if not obj_attributes:
return True
# Check each attribute category (requires ALL categories to match)
for attr_key, required_values in obj_attributes.items():
user_values = user_attributes.get(attr_key, [])
if not user_values:
logger.debug(
f"Access denied to {obj.type} '{obj.identifier}': missing required attribute category '{attr_key}'"
)
return False
if not any(val in user_values for val in required_values):
logger.debug(
f"Access denied to {obj.type} '{obj.identifier}': "
f"no match for attribute '{attr_key}', required one of {required_values}"
)
return False
logger.debug(f"Access granted to {obj.type} '{obj.identifier}'")
return True

View file

@ -6,7 +6,6 @@
import importlib.resources
import logging
import sys
from pathlib import Path
from typing import Dict, List
@ -15,8 +14,8 @@ from termcolor import cprint
from llama_stack.distribution.datatypes import BuildConfig, Provider
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.utils.exec import run_command, run_with_pty
from llama_stack.distribution.utils.image_types import ImageType
from llama_stack.distribution.utils.exec import run_command
from llama_stack.distribution.utils.image_types import LlamaStackImageType
from llama_stack.providers.datatypes import Api
log = logging.getLogger(__name__)
@ -95,7 +94,7 @@ def build_image(
normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers)
normal_deps += SERVER_DEPENDENCIES
if build_config.image_type == ImageType.container.value:
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
script = str(importlib.resources.files("llama_stack") / "distribution/build_container.sh")
args = [
script,
@ -104,7 +103,7 @@ def build_image(
container_base,
" ".join(normal_deps),
]
elif build_config.image_type == ImageType.conda.value:
elif build_config.image_type == LlamaStackImageType.CONDA.value:
script = str(importlib.resources.files("llama_stack") / "distribution/build_conda_env.sh")
args = [
script,
@ -112,7 +111,7 @@ def build_image(
str(build_file_path),
" ".join(normal_deps),
]
elif build_config.image_type == ImageType.venv.value:
elif build_config.image_type == LlamaStackImageType.VENV.value:
script = str(importlib.resources.files("llama_stack") / "distribution/build_venv.sh")
args = [
script,
@ -123,11 +122,7 @@ def build_image(
if special_deps:
args.append("#".join(special_deps))
is_terminal = sys.stdin.isatty()
if is_terminal:
return_code = run_with_pty(args)
else:
return_code = run_command(args)
return_code = run_command(args)
if return_code != 0:
log.error(

View file

@ -43,7 +43,7 @@ RED='\033[0;31m'
NC='\033[0m' # No Color
CONTAINER_BINARY=${CONTAINER_BINARY:-docker}
CONTAINER_OPTS=${CONTAINER_OPTS:-}
CONTAINER_OPTS=${CONTAINER_OPTS:---progress=plain}
TEMP_DIR=$(mktemp -d)
@ -235,7 +235,7 @@ image_tag="$image_name:$version_tag"
# Detect platform architecture
ARCH=$(uname -m)
if [ -n "$BUILD_PLATFORM" ]; then
CLI_ARGS+=("--platform $BUILD_PLATFORM")
CLI_ARGS+=("--platform" "$BUILD_PLATFORM")
elif [ "$ARCH" = "arm64" ] || [ "$ARCH" = "aarch64" ]; then
CLI_ARGS+=("--platform" "linux/arm64")
elif [ "$ARCH" = "x86_64" ]; then
@ -253,8 +253,7 @@ $CONTAINER_BINARY build \
"${CLI_ARGS[@]}" \
-t "$image_tag" \
-f "$TEMP_DIR/Containerfile" \
"." \
--progress=plain
"."
# clean up tmp/configs
set +x

View file

@ -62,7 +62,7 @@ def configure_api_providers(config: StackRunConfig, build_spec: DistributionSpec
if config.apis:
apis_to_serve = config.apis
else:
apis_to_serve = [a.value for a in Api if a not in (Api.telemetry, Api.inspect)]
apis_to_serve = [a.value for a in Api if a not in (Api.telemetry, Api.inspect, Api.providers)]
for api_str in apis_to_serve:
api = Api(api_str)

