Merge branch 'main' into add-watsonx-inference-adapter

This commit is contained in:
Sajikumar JS 2025-03-20 10:18:05 +05:30
commit 28e6c8478b
308 changed files with 33749 additions and 5102 deletions

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import MetaReferenceAgentsImplConfig
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: Dict[Api, ProviderSpec]):
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: Dict[Api, Any]):
from .agents import MetaReferenceAgentsImpl
impl = MetaReferenceAgentsImpl(

View file

@ -11,8 +11,8 @@ import re
import secrets
import string
import uuid
from datetime import datetime
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
from datetime import datetime, timezone
from typing import AsyncGenerator, List, Optional, Union
from urllib.parse import urlparse
import httpx
@ -153,7 +153,6 @@ class ChatAgent(ShieldRunnerMixin):
messages.append(
ToolResponseMessage(
call_id=response.call_id,
tool_name=response.tool_name,
content=response.content,
)
)
@ -181,7 +180,8 @@ class ChatAgent(ShieldRunnerMixin):
return messages
async def create_and_execute_turn(self, request: AgentTurnCreateRequest) -> AsyncGenerator:
with tracing.span("create_and_execute_turn") as span:
await self._initialize_tools(request.toolgroups)
async with tracing.span("create_and_execute_turn") as span:
span.set_attribute("session_id", request.session_id)
span.set_attribute("agent_id", self.agent_id)
span.set_attribute("request", request.model_dump_json())
@ -191,7 +191,8 @@ class ChatAgent(ShieldRunnerMixin):
yield chunk
async def resume_turn(self, request: AgentTurnResumeRequest) -> AsyncGenerator:
with tracing.span("resume_turn") as span:
await self._initialize_tools()
async with tracing.span("resume_turn") as span:
span.set_attribute("agent_id", self.agent_id)
span.set_attribute("session_id", request.session_id)
span.set_attribute("turn_id", request.turn_id)
@ -218,18 +219,9 @@ class ChatAgent(ShieldRunnerMixin):
steps = []
messages = await self.get_messages_from_turns(turns)
if is_resume:
if isinstance(request.tool_responses[0], ToolResponseMessage):
tool_response_messages = request.tool_responses
tool_responses = [
ToolResponse(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
for x in request.tool_responses
]
else:
tool_response_messages = [
ToolResponseMessage(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
for x in request.tool_responses
]
tool_responses = request.tool_responses
tool_response_messages = [
ToolResponseMessage(call_id=x.call_id, content=x.content) for x in request.tool_responses
]
messages.extend(tool_response_messages)
last_turn = turns[-1]
last_turn_messages = self.turn_to_messages(last_turn)
@ -247,12 +239,12 @@ class ChatAgent(ShieldRunnerMixin):
in_progress_tool_call_step = await self.storage.get_in_progress_tool_call_step(
request.session_id, request.turn_id
)
now = datetime.now().astimezone().isoformat()
now = datetime.now(timezone.utc).isoformat()
tool_execution_step = ToolExecutionStep(
step_id=(in_progress_tool_call_step.step_id if in_progress_tool_call_step else str(uuid.uuid4())),
turn_id=request.turn_id,
tool_calls=(in_progress_tool_call_step.tool_calls if in_progress_tool_call_step else []),
tool_responses=tool_responses,
tool_responses=request.tool_responses,
completed_at=now,
started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now),
)
@ -272,7 +264,7 @@ class ChatAgent(ShieldRunnerMixin):
start_time = last_turn.started_at
else:
messages.extend(request.messages)
start_time = datetime.now().astimezone().isoformat()
start_time = datetime.now(timezone.utc).isoformat()
input_messages = request.messages
output_message = None
@ -283,7 +275,6 @@ class ChatAgent(ShieldRunnerMixin):
sampling_params=self.agent_config.sampling_params,
stream=request.stream,
documents=request.documents if not is_resume else None,
toolgroups_for_turn=request.toolgroups if not is_resume else None,
):
if isinstance(chunk, CompletionMessage):
output_message = chunk
@ -304,7 +295,7 @@ class ChatAgent(ShieldRunnerMixin):
input_messages=input_messages,
output_message=output_message,
started_at=start_time,
completed_at=datetime.now().astimezone().isoformat(),
completed_at=datetime.now(timezone.utc).isoformat(),
steps=steps,
)
await self.storage.add_turn_to_session(request.session_id, turn)
@ -335,7 +326,6 @@ class ChatAgent(ShieldRunnerMixin):
sampling_params: SamplingParams,
stream: bool = False,
documents: Optional[List[Document]] = None,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
) -> AsyncGenerator:
# Doing async generators makes downstream code much simpler and everything amenable to
# streaming. However, it also makes things complicated here because AsyncGenerators cannot
@ -358,7 +348,6 @@ class ChatAgent(ShieldRunnerMixin):
sampling_params,
stream,
documents,
toolgroups_for_turn,
):
if isinstance(res, bool):
return
@ -390,14 +379,14 @@ class ChatAgent(ShieldRunnerMixin):
shields: List[str],
touchpoint: str,
) -> AsyncGenerator:
with tracing.span("run_shields") as span:
async with tracing.span("run_shields") as span:
span.set_attribute("input", [m.model_dump_json() for m in messages])
if len(shields) == 0:
span.set_attribute("output", "no shields")
return
step_id = str(uuid.uuid4())
shield_call_start_time = datetime.now().astimezone().isoformat()
shield_call_start_time = datetime.now(timezone.utc).isoformat()
try:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
@ -421,7 +410,7 @@ class ChatAgent(ShieldRunnerMixin):
turn_id=turn_id,
violation=e.violation,
started_at=shield_call_start_time,
completed_at=datetime.now().astimezone().isoformat(),
completed_at=datetime.now(timezone.utc).isoformat(),
),
)
)
@ -444,7 +433,7 @@ class ChatAgent(ShieldRunnerMixin):
turn_id=turn_id,
violation=None,
started_at=shield_call_start_time,
completed_at=datetime.now().astimezone().isoformat(),
completed_at=datetime.now(timezone.utc).isoformat(),
),
)
)
@ -459,30 +448,19 @@ class ChatAgent(ShieldRunnerMixin):
sampling_params: SamplingParams,
stream: bool = False,
documents: Optional[List[Document]] = None,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
) -> AsyncGenerator:
# TODO: simplify all of this code, it can be simpler
toolgroup_args = {}
toolgroups = set()
for toolgroup in self.agent_config.toolgroups + (toolgroups_for_turn or []):
if isinstance(toolgroup, AgentToolGroupWithArgs):
tool_group_name, tool_name = self._parse_toolgroup_name(toolgroup.name)
toolgroups.add(tool_group_name)
toolgroup_args[tool_group_name] = toolgroup.args
else:
toolgroups.add(toolgroup)
tool_defs, tool_to_group = await self._get_tool_defs(toolgroups_for_turn)
if documents:
await self.handle_documents(session_id, documents, input_messages, tool_defs)
await self.handle_documents(session_id, documents, input_messages)
session_info = await self.storage.get_session_info(session_id)
# if the session has a memory bank id, let the memory tool use it
if session_info and session_info.vector_db_id:
if RAG_TOOL_GROUP not in toolgroup_args:
toolgroup_args[RAG_TOOL_GROUP] = {"vector_db_ids": [session_info.vector_db_id]}
else:
toolgroup_args[RAG_TOOL_GROUP]["vector_db_ids"].append(session_info.vector_db_id)
for tool_name in self.tool_name_to_args.keys():
if tool_name == MEMORY_QUERY_TOOL:
if "vector_db_ids" not in self.tool_name_to_args[tool_name]:
self.tool_name_to_args[tool_name]["vector_db_ids"] = [session_info.vector_db_id]
else:
self.tool_name_to_args[tool_name]["vector_db_ids"].append(session_info.vector_db_id)
output_attachments = []
@ -494,7 +472,7 @@ class ChatAgent(ShieldRunnerMixin):
client_tools[tool.name] = tool
while True:
step_id = str(uuid.uuid4())
inference_start_time = datetime.now().astimezone().isoformat()
inference_start_time = datetime.now(timezone.utc).isoformat()
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
@ -508,11 +486,11 @@ class ChatAgent(ShieldRunnerMixin):
content = ""
stop_reason = None
with tracing.span("inference") as span:
async with tracing.span("inference") as span:
async for chunk in await self.inference_api.chat_completion(
self.agent_config.model,
input_messages,
tools=tool_defs,
tools=self.tool_defs,
tool_prompt_format=self.agent_config.tool_config.tool_prompt_format,
response_format=self.agent_config.response_format,
stream=True,
@ -604,7 +582,7 @@ class ChatAgent(ShieldRunnerMixin):
turn_id=turn_id,
model_response=copy.deepcopy(message),
started_at=inference_start_time,
completed_at=datetime.now().astimezone().isoformat(),
completed_at=datetime.now(timezone.utc).isoformat(),
),
)
)
@ -636,125 +614,143 @@ class ChatAgent(ShieldRunnerMixin):
logger.debug(f"completion message with EOM (iter: {n_iter}): {str(message)}")
input_messages = input_messages + [message]
else:
logger.debug(f"completion message (iter: {n_iter}) from the model: {str(message)}")
# 1. Start the tool execution step and progress
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
)
)
)
tool_call = message.tool_calls[0]
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
tool_call=tool_call,
delta=ToolCallDelta(
parse_status=ToolCallParseStatus.in_progress,
tool_call=tool_call,
),
)
)
)
input_messages = input_messages + [message]
# If tool is a client tool, yield CompletionMessage and return
if tool_call.tool_name in client_tools:
# NOTE: mark end_of_message to indicate to client that it may
# call the tool and continue the conversation with the tool's response.
message.stop_reason = StopReason.end_of_message
# Process tool calls in the message
client_tool_calls = []
non_client_tool_calls = []
# Separate client and non-client tool calls
for tool_call in message.tool_calls:
if tool_call.tool_name in client_tools:
client_tool_calls.append(tool_call)
else:
non_client_tool_calls.append(tool_call)
# Process non-client tool calls first
for tool_call in non_client_tool_calls:
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
)
)
)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
delta=ToolCallDelta(
parse_status=ToolCallParseStatus.in_progress,
tool_call=tool_call,
),
)
)
)
# Execute the tool call
async with tracing.span(
"tool_execution",
{
"tool_name": tool_call.tool_name,
"input": message.model_dump_json(),
},
) as span:
tool_execution_start_time = datetime.now(timezone.utc).isoformat()
tool_result = await self.execute_tool_call_maybe(
session_id,
tool_call,
)
if tool_result.content is None:
raise ValueError(
f"Tool call result (id: {tool_call.call_id}, name: {tool_call.tool_name}) does not have any content"
)
result_message = ToolResponseMessage(
call_id=tool_call.call_id,
content=tool_result.content,
)
span.set_attribute("output", result_message.model_dump_json())
# Store tool execution step
tool_execution_step = ToolExecutionStep(
step_id=step_id,
turn_id=turn_id,
tool_calls=[tool_call],
tool_responses=[
ToolResponse(
call_id=tool_call.call_id,
tool_name=tool_call.tool_name,
content=tool_result.content,
metadata=tool_result.metadata,
)
],
started_at=tool_execution_start_time,
completed_at=datetime.now(timezone.utc).isoformat(),
)
# Yield the step completion event
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
step_details=tool_execution_step,
)
)
)
# Add the result message to input_messages for the next iteration
input_messages.append(result_message)
# TODO: add tool-input touchpoint and a "start" event for this step also
# but that needs a lot more refactoring of Tool code potentially
if (type(result_message.content) is str) and (
out_attachment := _interpret_content_as_attachment(result_message.content)
):
# NOTE: when we push this message back to the model, the model may ignore the
# attached file path etc. since the model is trained to only provide a user message
# with the summary. We keep all generated attachments and then attach them to final message
output_attachments.append(out_attachment)