View file

@ -14,6 +14,7 @@ from llama_stack.apis.datasets import Dataset, DatasetInput
from llama_stack.apis.eval import Eval
from llama_stack.apis.inference import Inference
from llama_stack.apis.models import Model, ModelInput
from llama_stack.apis.resource import Resource
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput
@ -31,6 +32,115 @@ LLAMA_STACK_RUN_CONFIG_VERSION = "2"
RoutingKey = Union[str, List[str]]
class AccessAttributes(BaseModel):
"""Structured representation of user attributes for access control.
This model defines a structured approach to representing user attributes
with common standard categories for access control.
Standard attribute categories include:
- roles: Role-based attributes (e.g., admin, data-scientist)
- teams: Team-based attributes (e.g., ml-team, infra-team)
- projects: Project access attributes (e.g., llama-3, customer-insights)
- namespaces: Namespace-based access control for resource isolation
"""
# Standard attribute categories - the minimal set we need now
roles: Optional[List[str]] = Field(
default=None, description="Role-based attributes (e.g., 'admin', 'data-scientist', 'user')"
)
teams: Optional[List[str]] = Field(default=None, description="Team-based attributes (e.g., 'ml-team', 'nlp-team')")
projects: Optional[List[str]] = Field(
default=None, description="Project-based access attributes (e.g., 'llama-3', 'customer-insights')"
)
namespaces: Optional[List[str]] = Field(
default=None, description="Namespace-based access control for resource isolation"
)
class ResourceWithACL(Resource):
"""Extension of Resource that adds attribute-based access control capabilities.
This class adds an optional access_attributes field that allows fine-grained control
over which users can access each resource. When attributes are defined, a user must have
matching attributes to access the resource.
Attribute Matching Algorithm:
1. If a resource has no access_attributes (None or empty dict), it's visible to all authenticated users
2. Each key in access_attributes represents an attribute category (e.g., "roles", "teams", "projects")
3. The matching algorithm requires ALL categories to match (AND relationship between categories)
4. Within each category, ANY value match is sufficient (OR relationship within a category)
Examples:
# Resource visible to everyone (no access control)
model = Model(identifier="llama-2", ...)
# Resource visible only to admins
model = Model(
identifier="gpt-4",
access_attributes=AccessAttributes(roles=["admin"])
)
# Resource visible to data scientists on the ML team
model = Model(
identifier="private-model",
access_attributes=AccessAttributes(
roles=["data-scientist", "researcher"],
teams=["ml-team"]
)
)
# ^ User must have at least one of the roles AND be on the ml-team
# Resource visible to users with specific project access
vector_db = VectorDB(
identifier="customer-embeddings",
access_attributes=AccessAttributes(
projects=["customer-insights"],
namespaces=["confidential"]
)
)
# ^ User must have access to the customer-insights project AND have confidential namespace
"""
access_attributes: Optional[AccessAttributes] = None
# Use the extended Resource for all routable objects
class ModelWithACL(Model, ResourceWithACL):
pass
class ShieldWithACL(Shield, ResourceWithACL):
pass
class VectorDBWithACL(VectorDB, ResourceWithACL):
pass
class DatasetWithACL(Dataset, ResourceWithACL):
pass
class ScoringFnWithACL(ScoringFn, ResourceWithACL):
pass
class BenchmarkWithACL(Benchmark, ResourceWithACL):
pass
class ToolWithACL(Tool, ResourceWithACL):
pass
class ToolGroupWithACL(ToolGroup, ResourceWithACL):
pass
RoutableObject = Union[
Model,
Shield,
@ -45,14 +155,14 @@ RoutableObject = Union[
RoutableObjectWithProvider = Annotated[
Union[
Model,
Shield,
VectorDB,
Dataset,
ScoringFn,
Benchmark,
Tool,
ToolGroup,
ModelWithACL,
ShieldWithACL,
VectorDBWithACL,
DatasetWithACL,
ScoringFnWithACL,
BenchmarkWithACL,
ToolWithACL,
ToolGroupWithACL,
],
Field(discriminator="type"),
]
@ -117,6 +227,21 @@ class Provider(BaseModel):
config: Dict[str, Any]
class LoggingConfig(BaseModel):
category_levels: Dict[str, str] = Field(
default_factory=Dict,
description="""
Dictionary of different logging configurations for different portions (ex: core, server) of llama stack""",
)
class AuthenticationConfig(BaseModel):
endpoint: str = Field(
...,
description="Endpoint URL to validate authentication tokens",
)
class ServerConfig(BaseModel):
port: int = Field(
default=8321,
@ -132,6 +257,10 @@ class ServerConfig(BaseModel):
default=None,
description="Path to TLS key file for HTTPS",
)
auth: Optional[AuthenticationConfig] = Field(
default=None,
description="Authentication configuration for the server",
)
class StackRunConfig(BaseModel):
@ -176,6 +305,8 @@ a default SQLite store will be used.""",
benchmarks: List[BenchmarkInput] = Field(default_factory=list)
tool_groups: List[ToolGroupInput] = Field(default_factory=list)
logging: Optional[LoggingConfig] = Field(default=None, description="Configuration for Llama Stack Logging")
server: ServerConfig = Field(
default_factory=ServerConfig,
description="Configuration for the HTTP(S) server",

View file

@ -56,7 +56,7 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
def providable_apis() -> List[Api]:
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
return [api for api in Api if api not in routing_table_apis and api != Api.inspect]
return [api for api in Api if api not in routing_table_apis and api != Api.inspect and api != Api.providers]
def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:

View file

@ -11,9 +11,7 @@ from pydantic import BaseModel
from llama_stack.apis.inspect import (
HealthInfo,
Inspect,
ListProvidersResponse,
ListRoutesResponse,
ProviderInfo,
RouteInfo,
VersionInfo,
)
@ -39,24 +37,6 @@ class DistributionInspectImpl(Inspect):
async def initialize(self) -> None:
pass
async def list_providers(self) -> ListProvidersResponse:
run_config = self.config.run_config
ret = []
for api, providers in run_config.providers.items():
ret.extend(
[
ProviderInfo(
api=api,
provider_id=p.provider_id,
provider_type=p.provider_type,
)
for p in providers
]
)
return ListProvidersResponse(data=ret)
async def list_routes(self) -> ListRoutesResponse:
run_config = self.config.run_config

View file

@ -33,7 +33,7 @@ from llama_stack.distribution.build import print_pip_install_help
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.datatypes import Api
from llama_stack.distribution.request_headers import (
preserve_headers_context_async_generator,
PROVIDER_DATA_VAR,
request_provider_data_context,
)
from llama_stack.distribution.resolver import ProviderRegistry
@ -44,8 +44,10 @@ from llama_stack.distribution.stack import (
redact_sensitive_fields,
replace_env_vars,
)
from llama_stack.distribution.utils.context import preserve_contexts_async_generator
from llama_stack.distribution.utils.exec import in_notebook
from llama_stack.providers.utils.telemetry.tracing import (
CURRENT_TRACE_CONTEXT,
end_trace,
setup_logger,
start_trace,
@ -384,8 +386,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
finally:
await end_trace()
# Wrap the generator to preserve context across iterations
wrapped_gen = preserve_headers_context_async_generator(gen())
wrapped_gen = preserve_contexts_async_generator(gen(), [CURRENT_TRACE_CONTEXT, PROVIDER_DATA_VAR])
mock_response = httpx.Response(
status_code=httpx.codes.OK,
content=wrapped_gen,

View file

@ -0,0 +1,66 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from llama_stack.apis.providers import ListProvidersResponse, ProviderInfo, Providers
from llama_stack.log import get_logger
from .datatypes import StackRunConfig
from .stack import redact_sensitive_fields
logger = get_logger(name=__name__, category="core")
class ProviderImplConfig(BaseModel):
run_config: StackRunConfig
async def get_provider_impl(config, deps):
impl = ProviderImpl(config, deps)
await impl.initialize()
return impl
class ProviderImpl(Providers):
def __init__(self, config, deps):
self.config = config
self.deps = deps
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
logger.debug("ProviderImpl.shutdown")
pass
async def list_providers(self) -> ListProvidersResponse:
run_config = self.config.run_config
safe_config = StackRunConfig(**redact_sensitive_fields(run_config.model_dump()))
ret = []
for api, providers in safe_config.providers.items():
ret.extend(
[
ProviderInfo(
api=api,
provider_id=p.provider_id,
provider_type=p.provider_type,
config=p.config,
)
for p in providers
]
)
return ListProvidersResponse(data=ret)
async def inspect_provider(self, provider_id: str) -> ProviderInfo:
all_providers = await self.list_providers()
for p in all_providers.data:
if p.provider_id == provider_id:
return p
raise ValueError(f"Provider {provider_id} not found")