# If there are client tool calls, yield a message with only those tool calls
if client_tool_calls:
await self.storage.set_in_progress_tool_call_step(
session_id,
turn_id,
ToolExecutionStep(
step_id=step_id,
turn_id=turn_id,
tool_calls=[tool_call],
tool_calls=client_tool_calls,
tool_responses=[],
started_at=datetime.now().astimezone().isoformat(),
started_at=datetime.now(timezone.utc).isoformat(),
),
)
yield message
# Create a copy of the message with only client tool calls
client_message = message.model_copy(deep=True)
client_message.tool_calls = client_tool_calls
# NOTE: mark end_of_message to indicate to client that it may
# call the tool and continue the conversation with the tool's response.
client_message.stop_reason = StopReason.end_of_message
# Yield the message with client tool calls
yield client_message
return
# If tool is a builtin server tool, execute it
tool_name = tool_call.tool_name
if isinstance(tool_name, BuiltinTool):
tool_name = tool_name.value
with tracing.span(
"tool_execution",
{
"tool_name": tool_name,
"input": message.model_dump_json(),
},
) as span:
tool_execution_start_time = datetime.now().astimezone().isoformat()
tool_call = message.tool_calls[0]
tool_result = await execute_tool_call_maybe(
self.tool_runtime_api,
session_id,
tool_call,
toolgroup_args,
tool_to_group,
)
if tool_result.content is None:
raise ValueError(
f"Tool call result (id: {tool_call.call_id}, name: {tool_call.tool_name}) does not have any content"
)
result_messages = [
ToolResponseMessage(
call_id=tool_call.call_id,
tool_name=tool_call.tool_name,
content=tool_result.content,
)
]
assert len(result_messages) == 1, "Currently not supporting multiple messages"
result_message = result_messages[0]
span.set_attribute("output", result_message.model_dump_json())
async def _initialize_tools(
self,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
) -> None:
toolgroup_to_args = {}
for toolgroup in (self.agent_config.toolgroups or []) + (toolgroups_for_turn or []):
if isinstance(toolgroup, AgentToolGroupWithArgs):
tool_group_name, _ = self._parse_toolgroup_name(toolgroup.name)
toolgroup_to_args[tool_group_name] = toolgroup.args
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
step_details=ToolExecutionStep(
step_id=step_id,
turn_id=turn_id,
tool_calls=[tool_call],
tool_responses=[
ToolResponse(
call_id=result_message.call_id,
tool_name=result_message.tool_name,
content=result_message.content,
metadata=tool_result.metadata,
)
],
started_at=tool_execution_start_time,
completed_at=datetime.now().astimezone().isoformat(),
),
)
)
)
# TODO: add tool-input touchpoint and a "start" event for this step also
# but that needs a lot more refactoring of Tool code potentially
if (type(result_message.content) is str) and (
out_attachment := _interpret_content_as_attachment(result_message.content)
):
# NOTE: when we push this message back to the model, the model may ignore the
# attached file path etc. since the model is trained to only provide a user message
# with the summary. We keep all generated attachments and then attach them to final message
output_attachments.append(out_attachment)
input_messages = input_messages + [message, result_message]
async def _get_tool_defs(
self, toolgroups_for_turn: Optional[List[AgentToolGroup]] = None
) -> Tuple[List[ToolDefinition], Dict[str, str]]:
# Determine which tools to include
tool_groups_to_include = toolgroups_for_turn or self.agent_config.toolgroups or []
agent_config_toolgroups = []
@ -763,8 +759,10 @@ class ChatAgent(ShieldRunnerMixin):
if name not in agent_config_toolgroups:
agent_config_toolgroups.append(name)
toolgroup_to_args = toolgroup_to_args or {}
tool_name_to_def = {}
tool_to_group = {}
tool_name_to_args = {}
for tool_def in self.agent_config.client_tools:
if tool_name_to_def.get(tool_def.name, None):
@ -782,53 +780,38 @@ class ChatAgent(ShieldRunnerMixin):
for param in tool_def.parameters
},
)
tool_to_group[tool_def.name] = "__client_tools__"
for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups:
toolgroup_name, tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name)
toolgroup_name, input_tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name)
tools = await self.tool_groups_api.list_tools(toolgroup_id=toolgroup_name)
if not tools.data:
available_tool_groups = ", ".join(
[t.identifier for t in (await self.tool_groups_api.list_tool_groups()).data]
)
raise ValueError(f"Toolgroup {toolgroup_name} not found, available toolgroups: {available_tool_groups}")
if tool_name is not None and not any(tool.identifier == tool_name for tool in tools.data):
if input_tool_name is not None and not any(tool.identifier == input_tool_name for tool in tools.data):
raise ValueError(
f"Tool {tool_name} not found in toolgroup {toolgroup_name}. Available tools: {', '.join([tool.identifier for tool in tools.data])}"
f"Tool {input_tool_name} not found in toolgroup {toolgroup_name}. Available tools: {', '.join([tool.identifier for tool in tools.data])}"
)
for tool_def in tools.data:
if toolgroup_name.startswith("builtin") and toolgroup_name != RAG_TOOL_GROUP:
tool_name = tool_def.identifier
built_in_type = BuiltinTool.brave_search
if tool_name == "web_search":
built_in_type = BuiltinTool.brave_search
identifier: str | BuiltinTool | None = tool_def.identifier
if identifier == "web_search":
identifier = BuiltinTool.brave_search
else:
built_in_type = BuiltinTool(tool_name)
identifier = BuiltinTool(identifier)
else:
# add if tool_name is unspecified or the tool_def identifier is the same as the tool_name
if input_tool_name in (None, tool_def.identifier):
identifier = tool_def.identifier
else:
identifier = None
if tool_name_to_def.get(built_in_type, None):
raise ValueError(f"Tool {built_in_type} already exists")
tool_name_to_def[built_in_type] = ToolDefinition(
tool_name=built_in_type,
description=tool_def.description,
parameters={
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
)
for param in tool_def.parameters
},
)
tool_to_group[built_in_type] = tool_def.toolgroup_id
continue
if tool_name_to_def.get(tool_def.identifier, None):
raise ValueError(f"Tool {tool_def.identifier} already exists")
if tool_name in (None, tool_def.identifier):
if tool_name_to_def.get(identifier, None):
raise ValueError(f"Tool {identifier} already exists")
if identifier:
tool_name_to_def[tool_def.identifier] = ToolDefinition(
tool_name=tool_def.identifier,
tool_name=identifier,
description=tool_def.description,
parameters={
param.name: ToolParamDefinition(
@ -840,9 +823,9 @@ class ChatAgent(ShieldRunnerMixin):
for param in tool_def.parameters
},
)
tool_to_group[tool_def.identifier] = tool_def.toolgroup_id
tool_name_to_args[tool_def.identifier] = toolgroup_to_args.get(toolgroup_name, {})
return list(tool_name_to_def.values()), tool_to_group
self.tool_defs, self.tool_name_to_args = list(tool_name_to_def.values()), tool_name_to_args
def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, Optional[str]]:
"""Parse a toolgroup name into its components.
@ -861,15 +844,46 @@ class ChatAgent(ShieldRunnerMixin):
tool_group, tool_name = split_names[0], None
return tool_group, tool_name
async def execute_tool_call_maybe(
self,
session_id: str,
tool_call: ToolCall,
) -> ToolInvocationResult:
tool_name = tool_call.tool_name
registered_tool_names = [tool_def.tool_name for tool_def in self.tool_defs]
if tool_name not in registered_tool_names:
raise ValueError(
f"Tool {tool_name} not found in provided tools, registered tools: {', '.join([str(x) for x in registered_tool_names])}"
)
if isinstance(tool_name, BuiltinTool):
if tool_name == BuiltinTool.brave_search:
tool_name_str = WEB_SEARCH_TOOL
else:
tool_name_str = tool_name.value
else:
tool_name_str = tool_name
logger.info(f"executing tool call: {tool_name_str} with args: {tool_call.arguments}")
result = await self.tool_runtime_api.invoke_tool(
tool_name=tool_name_str,
kwargs={
"session_id": session_id,
# get the arguments generated by the model and augment with toolgroup arg overrides for the agent
**tool_call.arguments,
**self.tool_name_to_args.get(tool_name_str, {}),
},
)
logger.debug(f"tool call {tool_name_str} completed with result: {result}")
return result
async def handle_documents(
self,
session_id: str,
documents: List[Document],
input_messages: List[Message],
tool_defs: Dict[str, ToolDefinition],
) -> None:
memory_tool = any(tool_def.tool_name == MEMORY_QUERY_TOOL for tool_def in tool_defs)
code_interpreter_tool = any(tool_def.tool_name == BuiltinTool.code_interpreter for tool_def in tool_defs)
memory_tool = any(tool_def.tool_name == MEMORY_QUERY_TOOL for tool_def in self.tool_defs)
code_interpreter_tool = any(tool_def.tool_name == BuiltinTool.code_interpreter for tool_def in self.tool_defs)
content_items = []
url_items = []
pattern = re.compile("^(https?://|file://|data:)")
@ -892,16 +906,14 @@ class ChatAgent(ShieldRunnerMixin):
if memory_tool and code_interpreter_tool:
# if both memory and code_interpreter are available, we download the URLs
# and attach the data to the last message.
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
await attachment_message(self.tempdir, url_items, input_messages[-1])
# Since memory is present, add all the data to the memory bank
await self.add_to_session_vector_db(session_id, documents)
elif code_interpreter_tool:
# if only code_interpreter is available, we download the URLs to a tempdir
# and attach the path to them as a message to inference with the
# assumption that the model invokes the code_interpreter tool with the path
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
await attachment_message(self.tempdir, url_items, input_messages[-1])
elif memory_tool:
# if only memory is available, we load the data from the URLs and content items to the memory bank
await self.add_to_session_vector_db(session_id, documents)
@ -968,8 +980,8 @@ async def load_data_from_urls(urls: List[URL]) -> List[str]:
return data
async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessage:
content = []
async def attachment_message(tempdir: str, urls: List[URL], message: UserMessage) -> None:
contents = []
for url in urls:
uri = url.uri
@ -989,48 +1001,19 @@ async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessa
else:
raise ValueError(f"Unsupported URL {url}")
content.append(
contents.append(
TextContentItem(
text=f'# User provided a file accessible to you at "{filepath}"\nYou can use code_interpreter to load and inspect it.'
)
)
return ToolResponseMessage(
call_id="",
tool_name=BuiltinTool.code_interpreter,
content=content,
)
async def execute_tool_call_maybe(
tool_runtime_api: ToolRuntime,
session_id: str,
tool_call: ToolCall,
toolgroup_args: Dict[str, Dict[str, Any]],
tool_to_group: Dict[str, str],
) -> ToolInvocationResult:
name = tool_call.tool_name
group_name = tool_to_group.get(name, None)
if group_name is None:
raise ValueError(f"Tool {name} not found in any tool group")
if isinstance(name, BuiltinTool):
if name == BuiltinTool.brave_search:
name = WEB_SEARCH_TOOL
if isinstance(message.content, list):
message.content.extend(contents)
else:
if isinstance(message.content, str):
message.content = [TextContentItem(text=message.content)] + contents
else:
name = name.value
logger.info(f"executing tool call: {name} with args: {tool_call.arguments}")
result = await tool_runtime_api.invoke_tool(
tool_name=name,
kwargs={
"session_id": session_id,
# get the arguments generated by the model and augment with toolgroup arg overrides for the agent
**tool_call.arguments,
**toolgroup_args.get(group_name, {}),
},
)
logger.info(f"tool call {name} completed with result: {result}")
return result
message.content = [message.content] + contents
def _interpret_content_as_attachment(