View file

@ -7,59 +7,37 @@
import contextvars
import json
import logging
from typing import Any, AsyncGenerator, ContextManager, Dict, Optional, TypeVar
from typing import Any, ContextManager, Dict, List, Optional
from .utils.dynamic import instantiate_class_type
log = logging.getLogger(__name__)
# Context variable for request provider data
_provider_data_var = contextvars.ContextVar("provider_data", default=None)
# Context variable for request provider data and auth attributes
PROVIDER_DATA_VAR = contextvars.ContextVar("provider_data", default=None)
class RequestProviderDataContext(ContextManager):
"""Context manager for request provider data"""
def __init__(self, provider_data: Optional[Dict[str, Any]] = None):
self.provider_data = provider_data
def __init__(
self, provider_data: Optional[Dict[str, Any]] = None, auth_attributes: Optional[Dict[str, List[str]]] = None
):
self.provider_data = provider_data or {}
if auth_attributes:
self.provider_data["__auth_attributes"] = auth_attributes
self.token = None
def __enter__(self):
# Save the current value and set the new one
self.token = _provider_data_var.set(self.provider_data)
self.token = PROVIDER_DATA_VAR.set(self.provider_data)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
# Restore the previous value
if self.token is not None:
_provider_data_var.reset(self.token)
T = TypeVar("T")
def preserve_headers_context_async_generator(gen: AsyncGenerator[T, None]) -> AsyncGenerator[T, None]:
"""
Wraps an async generator to preserve request headers context variables across iterations.
This ensures that context variables set during generator creation are
available during each iteration of the generator, even if the original
context manager has exited.
"""
# Capture the current context value right now
context_value = _provider_data_var.get()
async def wrapper():
while True:
# Set context before each anext() call
_ = _provider_data_var.set(context_value)
try:
item = await gen.__anext__()
yield item
except StopAsyncIteration:
break
return wrapper()
PROVIDER_DATA_VAR.reset(self.token)
class NeedsRequestProviderData:
@ -72,7 +50,7 @@ class NeedsRequestProviderData:
if not validator_class:
raise ValueError(f"Provider {provider_type} does not have a validator")
val = _provider_data_var.get()
val = PROVIDER_DATA_VAR.get()
if not val:
return None
@ -107,7 +85,17 @@ def parse_request_provider_data(headers: Dict[str, str]) -> Optional[Dict[str, A
return None
def request_provider_data_context(headers: Dict[str, str]) -> ContextManager:
"""Context manager that sets request provider data from headers for the duration of the context"""
def request_provider_data_context(
headers: Dict[str, str], auth_attributes: Optional[Dict[str, List[str]]] = None
) -> ContextManager:
"""Context manager that sets request provider data from headers and auth attributes for the duration of the context"""
provider_data = parse_request_provider_data(headers)
return RequestProviderDataContext(provider_data)
return RequestProviderDataContext(provider_data, auth_attributes)
def get_auth_attributes() -> Optional[Dict[str, List[str]]]:
"""Helper to retrieve auth attributes from the provider data context"""
provider_data = PROVIDER_DATA_VAR.get()
if not provider_data:
return None
return provider_data.get("__auth_attributes")

View file

@ -16,6 +16,7 @@ from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.models import Models
from llama_stack.apis.post_training import PostTraining
from llama_stack.apis.providers import Providers as ProvidersAPI
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
@ -59,6 +60,7 @@ class InvalidProviderError(Exception):
def api_protocol_map() -> Dict[Api, Any]:
return {
Api.providers: ProvidersAPI,
Api.agents: Agents,
Api.inference: Inference,
Api.inspect: Inspect,
@ -165,7 +167,9 @@ def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str,
module="llama_stack.distribution.routers",
routing_table_api=info.routing_table_api,
api_dependencies=[info.routing_table_api],
deps__=[info.routing_table_api.value],
# Add telemetry as an optional dependency to all auto-routed providers
optional_api_dependencies=[Api.telemetry],
deps__=([info.routing_table_api.value, Api.telemetry.value]),
),
)
}
@ -245,6 +249,25 @@ def sort_providers_by_deps(
)
)
sorted_providers.append(
(
"providers",
ProviderWithSpec(
provider_id="__builtin__",
provider_type="__builtin__",
config={"run_config": run_config.model_dump()},
spec=InlineProviderSpec(
api=Api.providers,
provider_type="__builtin__",
config_class="llama_stack.distribution.providers.ProviderImplConfig",
module="llama_stack.distribution.providers",
api_dependencies=apis,
deps__=[x.value for x in apis],
),
),
)
)
logger.debug(f"Resolved {len(sorted_providers)} providers")
for api_str, provider in sorted_providers:
logger.debug(f" {api_str} => {provider.provider_id}")

View file

@ -45,7 +45,7 @@ async def get_routing_table_impl(
return impl
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) -> Any:
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: Dict[str, Any]) -> Any:
from .routers import (
DatasetIORouter,
EvalRouter,
@ -65,9 +65,17 @@ async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) ->
"eval": EvalRouter,
"tool_runtime": ToolRuntimeRouter,
}
api_to_deps = {
"inference": {"telemetry": Api.telemetry},
}
if api.value not in api_to_routers:
raise ValueError(f"API {api.value} not found in router map")
impl = api_to_routers[api.value](routing_table)
api_to_dep_impl = {}
for dep_name, dep_api in api_to_deps.get(api.value, {}).items():
if dep_api in deps:
api_to_dep_impl[dep_name] = deps[dep_api]
impl = api_to_routers[api.value](routing_table, **api_to_dep_impl)
await impl.initialize()
return impl

View file

@ -4,14 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, AsyncGenerator, Dict, List, Optional
import time
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import DatasetPurpose, DataSource
from llama_stack.apis.eval import (
BenchmarkConfig,
Eval,
@ -20,6 +22,10 @@ from llama_stack.apis.eval import (
JobStatus,
)
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
@ -27,13 +33,14 @@ from llama_stack.apis.inference import (
Message,
ResponseFormat,
SamplingParams,
StopReason,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import ModelType
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.safety import RunShieldResponse, Safety
from llama_stack.apis.scoring import (
ScoreBatchResponse,
@ -42,6 +49,7 @@ from llama_stack.apis.scoring import (
ScoringFnParams,
)
from llama_stack.apis.shields import Shield
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
from llama_stack.apis.tools import (
RAGDocument,
RAGQueryConfig,
@ -52,7 +60,10 @@ from llama_stack.apis.tools import (
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.chat_format import ChatFormat
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.datatypes import RoutingTable
from llama_stack.providers.utils.telemetry.tracing import get_current_span
logger = get_logger(name=__name__, category="core")
@ -119,9 +130,14 @@ class InferenceRouter(Inference):
def __init__(
self,
routing_table: RoutingTable,
telemetry: Optional[Telemetry] = None,
) -> None:
logger.debug("Initializing InferenceRouter")
self.routing_table = routing_table
self.telemetry = telemetry
if self.telemetry:
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
async def initialize(self) -> None:
logger.debug("InferenceRouter.initialize")
@ -144,6 +160,75 @@ class InferenceRouter(Inference):
)
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
def _construct_metrics(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
model: Model,
) -> List[MetricEvent]:
"""Constructs a list of MetricEvent objects containing token usage metrics.
Args:
prompt_tokens: Number of tokens in the prompt
completion_tokens: Number of tokens in the completion
total_tokens: Total number of tokens used
model: Model object containing model_id and provider_id
Returns:
List of MetricEvent objects with token usage metrics
"""
span = get_current_span()
if span is None:
logger.warning("No span found for token usage metrics")
return []
metrics = [
("prompt_tokens", prompt_tokens),
("completion_tokens", completion_tokens),
("total_tokens", total_tokens),
]
metric_events = []
for metric_name, value in metrics:
metric_events.append(
MetricEvent(
trace_id=span.trace_id,
span_id=span.span_id,
metric=metric_name,
value=value,
timestamp=time.time(),
unit="tokens",
attributes={
"model_id": model.model_id,
"provider_id": model.provider_id,
},
)
)
return metric_events
async def _compute_and_log_token_usage(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
model: Model,
) -> List[MetricInResponse]:
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
if self.telemetry:
for metric in metrics:
await self.telemetry.log_event(metric)
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
async def _count_tokens(
self,
messages: List[Message] | InterleavedContent,
tool_prompt_format: Optional[ToolPromptFormat] = None,
) -> Optional[int]:
if isinstance(messages, list):
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
else:
encoded = self.formatter.encode_content(messages)
return len(encoded.tokens) if encoded and encoded.tokens else 0
async def chat_completion(
self,
model_id: str,
@ -156,7 +241,7 @@ class InferenceRouter(Inference):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
logger.debug(
f"InferenceRouter.chat_completion: {model_id=}, {stream=}, {messages=}, {tools=}, {tool_config=}, {response_format=}",
)
@ -206,10 +291,52 @@ class InferenceRouter(Inference):
tool_config=tool_config,
)
provider = self.routing_table.get_provider_impl(model_id)
prompt_tokens = await self._count_tokens(messages, tool_config.tool_prompt_format)
if stream:
return (chunk async for chunk in await provider.chat_completion(**params))
async def stream_generator():
completion_text = ""
async for chunk in await provider.chat_completion(**params):
if chunk.event.event_type == ChatCompletionResponseEventType.progress:
if chunk.event.delta.type == "text":
completion_text += chunk.event.delta.text
if chunk.event.event_type == ChatCompletionResponseEventType.complete:
completion_tokens = await self._count_tokens(
[
CompletionMessage(
content=completion_text,
stop_reason=StopReason.end_of_turn,
)
],
tool_config.tool_prompt_format,
)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
metrics = await self._compute_and_log_token_usage(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
)
chunk.metrics = metrics if chunk.metrics is None else chunk.metrics + metrics
yield chunk
return stream_generator()
else:
return await provider.chat_completion(**params)
response = await provider.chat_completion(**params)
completion_tokens = await self._count_tokens(
[response.completion_message],
tool_config.tool_prompt_format,
)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
metrics = await self._compute_and_log_token_usage(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
)
response.metrics = metrics if response.metrics is None else response.metrics + metrics
return response
async def completion(
self,
@ -239,10 +366,41 @@ class InferenceRouter(Inference):
stream=stream,
logprobs=logprobs,
)
prompt_tokens = await self._count_tokens(content)
if stream:
return (chunk async for chunk in await provider.completion(**params))
async def stream_generator():
completion_text = ""
async for chunk in await provider.completion(**params):
if hasattr(chunk, "delta"):
completion_text += chunk.delta
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
completion_tokens = await self._count_tokens(completion_text)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
metrics = await self._compute_and_log_token_usage(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
)
chunk.metrics = metrics if chunk.metrics is None else chunk.metrics + metrics
yield chunk
return stream_generator()
else:
return await provider.completion(**params)
response = await provider.completion(**params)
completion_tokens = await self._count_tokens(response.content)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
metrics = await self._compute_and_log_token_usage(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
)
response.metrics = metrics if response.metrics is None else response.metrics + metrics
return response
async def embeddings(
self,
@ -323,21 +481,36 @@ class DatasetIORouter(DatasetIO):
logger.debug("DatasetIORouter.shutdown")
pass
async def get_rows_paginated(
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
dataset_id: Optional[str] = None,
) -> None:
logger.debug(
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
)
await self.routing_table.register_dataset(
purpose=purpose,
source=source,
metadata=metadata,
dataset_id=dataset_id,
)
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
logger.debug(
f"DatasetIORouter.get_rows_paginated: {dataset_id}, rows_in_page={rows_in_page}",
f"DatasetIORouter.iterrows: {dataset_id}, {start_index=} {limit=}",
)
return await self.routing_table.get_provider_impl(dataset_id).get_rows_paginated(
return await self.routing_table.get_provider_impl(dataset_id).iterrows(
dataset_id=dataset_id,
rows_in_page=rows_in_page,
page_token=page_token,
filter_condition=filter_condition,
start_index=start_index,
limit=limit,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import logging
import uuid
from typing import Any, Dict, List, Optional
from pydantic import TypeAdapter
@ -12,7 +13,16 @@ from pydantic import TypeAdapter
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.datasets import Dataset, Datasets, ListDatasetsResponse
from llama_stack.apis.datasets import (
Dataset,
DatasetPurpose,
Datasets,
DatasetType,
DataSource,
ListDatasetsResponse,
RowsDataSource,
URIDataSource,
)
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import (
@ -31,11 +41,22 @@ from llama_stack.apis.tools import (
ToolHost,
)
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
from llama_stack.distribution.access_control import check_access
from llama_stack.distribution.datatypes import (
AccessAttributes,
BenchmarkWithACL,
DatasetWithACL,
ModelWithACL,
RoutableObject,
RoutableObjectWithProvider,
RoutedProtocol,
ScoringFnWithACL,
ShieldWithACL,
ToolGroupWithACL,
ToolWithACL,
VectorDBWithACL,
)
from llama_stack.distribution.request_headers import get_auth_attributes
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.providers.datatypes import Api, RoutingTable
@ -176,6 +197,11 @@ class CommonRoutingTableImpl(RoutingTable):
if not obj:
return None
# Check if user has permission to access this object
if not check_access(obj, get_auth_attributes()):
logger.debug(f"Access denied to {type} '{identifier}' based on attribute mismatch")