View file

@ -12,6 +12,7 @@ import uuid
from typing import AsyncGenerator, List, Optional, Union
from llama_stack.apis.agents import (
Agent,
AgentConfig,
AgentCreateResponse,
Agents,
@ -21,6 +22,8 @@ from llama_stack.apis.agents import (
AgentTurnCreateRequest,
AgentTurnResumeRequest,
Document,
ListAgentSessionsResponse,
ListAgentsResponse,
Session,
Turn,
)
@ -84,7 +87,7 @@ class MetaReferenceAgentsImpl(Agents):
agent_id=agent_id,
)
async def get_agent(self, agent_id: str) -> ChatAgent:
async def _get_agent_impl(self, agent_id: str) -> ChatAgent:
agent_config = await self.persistence_store.get(
key=f"agent:{agent_id}",
)
@ -120,7 +123,7 @@ class MetaReferenceAgentsImpl(Agents):
agent_id: str,
session_name: str,
) -> AgentSessionCreateResponse:
agent = await self.get_agent(agent_id)
agent = await self._get_agent_impl(agent_id)
session_id = await agent.create_session(session_name)
return AgentSessionCreateResponse(
@ -160,7 +163,7 @@ class MetaReferenceAgentsImpl(Agents):
self,
request: AgentTurnCreateRequest,
) -> AsyncGenerator:
agent = await self.get_agent(request.agent_id)
agent = await self._get_agent_impl(request.agent_id)
async for event in agent.create_and_execute_turn(request):
yield event
@ -169,7 +172,7 @@ class MetaReferenceAgentsImpl(Agents):
agent_id: str,
session_id: str,
turn_id: str,
tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
tool_responses: List[ToolResponse],
stream: Optional[bool] = False,
) -> AsyncGenerator:
request = AgentTurnResumeRequest(
@ -188,12 +191,12 @@ class MetaReferenceAgentsImpl(Agents):
self,
request: AgentTurnResumeRequest,
) -> AsyncGenerator:
agent = await self.get_agent(request.agent_id)
agent = await self._get_agent_impl(request.agent_id)
async for event in agent.resume_turn(request):
yield event
async def get_agents_turn(self, agent_id: str, session_id: str, turn_id: str) -> Turn:
agent = await self.get_agent(agent_id)
agent = await self._get_agent_impl(agent_id)
turn = await agent.storage.get_session_turn(session_id, turn_id)
return turn
@ -210,7 +213,7 @@ class MetaReferenceAgentsImpl(Agents):
session_id: str,
turn_ids: Optional[List[str]] = None,
) -> Session:
agent = await self.get_agent(agent_id)
agent = await self._get_agent_impl(agent_id)
session_info = await agent.storage.get_session_info(session_id)
if session_info is None:
raise ValueError(f"Session {session_id} not found")
@ -232,3 +235,15 @@ class MetaReferenceAgentsImpl(Agents):
async def shutdown(self) -> None:
pass
async def list_agents(self) -> ListAgentsResponse:
pass
async def get_agent(self, agent_id: str) -> Agent:
pass
async def list_agent_sessions(
self,
agent_id: str,
) -> ListAgentSessionsResponse:
pass