return None
return obj
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
@ -192,6 +218,13 @@ class CommonRoutingTableImpl(RoutingTable):
p = self.impls_by_provider_id[obj.provider_id]
# If object supports access control but no attributes set, use creator's attributes
if not obj.access_attributes:
creator_attributes = get_auth_attributes()
if creator_attributes:
obj.access_attributes = AccessAttributes(**creator_attributes)
logger.info(f"Setting access attributes for {obj.type} '{obj.identifier}' based on creator's identity")
registered_obj = await register_object_with_provider(obj, p)
# TODO: This needs to be fixed for all APIs once they return the registered object
if obj.type == ResourceType.model.value:
@ -204,15 +237,24 @@ class CommonRoutingTableImpl(RoutingTable):
async def get_all_with_type(self, type: str) -> List[RoutableObjectWithProvider]:
objs = await self.dist_registry.get_all()
return [obj for obj in objs if obj.type == type]
filtered_objs = [obj for obj in objs if obj.type == type]
# Apply attribute-based access control filtering
if filtered_objs:
filtered_objs = [obj for obj in filtered_objs if check_access(obj, get_auth_attributes())]
return filtered_objs
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def list_models(self) -> ListModelsResponse:
return ListModelsResponse(data=await self.get_all_with_type("model"))
async def get_model(self, model_id: str) -> Optional[Model]:
return await self.get_object_by_identifier("model", model_id)
async def get_model(self, model_id: str) -> Model:
model = await self.get_object_by_identifier("model", model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
return model
async def register_model(
self,
@ -238,7 +280,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError("Embedding model must have an embedding dimension in its metadata")
model = Model(
model = ModelWithACL(
identifier=model_id,
provider_resource_id=provider_model_id,
provider_id=provider_id,
@ -259,8 +301,11 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> ListShieldsResponse:
return ListShieldsResponse(data=await self.get_all_with_type(ResourceType.shield.value))
async def get_shield(self, identifier: str) -> Optional[Shield]:
return await self.get_object_by_identifier("shield", identifier)
async def get_shield(self, identifier: str) -> Shield:
shield = await self.get_object_by_identifier("shield", identifier)
if shield is None:
raise ValueError(f"Shield '{identifier}' not found")
return shield
async def register_shield(
self,
@ -281,7 +326,7 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
)
if params is None:
params = {}
shield = Shield(
shield = ShieldWithACL(
identifier=shield_id,
provider_resource_id=provider_shield_id,
provider_id=provider_id,
@ -295,8 +340,11 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def list_vector_dbs(self) -> ListVectorDBsResponse:
return ListVectorDBsResponse(data=await self.get_all_with_type("vector_db"))
async def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]:
return await self.get_object_by_identifier("vector_db", vector_db_id)
async def get_vector_db(self, vector_db_id: str) -> VectorDB:
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
if vector_db is None:
raise ValueError(f"Vector DB '{vector_db_id}' not found")
return vector_db
async def register_vector_db(
self,
@ -332,7 +380,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
"embedding_model": embedding_model,
"embedding_dimension": model.metadata["embedding_dimension"],
}
vector_db = TypeAdapter(VectorDB).validate_python(vector_db_data)
vector_db = TypeAdapter(VectorDBWithACL).validate_python(vector_db_data)
await self.register_object(vector_db)
return vector_db
@ -347,39 +395,56 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def list_datasets(self) -> ListDatasetsResponse:
return ListDatasetsResponse(data=await self.get_all_with_type(ResourceType.dataset.value))
async def get_dataset(self, dataset_id: str) -> Optional[Dataset]:
return await self.get_object_by_identifier("dataset", dataset_id)
async def get_dataset(self, dataset_id: str) -> Dataset:
dataset = await self.get_object_by_identifier("dataset", dataset_id)
if dataset is None:
raise ValueError(f"Dataset '{dataset_id}' not found")
return dataset
async def register_dataset(
self,
dataset_id: str,
dataset_schema: Dict[str, ParamType],
url: URL,
provider_dataset_id: Optional[str] = None,
provider_id: Optional[str] = None,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
if provider_dataset_id is None:
provider_dataset_id = dataset_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this dataset
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
dataset_id: Optional[str] = None,
) -> Dataset:
if isinstance(source, dict):
if source["type"] == "uri":
source = URIDataSource.parse_obj(source)
elif source["type"] == "rows":
source = RowsDataSource.parse_obj(source)
if not dataset_id:
dataset_id = f"dataset-{str(uuid.uuid4())}"
provider_dataset_id = dataset_id
# infer provider from source
if source.type == DatasetType.rows.value:
provider_id = "localfs"
elif source.type == DatasetType.uri.value:
# infer provider from uri
if source.uri.startswith("huggingface"):
provider_id = "huggingface"
else:
raise ValueError(
f"No provider specified and multiple providers available. Please specify a provider_id. Available providers: {self.impls_by_provider_id.keys()}"
)
provider_id = "localfs"
else:
raise ValueError(f"Unknown data source type: {source.type}")
if metadata is None:
metadata = {}
dataset = Dataset(
dataset = DatasetWithACL(
identifier=dataset_id,
provider_resource_id=provider_dataset_id,
provider_id=provider_id,
dataset_schema=dataset_schema,
url=url,
purpose=purpose,
source=source,
metadata=metadata,
)
await self.register_object(dataset)
return dataset
async def unregister_dataset(self, dataset_id: str) -> None:
dataset = await self.get_dataset(dataset_id)
@ -392,8 +457,11 @@ class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
async def get_scoring_function(self, scoring_fn_id: str) -> Optional[ScoringFn]:
return await self.get_object_by_identifier("scoring_function", scoring_fn_id)
async def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn:
scoring_fn = await self.get_object_by_identifier("scoring_function", scoring_fn_id)
if scoring_fn is None:
raise ValueError(f"Scoring function '{scoring_fn_id}' not found")
return scoring_fn
async def register_scoring_function(
self,
@ -413,7 +481,7 @@ class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
scoring_fn = ScoringFn(
scoring_fn = ScoringFnWithACL(
identifier=scoring_fn_id,
description=description,
return_type=return_type,
@ -429,8 +497,11 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
async def list_benchmarks(self) -> ListBenchmarksResponse:
return ListBenchmarksResponse(data=await self.get_all_with_type("benchmark"))
async def get_benchmark(self, benchmark_id: str) -> Optional[Benchmark]:
return await self.get_object_by_identifier("benchmark", benchmark_id)
async def get_benchmark(self, benchmark_id: str) -> Benchmark:
benchmark = await self.get_object_by_identifier("benchmark", benchmark_id)
if benchmark is None:
raise ValueError(f"Benchmark '{benchmark_id}' not found")
return benchmark
async def register_benchmark(
self,
@ -452,7 +523,7 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
)
if provider_benchmark_id is None:
provider_benchmark_id = benchmark_id
benchmark = Benchmark(
benchmark = BenchmarkWithACL(
identifier=benchmark_id,
dataset_id=dataset_id,
scoring_functions=scoring_functions,
@ -474,7 +545,10 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
return ListToolGroupsResponse(data=await self.get_all_with_type("tool_group"))
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
return await self.get_object_by_identifier("tool_group", toolgroup_id)
tool_group = await self.get_object_by_identifier("tool_group", toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group '{toolgroup_id}' not found")
return tool_group
async def get_tool(self, tool_name: str) -> Tool:
return await self.get_object_by_identifier("tool", tool_name)
@ -492,7 +566,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
for tool_def in tool_defs:
tools.append(
Tool(
ToolWithACL(
identifier=tool_def.name,
toolgroup_id=toolgroup_id,
description=tool_def.description or "",
@ -517,7 +591,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
await self.register_object(tool)
await self.dist_registry.register(
ToolGroup(
ToolGroupWithACL(
identifier=toolgroup_id,
provider_id=provider_id,
provider_resource_id=toolgroup_id,
@ -530,7 +604,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
tool_group = await self.get_tool_group(toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group {toolgroup_id} not found")
tools = await self.list_tools(toolgroup_id).data
tools = (await self.list_tools(toolgroup_id)).data
for tool in tools:
await self.unregister_object(tool)
await self.unregister_object(tool_group)

View file

@ -0,0 +1,203 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from typing import Dict, List, Optional
from urllib.parse import parse_qs
import httpx
from pydantic import BaseModel, Field
from llama_stack.distribution.datatypes import AccessAttributes
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="auth")
class AuthRequestContext(BaseModel):
path: str = Field(description="The path of the request being authenticated")
headers: Dict[str, str] = Field(description="HTTP headers from the original request (excluding Authorization)")
params: Dict[str, List[str]] = Field(
description="Query parameters from the original request, parsed as dictionary of lists"
)
class AuthRequest(BaseModel):
api_key: str = Field(description="The API key extracted from the Authorization header")
request: AuthRequestContext = Field(description="Context information about the request being authenticated")
class AuthResponse(BaseModel):
"""The format of the authentication response from the auth endpoint."""
access_attributes: Optional[AccessAttributes] = Field(
default=None,
description="""
Structured user attributes for attribute-based access control.
These attributes determine which resources the user can access.
The model provides standard categories like "roles", "teams", "projects", and "namespaces".
Each attribute category contains a list of values that the user has for that category.
During access control checks, these values are compared against resource requirements.
Example with standard categories:
```json
{
"roles": ["admin", "data-scientist"],
"teams": ["ml-team"],
"projects": ["llama-3"],
"namespaces": ["research"]
}
```
""",
)
message: Optional[str] = Field(
default=None, description="Optional message providing additional context about the authentication result."
)
class AuthenticationMiddleware:
"""Middleware that authenticates requests using an external auth endpoint.
This middleware:
1. Extracts the Bearer token from the Authorization header
2. Sends it to the configured auth endpoint along with request details
3. Validates the response and extracts user attributes
4. Makes these attributes available to the route handlers for access control
Authentication Request Format:
```json
{
"api_key": "the-api-key-extracted-from-auth-header",
"request": {
"path": "/models/list",
"headers": {
"content-type": "application/json",
"user-agent": "..."
// All headers except Authorization
},
"params": {
"limit": ["100"],
"offset": ["0"]
// Query parameters as key -> list of values
}
}
}
```
Expected Auth Endpoint Response Format:
```json
{
"access_attributes": { // Structured attribute format
"roles": ["admin", "user"],
"teams": ["ml-team", "nlp-team"],
"projects": ["llama-3", "project-x"],
"namespaces": ["research"]
},
"message": "Optional message about auth result"
}
```
Attribute-Based Access Control:
The attributes returned by the auth endpoint are used to determine which
resources the user can access. Resources can specify required attributes
using the access_attributes field. For a user to access a resource:
1. All attribute categories specified in the resource must be present in the user's attributes
2. For each category, the user must have at least one matching value
If the auth endpoint doesn't return any attributes, the user will only be able to
access resources that don't have access_attributes defined.
"""
def __init__(self, app, auth_endpoint):
self.app = app
self.auth_endpoint = auth_endpoint
async def __call__(self, scope, receive, send):
if scope["type"] == "http":
headers = dict(scope.get("headers", []))
auth_header = headers.get(b"authorization", b"").decode()
if not auth_header or not auth_header.startswith("Bearer "):
return await self._send_auth_error(send, "Missing or invalid Authorization header")
api_key = auth_header.split("Bearer ", 1)[1]
path = scope.get("path", "")
request_headers = {k.decode(): v.decode() for k, v in headers.items()}
# Remove sensitive headers
if "authorization" in request_headers:
del request_headers["authorization"]
query_string = scope.get("query_string", b"").decode()
params = parse_qs(query_string)
# Build the auth request model
auth_request = AuthRequest(
api_key=api_key,
request=AuthRequestContext(
path=path,
headers=request_headers,
params=params,
),
)
# Validate with authentication endpoint
try:
async with httpx.AsyncClient() as client:
response = await client.post(
self.auth_endpoint,
json=auth_request.model_dump(),
timeout=10.0, # Add a reasonable timeout
)
if response.status_code != 200:
logger.warning(f"Authentication failed: {response.status_code}")
return await self._send_auth_error(send, "Authentication failed")
# Parse and validate the auth response
try:
response_data = response.json()
auth_response = AuthResponse(**response_data)
# Store attributes in request scope for access control
if auth_response.access_attributes:
user_attributes = auth_response.access_attributes.model_dump(exclude_none=True)
else:
logger.warning("No access attributes, setting namespace to api_key by default")
user_attributes = {
"namespaces": [api_key],
}
scope["user_attributes"] = user_attributes
logger.debug(f"Authentication successful: {len(user_attributes)} attributes")
except Exception:
logger.exception("Error parsing authentication response")
return await self._send_auth_error(send, "Invalid authentication response format")
except httpx.TimeoutException:
logger.exception("Authentication request timed out")
return await self._send_auth_error(send, "Authentication service timeout")
except Exception:
logger.exception("Error during authentication")
return await self._send_auth_error(send, "Authentication service error")
return await self.app(scope, receive, send)
async def _send_auth_error(self, send, message):
await send(
{
"type": "http.response.start",
"status": 401,
"headers": [[b"content-type", b"application/json"]],
}
)
error_msg = json.dumps({"error": {"message": message}}).encode()
await send({"type": "http.response.body", "body": error_msg})