View file

@ -7,7 +7,7 @@
import json
import logging
import uuid
from datetime import datetime
from datetime import datetime, timezone
from typing import List, Optional
from pydantic import BaseModel
@ -36,7 +36,7 @@ class AgentPersistence:
session_info = AgentSessionInfo(
session_id=session_id,
session_name=name,
started_at=datetime.now(),
started_at=datetime.now(timezone.utc),
)
await self.kvstore.set(
key=f"session:{self.agent_id}:{session_id}",

View file

@ -10,6 +10,7 @@ from typing import List
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import Safety, SafetyViolation, ViolationLevel
from llama_stack.providers.utils.telemetry import tracing
log = logging.getLogger(__name__)
@ -32,15 +33,14 @@ class ShieldRunnerMixin:
self.output_shields = output_shields
async def run_multiple_shields(self, messages: List[Message], identifiers: List[str]) -> None:
responses = await asyncio.gather(
*[
self.safety_api.run_shield(
async def run_shield_with_span(identifier: str):
async with tracing.span(f"run_shield_{identifier}"):
return await self.safety_api.run_shield(
shield_id=identifier,
messages=messages,
)
for identifier in identifiers
]
)
responses = await asyncio.gather(*[run_shield_with_span(identifier) for identifier in identifiers])
for identifier, response in zip(identifiers, responses, strict=False):
if not response.violation:
continue

View file

@ -4,12 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from .config import LocalFSDatasetIOConfig
async def get_provider_impl(
config: LocalFSDatasetIOConfig,
_deps,
_deps: Dict[str, Any],
):
from .datasetio import LocalFSDatasetIOImpl

View file

@ -3,9 +3,10 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
@ -13,6 +14,13 @@ from llama_stack.providers.utils.kvstore.config import (
class LocalFSDatasetIOConfig(BaseModel):
kvstore: KVStoreConfig = SqliteKVStoreConfig(
db_path=(RUNTIME_BASE_DIR / "localfs_datasetio.db").as_posix()
) # Uses SQLite config specific to localfs storage
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="localfs_datasetio.db",
)
}

View file

@ -3,20 +3,14 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import os
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
from urllib.parse import urlparse
import pandas
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_uri
from llama_stack.providers.utils.kvstore import kvstore_impl
from .config import LocalFSDatasetIOConfig
@ -24,30 +18,7 @@ from .config import LocalFSDatasetIOConfig
DATASETS_PREFIX = "localfs_datasets:"
class BaseDataset(ABC):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
@abstractmethod
def __len__(self) -> int:
raise NotImplementedError()
@abstractmethod
def __getitem__(self, idx):
raise NotImplementedError()
@abstractmethod
def load(self):
raise NotImplementedError()
@dataclass
class DatasetInfo:
dataset_def: Dataset
dataset_impl: BaseDataset
class PandasDataframeDataset(BaseDataset):
class PandasDataframeDataset:
def __init__(self, dataset_def: Dataset, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.dataset_def = dataset_def
@ -64,23 +35,19 @@ class PandasDataframeDataset(BaseDataset):
else:
return self.df.iloc[idx].to_dict()
def _validate_dataset_schema(self, df) -> pandas.DataFrame:
# note that we will drop any columns in dataset that are not in the schema
df = df[self.dataset_def.dataset_schema.keys()]
# check all columns in dataset schema are present
assert len(df.columns) == len(self.dataset_def.dataset_schema)
# TODO: type checking against column types in dataset schema
return df
def load(self) -> None:
async def load(self) -> None:
if self.df is not None:
return
df = get_dataframe_from_url(self.dataset_def.url)
if df is None:
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
if self.dataset_def.source.type == "uri":
self.df = await get_dataframe_from_uri(self.dataset_def.source.uri)
elif self.dataset_def.source.type == "rows":
self.df = pandas.DataFrame(self.dataset_def.source.rows)
else:
raise ValueError(f"Unsupported dataset source type: {self.dataset_def.source.type}")
self.df = self._validate_dataset_schema(df)
if self.df is None:
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
@ -99,95 +66,55 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
for dataset in stored_datasets:
dataset = Dataset.model_validate_json(dataset)
dataset_impl = PandasDataframeDataset(dataset)
self.dataset_infos[dataset.identifier] = DatasetInfo(
dataset_def=dataset,
dataset_impl=dataset_impl,
)
self.dataset_infos[dataset.identifier] = dataset
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset: Dataset,
dataset_def: Dataset,
) -> None:
# Store in kvstore
key = f"{DATASETS_PREFIX}{dataset.identifier}"
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
await self.kvstore.set(
key=key,
value=dataset.json(),
)
dataset_impl = PandasDataframeDataset(dataset)
self.dataset_infos[dataset.identifier] = DatasetInfo(
dataset_def=dataset,
dataset_impl=dataset_impl,
value=dataset_def.model_dump_json(),
)
self.dataset_infos[dataset_def.identifier] = dataset_def
async def unregister_dataset(self, dataset_id: str) -> None:
key = f"{DATASETS_PREFIX}{dataset_id}"
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
dataset_info = self.dataset_infos.get(dataset_id)
dataset_info.dataset_impl.load()
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
dataset_def = self.dataset_infos[dataset_id]
dataset_impl = PandasDataframeDataset(dataset_def)
await dataset_impl.load()
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
start_index = start_index or 0
if page_token is None or len(page_token) == 0:
next_page_token = 0
if limit is None or limit == -1:
end = len(dataset_impl)
else:
next_page_token = int(page_token)
end = min(start_index + limit, len(dataset_impl))
start = next_page_token
if rows_in_page == -1:
end = len(dataset_info.dataset_impl)
else:
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
rows = dataset_impl[start_index:end]
rows = dataset_info.dataset_impl[start:end]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
return IterrowsResponse(
data=rows,
next_start_index=end if end < len(dataset_impl) else None,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_info = self.dataset_infos.get(dataset_id)
if dataset_info is None:
raise ValueError(f"Dataset with id {dataset_id} not found")
dataset_impl = dataset_info.dataset_impl
dataset_impl.load()
dataset_def = self.dataset_infos[dataset_id]
dataset_impl = PandasDataframeDataset(dataset_def)
await dataset_impl.load()
new_rows_df = pandas.DataFrame(rows)
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
dataset_impl.df = pandas.concat([dataset_impl.df, new_rows_df], ignore_index=True)
url = str(dataset_info.dataset_def.url)
parsed_url = urlparse(url)
if parsed_url.scheme == "file" or not parsed_url.scheme:
file_path = parsed_url.path
os.makedirs(os.path.dirname(file_path), exist_ok=True)
dataset_impl.df.to_csv(file_path, index=False)
elif parsed_url.scheme == "data":
# For data URLs, we need to update the base64-encoded content
if not parsed_url.path.startswith("text/csv;base64,"):
raise ValueError("Data URL must be a base64-encoded CSV")
csv_buffer = dataset_impl.df.to_csv(index=False)
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode("utf-8")
dataset_info.dataset_def.url = URL(uri=f"data:text/csv;base64,{base64_content}")
else:
raise ValueError(
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
)

View file

@ -3,16 +3,16 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import MetaReferenceEvalConfig
async def get_provider_impl(
config: MetaReferenceEvalConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .eval import MetaReferenceEvalImpl

View file

@ -3,9 +3,10 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
@ -13,6 +14,13 @@ from llama_stack.providers.utils.kvstore.config import (
class MetaReferenceEvalConfig(BaseModel):
kvstore: KVStoreConfig = SqliteKVStoreConfig(
db_path=(RUNTIME_BASE_DIR / "meta_reference_eval.db").as_posix()
) # Uses SQLite config specific to Meta Reference Eval storage
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="meta_reference_eval.db",
)
}

View file

@ -12,18 +12,13 @@ from llama_stack.apis.agents import Agents, StepType
from llama_stack.apis.benchmarks import Benchmark
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.inference import Inference, UserMessage
from llama_stack.apis.inference import Inference, SystemMessage, UserMessage
from llama_stack.apis.scoring import Scoring
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
MEMORY_QUERY_TOOL,
)
from llama_stack.providers.utils.common.data_schema_validator import (
ColumnName,
get_valid_schemas,
validate_dataset_schema,
)
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
from llama_stack.providers.utils.kvstore import kvstore_impl
from .....apis.common.job_types import Job
@ -88,15 +83,17 @@ class MetaReferenceEvalImpl(
task_def = self.benchmarks[benchmark_id]
dataset_id = task_def.dataset_id
scoring_functions = task_def.scoring_functions
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value))
all_rows = await self.datasetio_api.get_rows_paginated(
# TODO (xiyan): validate dataset schema
# dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
limit=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
)
res = await self.evaluate_rows(
benchmark_id=benchmark_id,
input_rows=all_rows.rows,
input_rows=all_rows.data,
scoring_functions=scoring_functions,
benchmark_config=benchmark_config,
)
@ -118,7 +115,7 @@ class MetaReferenceEvalImpl(
for i, x in tqdm(enumerate(input_rows)):
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
input_messages = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [UserMessage(**x) for x in input_messages]
input_messages = [UserMessage(**x) for x in input_messages if x["role"] == "user"]
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
@ -168,10 +165,11 @@ class MetaReferenceEvalImpl(
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
elif ColumnName.chat_completion_input.value in x:
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [UserMessage(**x) for x in chat_completion_input_json]
input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"]
messages = []
if candidate.system_message:
messages.append(candidate.system_message)
messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"]
messages += input_messages
response = await self.inference_api.chat_completion(
model_id=candidate.model,

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Union
from typing import Any, Dict, Union
from .config import MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
async def get_provider_impl(
config: Union[MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig],
_deps,
_deps: Dict[str, Any],
):
from .inference import MetaReferenceInferenceImpl

View file

@ -10,6 +10,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import copy
import json
import logging
import multiprocessing
@ -213,7 +214,7 @@ def maybe_parse_message(maybe_json: Optional[str]) -> Optional[ProcessingMessage
def parse_message(json_str: str) -> ProcessingMessage:
data = json.loads(json_str)
return ProcessingMessageWrapper(**data).payload
return copy.deepcopy(ProcessingMessageWrapper(**data).payload)
def worker_process_entrypoint(

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from llama_stack.providers.inline.inference.sentence_transformers.config import (
SentenceTransformersInferenceConfig,
)
@ -11,7 +13,7 @@ from llama_stack.providers.inline.inference.sentence_transformers.config import
async def get_provider_impl(
config: SentenceTransformersInferenceConfig,
_deps,
_deps: Dict[str, Any],
):
from .sentence_transformers import SentenceTransformersInferenceImpl

View file

@ -4,12 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from typing import Any, Dict
from .config import VLLMConfig
async def get_provider_impl(config: VLLMConfig, _deps) -> Any:
async def get_provider_impl(config: VLLMConfig, _deps: Dict[str, Any]):
from .vllm import VLLMInferenceImpl
impl = VLLMInferenceImpl(config)

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
@ -40,7 +42,7 @@ class VLLMConfig(BaseModel):
)
@classmethod
def sample_run_config(cls):
def sample_run_config(cls, **kwargs: Any) -> Dict[str, Any]:
return {
"tensor_parallel_size": "${env.TENSOR_PARALLEL_SIZE:1}",
"max_tokens": "${env.MAX_TOKENS:4096}",

View file

@ -582,6 +582,7 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
tool_name=t.function.name,
# vLLM function args come back as a string. Llama Stack expects JSON.
arguments=json.loads(t.function.arguments),
arguments_json=t.function.arguments,
)
for t in vllm_message.tool_calls
],

View file

@ -9,6 +9,9 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.type_system import (
ChatCompletionInputType,
DialogType,
@ -20,7 +23,7 @@ from llama_stack.providers.utils.common.data_schema_validator import (
validate_dataset_schema,
)
EXPECTED_DATASET_SCHEMA = {
EXPECTED_DATASET_SCHEMA: dict[str, list[dict[str, Any]]] = {
"instruct": [
{
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
@ -41,6 +44,9 @@ async def validate_input_dataset_schema(
dataset_type: str,
) -> None:
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
if not dataset_def:
raise ValueError(f"Dataset {dataset_id} does not exist.")
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")

View file

@ -4,9 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import TorchtunePostTrainingConfig
@ -15,7 +15,7 @@ from .config import TorchtunePostTrainingConfig
async def get_provider_impl(
config: TorchtunePostTrainingConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .post_training import TorchtunePostTrainingImpl

View file

@ -37,7 +37,7 @@ class TorchtuneCheckpointer:
checkpoint_files: List[str],
output_dir: str,
model_type: str,
) -> None:
):
# Fail fast if ``checkpoint_files`` is invalid
# TODO: support loading more than one file
if len(checkpoint_files) != 1:
@ -58,7 +58,7 @@ class TorchtuneCheckpointer:
"""
Load Meta checkpoint from file. Currently only loading from a single file is supported.
"""
state_dict: Dict[str:Any] = {}
state_dict: Dict[str, Any] = {}
model_state_dict = safe_torch_load(self._checkpoint_path)
if self._model_type == ModelType.LLAMA3_VISION:
from torchtune.models.llama3_2_vision._convert_weights import (
@ -85,10 +85,10 @@ class TorchtuneCheckpointer:
state_dict: Dict[str, Any],
epoch: int,
adapter_only: bool = False,
checkpoint_format: str = "meta",
checkpoint_format: str | None = None,
) -> str:
model_file_path = Path(self._output_dir) / f"{self._model_id}-{self._training_algorithm}-{epoch}"
if checkpoint_format == "meta":
if checkpoint_format == "meta" or checkpoint_format is None:
self._save_meta_format_checkpoint(model_file_path, state_dict, adapter_only)
elif checkpoint_format == "huggingface":
# Note: for saving hugging face format checkpoints, we only suppport saving adapter weights now

View file

@ -10,7 +10,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Callable, Dict
from typing import Callable, Dict
import torch
from pydantic import BaseModel
@ -25,10 +25,13 @@ from llama_stack.apis.post_training import DatasetFormat
from llama_stack.models.llama.datatypes import Model
from llama_stack.models.llama.sku_list import resolve_model
BuildLoraModelCallable = Callable[..., torch.nn.Module]
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
class ModelConfig(BaseModel):
model_definition: Any
tokenizer_type: Any
model_definition: BuildLoraModelCallable
tokenizer_type: BuildTokenizerCallable
checkpoint_type: str
@ -51,10 +54,6 @@ DATA_FORMATS: Dict[str, Transform] = {
}
BuildLoraModelCallable = Callable[..., torch.nn.Module]
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
def _validate_model_id(model_id: str) -> Model:
model = resolve_model(model_id)
if model is None or model.core_model_id.value not in MODEL_CONFIGS:

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Literal, Optional
from typing import Any, Dict, Literal, Optional
from pydantic import BaseModel
@ -12,3 +12,9 @@ from pydantic import BaseModel
class TorchtunePostTrainingConfig(BaseModel):
torch_seed: Optional[int] = None
checkpoint_format: Optional[Literal["meta", "huggingface"]] = "meta"
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"checkpoint_format": "meta",
}

View file

@ -55,7 +55,7 @@ class SFTDataset(Dataset):
if "messages" in transformed_sample:
validate_messages(transformed_sample["messages"])
tokenized_dict = self._model_transform(transformed_sample)
tokenized_dict: dict[str, Any] = self._model_transform(transformed_sample)
if not ("tokens" in tokenized_dict and "mask" in tokenized_dict):
keys_str = ", ".join(tokenized_dict.keys())

View file

@ -3,7 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from datetime import datetime
from datetime import datetime, timezone
from typing import Any, Dict, Optional
from llama_stack.apis.datasetio import DatasetIO
@ -43,6 +43,9 @@ class TorchtunePostTrainingImpl:
self.jobs = {}
self.checkpoints_dict = {}
async def shutdown(self):
pass
async def supervised_fine_tune(
self,
job_uuid: str,
@ -61,7 +64,7 @@ class TorchtunePostTrainingImpl:
job_status_response = PostTrainingJobStatusResponse(
job_uuid=job_uuid,
status=JobStatus.scheduled,
scheduled_at=datetime.now(),
scheduled_at=datetime.now(timezone.utc),
)
self.jobs[job_uuid] = job_status_response
@ -81,7 +84,7 @@ class TorchtunePostTrainingImpl:
)
job_status_response.status = JobStatus.in_progress
job_status_response.started_at = datetime.now()
job_status_response.started_at = datetime.now(timezone.utc)
await recipe.setup()
resources_allocated, checkpoints = await recipe.train()
@ -90,7 +93,7 @@ class TorchtunePostTrainingImpl:
job_status_response.resources_allocated = resources_allocated
job_status_response.checkpoints = checkpoints
job_status_response.status = JobStatus.completed
job_status_response.completed_at = datetime.now()
job_status_response.completed_at = datetime.now(timezone.utc)
except Exception:
job_status_response.status = JobStatus.failed