View file

@ -6,11 +6,9 @@
import argparse
import asyncio
import functools
import inspect
import json
import os
import signal
import sys
import traceback
import warnings
@ -27,10 +25,10 @@ from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, ValidationError
from typing_extensions import Annotated
from llama_stack.distribution.datatypes import StackRunConfig
from llama_stack.distribution.datatypes import LoggingConfig, StackRunConfig
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.distribution.request_headers import (
preserve_headers_context_async_generator,
PROVIDER_DATA_VAR,
request_provider_data_context,
)
from llama_stack.distribution.resolver import InvalidProviderError
@ -40,6 +38,7 @@ from llama_stack.distribution.stack import (
replace_env_vars,
validate_env_pair,
)
from llama_stack.distribution.utils.context import preserve_contexts_async_generator
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
@ -47,11 +46,13 @@ from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
TelemetryAdapter,
)
from llama_stack.providers.utils.telemetry.tracing import (
CURRENT_TRACE_CONTEXT,
end_trace,
setup_logger,
start_trace,
)
from .auth import AuthenticationMiddleware
from .endpoints import get_all_api_endpoints
REPO_ROOT = Path(__file__).parent.parent.parent.parent
@ -118,69 +119,24 @@ def translate_exception(exc: Exception) -> Union[HTTPException, RequestValidatio
)
def handle_signal(app, signum, _) -> None:
async def shutdown(app):
"""Initiate a graceful shutdown of the application.
Handled by the lifespan context manager. The shutdown process involves
shutting down all implementations registered in the application.
"""
Handle incoming signals and initiate a graceful shutdown of the application.
This function is intended to be used as a signal handler for various signals
(e.g., SIGINT, SIGTERM). Upon receiving a signal, it will print a message
indicating the received signal and initiate a shutdown process.
Args:
app: The application instance containing implementations to be shut down.
signum (int): The signal number received.
frame: The current stack frame (not used in this function).
The shutdown process involves:
- Shutting down all implementations registered in the application.
- Gathering all running asyncio tasks.
- Cancelling all gathered tasks.
- Waiting for all tasks to finish.
- Stopping the event loop.
Note:
This function schedules the shutdown process as an asyncio task and does
not block the current execution.
"""
signame = signal.Signals(signum).name
logger.info(f"Received signal {signame} ({signum}). Exiting gracefully...")
async def shutdown():
for impl in app.__llama_stack_impls__.values():
impl_name = impl.__class__.__name__
logger.info("Shutting down %s", impl_name)
try:
# Gracefully shut down implementations
for impl in app.__llama_stack_impls__.values():
impl_name = impl.__class__.__name__
logger.info("Shutting down %s", impl_name)
try:
if hasattr(impl, "shutdown"):
await asyncio.wait_for(impl.shutdown(), timeout=5)
else:
logger.warning("No shutdown method for %s", impl_name)
except asyncio.TimeoutError:
logger.exception("Shutdown timeout for %s ", impl_name, exc_info=True)
except Exception as e:
logger.exception("Failed to shutdown %s: %s", impl_name, {e})
# Gather all running tasks
loop = asyncio.get_running_loop()
tasks = [task for task in asyncio.all_tasks(loop) if task is not asyncio.current_task()]
# Cancel all tasks
for task in tasks:
task.cancel()
# Wait for all tasks to finish
try:
await asyncio.wait_for(asyncio.gather(*tasks, return_exceptions=True), timeout=10)
except asyncio.TimeoutError:
logger.exception("Timeout while waiting for tasks to finish")
except asyncio.CancelledError:
pass
finally:
loop.stop()
loop = asyncio.get_running_loop()
loop.create_task(shutdown())
if hasattr(impl, "shutdown"):
await asyncio.wait_for(impl.shutdown(), timeout=5)
else:
logger.warning("No shutdown method for %s", impl_name)
except asyncio.TimeoutError:
logger.exception("Shutdown timeout for %s ", impl_name, exc_info=True)
except (Exception, asyncio.CancelledError) as e:
logger.exception("Failed to shutdown %s: %s", impl_name, {e})
@asynccontextmanager
@ -188,8 +144,7 @@ async def lifespan(app: FastAPI):
logger.info("Starting up")
yield
logger.info("Shutting down")
for impl in app.__llama_stack_impls__.values():
await impl.shutdown()
await shutdown(app)
def is_streaming_request(func_name: str, request: Request, **kwargs):
@ -224,19 +179,24 @@ async def sse_generator(event_gen):
def create_dynamic_typed_route(func: Any, method: str, route: str):
async def endpoint(request: Request, **kwargs):
# Use context manager for request provider data
with request_provider_data_context(request.headers):
# Get auth attributes from the request scope
user_attributes = request.scope.get("user_attributes", {})
# Use context manager with both provider data and auth attributes
with request_provider_data_context(request.headers, user_attributes):
is_streaming = is_streaming_request(func.__name__, request, **kwargs)
try:
if is_streaming:
gen = preserve_headers_context_async_generator(sse_generator(func(**kwargs)))
gen = preserve_contexts_async_generator(
sse_generator(func(**kwargs)), [CURRENT_TRACE_CONTEXT, PROVIDER_DATA_VAR]
)
return StreamingResponse(gen, media_type="text/event-stream")
else:
value = func(**kwargs)
return await maybe_await(value)
except Exception as e:
logger.exception("Error executing endpoint %s", method, route)
logger.exception(f"Error executing endpoint {route=} {method=}")
raise translate_exception(e) from e
sig = inspect.signature(func)
@ -266,7 +226,7 @@ class TracingMiddleware:
self.app = app
async def __call__(self, scope, receive, send):
path = scope["path"]
path = scope.get("path", "")
await start_trace(path, {"__location__": "server"})
try:
return await self.app(scope, receive, send)
@ -350,34 +310,42 @@ def main():
args = parser.parse_args()
if args.env:
for env_pair in args.env:
try:
key, value = validate_env_pair(env_pair)
logger.info(f"Setting CLI environment variable {key} => {value}")
os.environ[key] = value
except ValueError as e:
logger.error(f"Error: {str(e)}")
sys.exit(1)
log_line = ""
if args.yaml_config:
# if the user provided a config file, use it, even if template was specified
config_file = Path(args.yaml_config)
if not config_file.exists():
raise ValueError(f"Config file {config_file} does not exist")
logger.info(f"Using config file: {config_file}")
log_line = f"Using config file: {config_file}"
elif args.template:
config_file = Path(REPO_ROOT) / "llama_stack" / "templates" / args.template / "run.yaml"
if not config_file.exists():
raise ValueError(f"Template {args.template} does not exist")
logger.info(f"Using template {args.template} config file: {config_file}")
log_line = f"Using template {args.template} config file: {config_file}"
else:
raise ValueError("Either --yaml-config or --template must be provided")
logger_config = None
with open(config_file, "r") as fp:
config = replace_env_vars(yaml.safe_load(fp))
config_contents = yaml.safe_load(fp)
if isinstance(config_contents, dict) and (cfg := config_contents.get("logging_config")):
logger_config = LoggingConfig(**cfg)
logger = get_logger(name=__name__, category="server", config=logger_config)
if args.env:
for env_pair in args.env:
try:
key, value = validate_env_pair(env_pair)
logger.info(f"Setting CLI environment variable {key} => {value}")
os.environ[key] = value
except ValueError as e:
logger.error(f"Error: {str(e)}")
sys.exit(1)
config = replace_env_vars(config_contents)
config = StackRunConfig(**config)
# now that the logger is initialized, print the line about which type of config we are using.
logger.info(log_line)
logger.info("Run configuration:")
safe_config = redact_sensitive_fields(config.model_dump())
logger.info(yaml.dump(safe_config, indent=2))
@ -387,6 +355,11 @@ def main():
if not os.environ.get("LLAMA_STACK_DISABLE_VERSION_CHECK"):
app.add_middleware(ClientVersionMiddleware)
# Add authentication middleware if configured
if config.server.auth and config.server.auth.endpoint:
logger.info(f"Enabling authentication with endpoint: {config.server.auth.endpoint}")
app.add_middleware(AuthenticationMiddleware, auth_endpoint=config.server.auth.endpoint)
try:
impls = asyncio.run(construct_stack(config))
except InvalidProviderError as e:
@ -396,7 +369,7 @@ def main():
if Api.telemetry in impls:
setup_logger(impls[Api.telemetry])
else:
setup_logger(TelemetryAdapter(TelemetryConfig()))
setup_logger(TelemetryAdapter(TelemetryConfig(), {}))
all_endpoints = get_all_api_endpoints()
@ -412,6 +385,7 @@ def main():
apis_to_serve.add(inf.routing_table_api.value)
apis_to_serve.add("inspect")
apis_to_serve.add("providers")
for api_str in apis_to_serve:
api = Api(api_str)
@ -439,8 +413,6 @@ def main():
app.exception_handler(RequestValidationError)(global_exception_handler)
app.exception_handler(Exception)(global_exception_handler)
signal.signal(signal.SIGINT, functools.partial(handle_signal, app))
signal.signal(signal.SIGTERM, functools.partial(handle_signal, app))
app.__llama_stack_impls__ = impls
@ -471,6 +443,8 @@ def main():
"app": app,
"host": listen_host,
"port": port,
"lifespan": "on",
"log_level": logger.getEffectiveLevel(),
}
if ssl_config:
uvicorn_config.update(ssl_config)