View file

@ -8,7 +8,7 @@ import gc
import logging
import os
import time
from datetime import datetime
from datetime import datetime, timezone
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
@ -37,10 +37,10 @@ from llama_stack.apis.common.training_types import PostTrainingMetric
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.post_training import (
AlgorithmConfig,
Checkpoint,
LoraFinetuningConfig,
OptimizerConfig,
QATFinetuningConfig,
TrainingConfig,
)
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
@ -73,6 +73,9 @@ class LoraFinetuningSingleDevice:
# Currently logging only logs limited training metrics to local disk
# will figure out more loggings and how it works with telemetry in future PRs
_checkpointer: TorchtuneCheckpointer
def __init__(
self,
config: TorchtunePostTrainingConfig,
@ -82,7 +85,7 @@ class LoraFinetuningSingleDevice:
logger_config: Dict[str, Any],
model: str,
checkpoint_dir: Optional[str],
algorithm_config: Optional[AlgorithmConfig],
algorithm_config: LoraFinetuningConfig | QATFinetuningConfig | None,
datasetio_api: DatasetIO,
datasets_api: Datasets,
) -> None:
@ -109,12 +112,12 @@ class LoraFinetuningSingleDevice:
return str(checkpoint_dir)
if checkpoint_dir and checkpoint_dir != "null":
self.checkpoint_dir = config.checkpoint_dir
self.checkpoint_dir = checkpoint_dir
else:
model = resolve_model(self.model_id)
if model is None:
model_obj = resolve_model(self.model_id)
if model_obj is None:
raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list")
self.checkpoint_dir = model_checkpoint_dir(model)
self.checkpoint_dir = model_checkpoint_dir(model_obj)
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
self._checkpoint_format = config.checkpoint_format
@ -135,16 +138,16 @@ class LoraFinetuningSingleDevice:
self.max_validation_steps = training_config.max_validation_steps
self._clip_grad_norm = 1.0
self._enable_activation_checkpointing = (
(training_config.efficiency_config.enable_activation_checkpointing)
if training_config.efficiency_config
else False
)
self._enable_activation_offloading = (
(training_config.efficiency_config.enable_activation_offloading)
if training_config.efficiency_config
else False
)
self._enable_activation_checkpointing = False
self._enable_activation_offloading = False
if training_config.efficiency_config:
if training_config.efficiency_config.enable_activation_checkpointing:
self._enable_activation_checkpointing = (
training_config.efficiency_config.enable_activation_checkpointing
)
if training_config.efficiency_config.enable_activation_offloading:
self._enable_activation_offloading = training_config.efficiency_config.enable_activation_offloading
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
@ -328,13 +331,13 @@ class LoraFinetuningSingleDevice:
batch_size: int,
) -> Tuple[DistributedSampler, DataLoader]:
async def fetch_rows(dataset_id: str):
return await self.datasetio_api.get_rows_paginated(
return await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
limit=-1,
)
all_rows = await fetch_rows(dataset_id)
rows = all_rows.rows
rows = all_rows.data
await validate_input_dataset_schema(
datasets_api=self.datasets_api,
@ -451,12 +454,12 @@ class LoraFinetuningSingleDevice:
"""
# Initialize tokens count and running loss (for grad accumulation)
t0 = time.perf_counter()
running_loss = 0
running_loss: float = 0.0
num_tokens = 0
# training artifacts
checkpoints = []
memory_stats = {}
memory_stats: Dict[str, Any] = {}
# self.epochs_run should be non-zero when we're resuming from a checkpoint
for curr_epoch in range(self.epochs_run, self.total_epochs):
@ -484,7 +487,7 @@ class LoraFinetuningSingleDevice:
# Loss is normalized by default so we multiply by the number of tokens
# This way we can normalize by the total number of tokens if we're accumulating gradients
current_loss = await self._loss_step(batch) * current_num_tokens
running_loss += current_loss
running_loss += current_loss.detach().item()
current_loss.backward()
# Step with optimizer
@ -500,7 +503,7 @@ class LoraFinetuningSingleDevice:
# Update the number of steps when the weights are updated
self.global_step += 1
loss_to_log = running_loss.item() / num_tokens
loss_to_log = running_loss / num_tokens
pbar.update(1)
pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}")
@ -523,7 +526,7 @@ class LoraFinetuningSingleDevice:
)
# Reset running stats for the next step
running_loss = 0
running_loss = 0.0
num_tokens = 0
t0 = time.perf_counter()
@ -532,7 +535,7 @@ class LoraFinetuningSingleDevice:
checkpoint_path = await self.save_checkpoint(epoch=curr_epoch)
checkpoint = Checkpoint(
identifier=f"{self.model_id}-sft-{curr_epoch}",
created_at=datetime.now(),
created_at=datetime.now(timezone.utc),
epoch=curr_epoch,
post_training_job_id=self.job_uuid,
path=checkpoint_path,

View file

@ -4,10 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from .config import CodeScannerConfig
async def get_provider_impl(config: CodeScannerConfig, deps):
async def get_provider_impl(config: CodeScannerConfig, deps: Dict[str, Any]):
from .code_scanner import MetaReferenceCodeScannerSafetyImpl
impl = MetaReferenceCodeScannerSafetyImpl(config, deps)

View file

@ -4,8 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class CodeScannerConfig(BaseModel):
pass
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -4,10 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from .config import LlamaGuardConfig
async def get_provider_impl(config: LlamaGuardConfig, deps):
async def get_provider_impl(config: LlamaGuardConfig, deps: Dict[str, Any]):
from .llama_guard import LlamaGuardSafetyImpl
assert isinstance(config, LlamaGuardConfig), f"Unexpected config type: {type(config)}"

View file

@ -4,10 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from typing import Any, Dict, List
from pydantic import BaseModel
class LlamaGuardConfig(BaseModel):
excluded_categories: List[str] = []
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"excluded_categories": [],
}

View file

@ -227,13 +227,6 @@ class LlamaGuardShield:
if len(messages) >= 2 and (messages[0].role == Role.user.value and messages[1].role == Role.user.value):
messages = messages[1:]
for i in range(1, len(messages)):
if messages[i].role == messages[i - 1].role:
for i, m in enumerate(messages):
print(f"{i}: {m.role}: {m.content}")
raise ValueError(
f"Messages must alternate between user and assistant. Message {i} has the same role as message {i - 1}"
)
return messages
async def run(self, messages: List[Message]) -> RunShieldResponse:

View file

@ -4,10 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from .config import PromptGuardConfig # noqa: F401
async def get_provider_impl(config: PromptGuardConfig, deps):
async def get_provider_impl(config: PromptGuardConfig, deps: Dict[str, Any]):
from .prompt_guard import PromptGuardSafetyImpl
impl = PromptGuardSafetyImpl(config, deps)

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict
from pydantic import BaseModel, field_validator
@ -23,3 +24,9 @@ class PromptGuardConfig(BaseModel):
if v not in [t.value for t in PromptGuardType]:
raise ValueError(f"Unknown prompt guard type: {v}")
return v
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"guard_type": "injection",
}

View file

@ -3,16 +3,16 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import BasicScoringConfig
async def get_provider_impl(
config: BasicScoringConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .scoring import BasicScoringImpl

View file

@ -3,7 +3,12 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class BasicScoringConfig(BaseModel): ...
class BasicScoringConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -22,11 +22,25 @@ from llama_stack.providers.utils.common.data_schema_validator import (
)
from .config import BasicScoringConfig
from .scoring_fn.bfcl_scoring_fn import BFCLScoringFn
from .scoring_fn.docvqa_scoring_fn import DocVQAScoringFn
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
from .scoring_fn.ifeval_scoring_fn import IfEvalScoringFn
from .scoring_fn.regex_parser_math_response_scoring_fn import (
RegexParserMathResponseScoringFn,
)
from .scoring_fn.regex_parser_scoring_fn import RegexParserScoringFn
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn]
FIXED_FNS = [
EqualityScoringFn,
SubsetOfScoringFn,
RegexParserScoringFn,
RegexParserMathResponseScoringFn,
BFCLScoringFn,
IfEvalScoringFn,
DocVQAScoringFn,
]
class BasicScoringImpl(
@ -74,12 +88,12 @@ class BasicScoringImpl(
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
limit=-1,
)
res = await self.score(
input_rows=all_rows.rows,
input_rows=all_rows.data,
scoring_functions=scoring_functions,
)
if save_results_dataset:

View file

@ -0,0 +1,93 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import re
from typing import Any, Dict, Optional
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
from ..utils.bfcl.ast_parser import decode_ast
from ..utils.bfcl.checker import ast_checker, is_empty_output
from .fn_defs.bfcl import bfcl
def postprocess(x: Dict[str, Any], test_category: str) -> Dict[str, Any]:
contain_func_call = False
error = None
error_type = None
checker_result = {}
try:
prediction = decode_ast(x["generated_answer"], x["language"]) or ""
contain_func_call = True
# if not is_function_calling_format_output(prediction):
if is_empty_output(prediction):
contain_func_call = False
error = "Did not output in the specified format. Note: the model_result is wrapped in a string to ensure json serializability."
error_type = "ast_decoder:decoder_wrong_output_format"
else:
checker_result = ast_checker(
json.loads(x["function"]),
prediction,
json.loads(x["ground_truth"]),
x["language"],
test_category=test_category,
model_name="",
)
except Exception as e:
prediction = ""
error = f"Invalid syntax. Failed to decode AST. {str(e)}"
error_type = "ast_decoder:decoder_failed"
return {
"prediction": prediction,
"contain_func_call": contain_func_call,
"valid": checker_result.get("valid", False),
"error": error or checker_result.get("error", ""),
"error_type": error_type or checker_result.get("error_type", ""),
}
def gen_valid(x: Dict[str, Any]) -> Dict[str, float]:
return {"valid": x["valid"]}
def gen_relevance_acc(x: Dict[str, Any]) -> Dict[str, float]:
# This function serves for both relevance and irrelevance tests, which share the exact opposite logic.
# If `test_category` is "irrelevance", the model is expected to output no function call.
# No function call means either the AST decoding fails (a error message is generated) or the decoded AST does not contain any function call (such as a empty list, `[]`).
# If `test_category` is "relevance", the model is expected to output to a function call, and empty list doesn't count as a function call.
acc = not x["contain_func_call"] if "irrelevance" in x["id"] else x["contain_func_call"]
return {"valid": float(acc)}
class BFCLScoringFn(RegisteredBaseScoringFn):
"""
A scoring_fn for BFCL
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.supported_fn_defs_registry = {
bfcl.identifier: bfcl,
}
async def score_row(
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = "bfcl",
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
test_category = re.sub(r"_[0-9_-]+$", "", input_row["id"])
score_result = postprocess(input_row, test_category)
if test_category in {"irrelevance", "live_relevance", "live_irrelevance"}:
score = gen_relevance_acc(score_result)["valid"]
else:
score = gen_valid(score_result)["valid"]
return {
"score": float(score),
}

View file

@ -0,0 +1,240 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import re
from typing import Any, Dict, Optional
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
from .fn_defs.docvqa import docvqa
CONTRACTIONS = {
"aint": "ain't",
"arent": "aren't",
"cant": "can't",
"couldve": "could've",
"couldnt": "couldn't",
"couldn'tve": "couldn't've",
"couldnt've": "couldn't've",
"didnt": "didn't",
"doesnt": "doesn't",
"dont": "don't",
"hadnt": "hadn't",
"hadnt've": "hadn't've",
"hadn'tve": "hadn't've",
"hasnt": "hasn't",
"havent": "haven't",
"hed": "he'd",
"hed've": "he'd've",
"he'dve": "he'd've",
"hes": "he's",
"howd": "how'd",
"howll": "how'll",
"hows": "how's",
"Id've": "I'd've",
"I'dve": "I'd've",
"Im": "I'm",
"Ive": "I've",
"isnt": "isn't",
"itd": "it'd",
"itd've": "it'd've",
"it'dve": "it'd've",
"itll": "it'll",
"let's": "let's",
"maam": "ma'am",
"mightnt": "mightn't",
"mightnt've": "mightn't've",
"mightn'tve": "mightn't've",
"mightve": "might've",
"mustnt": "mustn't",
"mustve": "must've",
"neednt": "needn't",
"notve": "not've",
"oclock": "o'clock",
"oughtnt": "oughtn't",
"ow's'at": "'ow's'at",
"'ows'at": "'ow's'at",
"'ow'sat": "'ow's'at",
"shant": "shan't",
"shed've": "she'd've",
"she'dve": "she'd've",
"she's": "she's",
"shouldve": "should've",
"shouldnt": "shouldn't",
"shouldnt've": "shouldn't've",
"shouldn'tve": "shouldn't've",
"somebody'd": "somebodyd",
"somebodyd've": "somebody'd've",
"somebody'dve": "somebody'd've",
"somebodyll": "somebody'll",
"somebodys": "somebody's",
"someoned": "someone'd",
"someoned've": "someone'd've",
"someone'dve": "someone'd've",
"someonell": "someone'll",
"someones": "someone's",
"somethingd": "something'd",
"somethingd've": "something'd've",
"something'dve": "something'd've",
"somethingll": "something'll",
"thats": "that's",
"thered": "there'd",
"thered've": "there'd've",
"there'dve": "there'd've",
"therere": "there're",
"theres": "there's",
"theyd": "they'd",
"theyd've": "they'd've",
"they'dve": "they'd've",
"theyll": "they'll",
"theyre": "they're",
"theyve": "they've",
"twas": "'twas",
"wasnt": "wasn't",
"wed've": "we'd've",
"we'dve": "we'd've",
"weve": "we've",
"werent": "weren't",
"whatll": "what'll",
"whatre": "what're",
"whats": "what's",
"whatve": "what've",
"whens": "when's",
"whered": "where'd",
"wheres": "where's",
"whereve": "where've",
"whod": "who'd",
"whod've": "who'd've",
"who'dve": "who'd've",
"wholl": "who'll",
"whos": "who's",
"whove": "who've",
"whyll": "why'll",
"whyre": "why're",
"whys": "why's",
"wont": "won't",
"wouldve": "would've",
"wouldnt": "wouldn't",
"wouldnt've": "wouldn't've",
"wouldn'tve": "wouldn't've",
"yall": "y'all",
"yall'll": "y'all'll",
"y'allll": "y'all'll",
"yall'd've": "y'all'd've",
"y'alld've": "y'all'd've",
"y'all'dve": "y'all'd've",
"youd": "you'd",
"youd've": "you'd've",
"you'dve": "you'd've",
"youll": "you'll",
"youre": "you're",
"youve": "you've",
"1st": "first",
"2nd": "second",
"3rd": "third",
}
NUMBERS = {
"none": "0",
"zero": "0",
"one": "1",
"two": "2",
"three": "3",
"four": "4",
"five": "5",
"six": "6",
"seven": "7",
"eight": "8",
"nine": "9",
"ten": "10",
}
ARTICLES = [
"a",
"an",
"the",
"to",
"in",
"from",
"by",
] # Contains a bit more than just articles, but we want to get rid of these elements influencing the accuracy
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
COMMA_STRIP = re.compile(r"(\d)(\,)(\d)")
PUNCTUATION = [
";",
r"/",
"[",
"]",
'"',
"{",
"}",
"(",
")",
"=",
"+",
"\\",
"_",
"-",
">",
"<",
"@",
"`",
",",
"?",
"!",
]
def normalize_answer(s: str) -> str:
# process punctuation
for p in PUNCTUATION:
if (p + " " in s or " " + p in s) or (re.search(COMMA_STRIP, s) is not None):
s = s.replace(p, "")
else:
s = s.replace(p, " ")
s = PERIOD_STRIP.sub("", s, re.UNICODE)
# process digits and articles
temp_text = s.lower().split()
out_text = []
for word in temp_text:
word = NUMBERS.setdefault(word, word)
if word not in ARTICLES:
out_text.append(word)
# standardize contractions
for word_id, word in enumerate(out_text):
if word in CONTRACTIONS:
out_text[word_id] = CONTRACTIONS[word]
return " ".join(out_text)
class DocVQAScoringFn(RegisteredBaseScoringFn):
"""
docvqa basically matches the generated answer against several allowed
choices, but we need to normalize the answer to avoid penalizing
trivial differences
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.supported_fn_defs_registry = {
docvqa.identifier: docvqa,
}
async def score_row(
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = "docvqa",
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
expected_answers = json.loads(input_row["expected_answer"])
generated_answer = input_row["generated_answer"]
score = 1.0 if normalize_answer(generated_answer) in [normalize_answer(s) for s in expected_answers] else 0.0
return {
"score": score,
}

View file

@ -0,0 +1,21 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
BasicScoringFnParams,
ScoringFn,
)
bfcl = ScoringFn(
identifier="basic::bfcl",
description="BFCL complex scoring",
return_type=NumberType(),
provider_id="basic",
provider_resource_id="bfcl",
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
)

View file

@ -0,0 +1,21 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
BasicScoringFnParams,
ScoringFn,
)
docvqa = ScoringFn(
identifier="basic::docvqa",
description="DocVQA Visual Question & Answer scoring function",
return_type=NumberType(),
provider_id="basic",
provider_resource_id="docvqa",
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
)