View file

@ -23,6 +23,7 @@ from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.models import Models
from llama_stack.apis.post_training import PostTraining
from llama_stack.apis.providers import Providers
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
@ -44,6 +45,7 @@ logger = get_logger(name=__name__, category="core")
class LlamaStack(
Providers,
VectorDBs,
Inference,
BatchInference,

View file

@ -0,0 +1,11 @@
# More info on playground configuration can be found here:
# https://llama-stack.readthedocs.io/en/latest/playground
FROM python:3.9-slim
WORKDIR /app
COPY . /app/
RUN /usr/local/bin/python -m pip install --upgrade pip && \
/usr/local/bin/pip3 install -r requirements.txt
EXPOSE 8501
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]

View file

@ -40,3 +40,13 @@ cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py
```
## Environment Variables
| Environment Variable | Description | Default Value |
|----------------------------|------------------------------------|---------------------------|
| LLAMA_STACK_ENDPOINT | The endpoint for the Llama Stack | http://localhost:8321 |
| FIREWORKS_API_KEY | API key for Fireworks provider | (empty string) |
| TOGETHER_API_KEY | API key for Together provider | (empty string) |
| SAMBANOVA_API_KEY | API key for SambaNova provider | (empty string) |
| OPENAI_API_KEY | API key for OpenAI provider | (empty string) |

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def datasets():

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def benchmarks():

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def models():

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def providers():

View file

@ -4,14 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from page.distribution.benchmarks import benchmarks
from page.distribution.datasets import datasets
from page.distribution.models import models
from page.distribution.scoring_functions import scoring_functions
from page.distribution.shields import shields
from page.distribution.vector_dbs import vector_dbs
from streamlit_option_menu import option_menu
from llama_stack.distribution.ui.page.distribution.datasets import datasets
from llama_stack.distribution.ui.page.distribution.eval_tasks import benchmarks
from llama_stack.distribution.ui.page.distribution.models import models
from llama_stack.distribution.ui.page.distribution.scoring_functions import scoring_functions
from llama_stack.distribution.ui.page.distribution.shields import shields
from llama_stack.distribution.ui.page.distribution.vector_dbs import vector_dbs
def resources_page():
options = [

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def scoring_functions():

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def shields():

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def vector_dbs():

View file

@ -8,8 +8,9 @@ import json
import pandas as pd
import streamlit as st
from modules.api import llama_stack_api
from modules.utils import process_dataset
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.utils import process_dataset
def application_evaluation_page():

View file

@ -8,7 +8,8 @@ import json
import pandas as pd
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
def select_benchmark_1():
@ -166,11 +167,10 @@ def run_evaluation_3():
eval_candidate = st.session_state["eval_candidate"]
dataset_id = benchmarks[selected_benchmark].dataset_id
rows = llama_stack_api.client.datasetio.get_rows_paginated(
rows = llama_stack_api.client.datasets.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
)
total_rows = len(rows.rows)
total_rows = len(rows.data)
# Add number of examples control
num_rows = st.number_input(
"Number of Examples to Evaluate",
@ -195,7 +195,7 @@ def run_evaluation_3():
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = rows.rows
rows = rows.data
if num_rows < total_rows:
rows = rows[:num_rows]

View file

@ -5,7 +5,8 @@
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import llama_stack_api
# Sidebar configurations
with st.sidebar:

Some files were not shown because too many files have changed in this diff Show more