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
BasicScoringFnParams,
ScoringFn,
)
ifeval = ScoringFn(
identifier="basic::ifeval",
description="Eval intruction follow capacity by checkping how many instructions can be followed in each example",
return_type=NumberType(),
provider_id="basic",
provider_resource_id="ifeval",
params=BasicScoringFnParams(
aggregation_functions=[AggregationFunctionType.weighted_average],
),
)

View file

@ -0,0 +1,27 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
RegexParserScoringFnParams,
ScoringFn,
)
MATH_ANSWER_REGEXES = [r".*final answer is:?\s*\$\\boxed{(?P<X>.*)}\$"]
regex_parser_math_response = ScoringFn(
identifier="basic::regex_parser_math_response",
description="For math related benchmarks, extract answer from the generated response and expected_answer and see if they match",
return_type=NumberType(),
provider_id="basic",
provider_resource_id="regex-parser-math-response",
params=RegexParserScoringFnParams(
parsing_regexes=MATH_ANSWER_REGEXES,
aggregation_functions=[AggregationFunctionType.accuracy],
),
)

View file

@ -0,0 +1,79 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
from ..utils.ifeval_utils import INSTRUCTION_DICT, INSTRUCTION_LIST
from .fn_defs.ifeval import (
ifeval,
)
class IfEvalScoringFn(RegisteredBaseScoringFn):
"""
A scoring_fn Instruction-Following Eval (IFEval) benchmark
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.supported_fn_defs_registry = {
ifeval.identifier: ifeval,
}
async def score_row(
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
if scoring_params is not None:
fn_def.params = scoring_params
instruction_list = input_row["instruction_id_list"]
generated_answer = input_row["generated_answer"].strip()
is_following_list = []
results = dict(
{k + "_correct": 0.0 for k in INSTRUCTION_LIST},
**{k + "_total": 0.0 for k in INSTRUCTION_LIST},
)
for index, instruction_id in enumerate(instruction_list):
instruction_cls = INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
results[instruction_id + "_total"] += 1.0
results[instruction_id.split(":")[0] + "_total"] += 1.0
clean_input_row = {k: v for k, v in input_row["kwargs"][index].items() if v is not None}
print(clean_input_row)
instruction.build_description(**clean_input_row)
args = instruction.get_instruction_args()
if args and "prompt" in args:
instruction.build_description(prompt=input_row["prompt"])
if generated_answer and instruction.check_following(generated_answer):
is_following_list.append(True)
results[instruction_id + "_correct"] += 1.0
results[instruction_id.split(":")[0] + "_correct"] += 1.0
else:
is_following_list.append(False)
if len(is_following_list) == 0:
return {
"score": 0.0,
"weight": 0.0,
}
return {
"score": float(sum(is_following_list)) / float(len(is_following_list)),
"weight": float(len(is_following_list)),
}

View file

@ -0,0 +1,66 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams, ScoringFnParamsType
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
from ..utils.math_utils import first_answer, normalize_final_answer, try_evaluate_frac, try_evaluate_latex
from .fn_defs.regex_parser_math_response import (
regex_parser_math_response,
)
class RegexParserMathResponseScoringFn(RegisteredBaseScoringFn):
"""
A scoring_fn for math benchamrks that parses answer from generated response according to context and check match with expected_answer.
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.supported_fn_defs_registry = {
regex_parser_math_response.identifier: regex_parser_math_response,
}
async def score_row(
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
if scoring_params is not None:
fn_def.params = scoring_params
assert fn_def.params is not None and fn_def.params.type == ScoringFnParamsType.regex_parser.value, (
f"RegexParserScoringFnParams not found for {fn_def}."
)
expected_answer = input_row["expected_answer"]
generated_answer = input_row["generated_answer"]
parsing_regexes = fn_def.params.parsing_regexes
assert len(parsing_regexes) == 1, (
"Only one parsing regex is supported for regex_parser_math_response scoring function."
)
parsing_regexes = fn_def.params.parsing_regexes[0]
normalized_generated_answer = normalize_final_answer(
first_answer(generated_answer),
parsing_regexes,
match_first=True,
)
normalized_generated_answer = try_evaluate_frac(try_evaluate_latex(normalized_generated_answer))
normalized_expected_answer = normalize_final_answer(expected_answer, r".*")
normalized_expected_answer = try_evaluate_frac(try_evaluate_latex(normalized_expected_answer))
score = 1.0 if normalized_generated_answer == normalized_expected_answer else 0.0
return {
"score": score,
}

View file

@ -3,10 +3,3 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class SampleConfig(BaseModel):
host: str = "localhost"
port: int = 9999

View file

@ -0,0 +1,296 @@
# ruff: noqa
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import ast
from .tree_sitter import get_parser
def parse_java_function_call(source_code):
if not source_code.endswith(";"):
source_code += ";" # Necessary for the parser not to register an error
parser = get_parser("java")
tree = parser.parse(bytes(source_code, "utf8"))
root_node = tree.root_node
if root_node.has_error:
raise Exception("Error parsing java the source code.")
def get_text(node):
"""Returns the text represented by the node."""
return source_code[node.start_byte : node.end_byte]
def traverse_node(node, nested=False):
if node.type == "string_literal":
if nested:
return get_text(node)
# Strip surrounding quotes from string literals
return get_text(node)[1:-1]
elif node.type == "character_literal":
if nested:
return get_text(node)
# Strip surrounding single quotes from character literals
return get_text(node)[1:-1]
"""Traverse the node to collect texts for complex structures."""
if node.type in [
"identifier",
"class_literal",
"type_identifier",
"method_invocation",
]:
return get_text(node)
elif node.type == "array_creation_expression":
# Handle array creation expression specifically
type_node = node.child_by_field_name("type")
value_node = node.child_by_field_name("value")
type_text = traverse_node(type_node, True)
value_text = traverse_node(value_node, True)
return f"new {type_text}[]{value_text}"
elif node.type == "object_creation_expression":
# Handle object creation expression specifically
type_node = node.child_by_field_name("type")
arguments_node = node.child_by_field_name("arguments")
type_text = traverse_node(type_node, True)
if arguments_node:
# Process each argument carefully, avoiding unnecessary punctuation
argument_texts = []
for child in arguments_node.children:
if child.type not in [
",",
"(",
")",
]: # Exclude commas and parentheses
argument_text = traverse_node(child, True)
argument_texts.append(argument_text)
arguments_text = ", ".join(argument_texts)
return f"new {type_text}({arguments_text})"
else:
return f"new {type_text}()"
elif node.type == "set":
# Handling sets specifically
items = [traverse_node(n, True) for n in node.children if n.type not in [",", "set"]]
return "{" + ", ".join(items) + "}"
elif node.child_count > 0:
return "".join(traverse_node(child, True) for child in node.children)
else:
return get_text(node)
def extract_arguments(args_node):
arguments = {}
for child in args_node.children:
if child.type == "assignment_expression":
# For named parameters
name_node, value_node = child.children[0], child.children[2]
name = get_text(name_node)
value = traverse_node(value_node)
if name in arguments:
if not isinstance(arguments[name], list):
arguments[name] = [arguments[name]]
arguments[name].append(value)
else:
arguments[name] = value
# arguments.append({'name': name, 'value': value})
elif child.type in ["identifier", "class_literal", "set"]:
# For unnamed parameters and handling sets
value = traverse_node(child)
if None in arguments:
if not isinstance(arguments[None], list):
arguments[None] = [arguments[None]]
arguments[None].append(value)
else:
arguments[None] = value
return arguments
def traverse(node):
if node.type == "method_invocation":
# Extract the function name and its arguments
method_name = get_text(node.child_by_field_name("name"))
class_name_node = node.child_by_field_name("object")
if class_name_node:
class_name = get_text(class_name_node)
function_name = f"{class_name}.{method_name}"
else:
function_name = method_name
arguments_node = node.child_by_field_name("arguments")
if arguments_node:
arguments = extract_arguments(arguments_node)
for key, value in arguments.items():
if isinstance(value, list):
raise Exception("Error: Multiple arguments with the same name are not supported.")
return [{function_name: arguments}]
else:
for child in node.children:
result = traverse(child)
if result:
return result
result = traverse(root_node)
return result if result else {}
def parse_javascript_function_call(source_code):
if not source_code.endswith(";"):
source_code += ";" # Necessary for the parser not to register an error
parser = get_parser("javascript")
# Parse the source code
tree = parser.parse(bytes(source_code, "utf8"))
root_node = tree.root_node
if root_node.has_error:
raise Exception("Error js parsing the source code.")
# Function to recursively extract argument details
def extract_arguments(node):
args = {}
for child in node.children:
if child.type == "assignment_expression":
# Extract left (name) and right (value) parts of the assignment
name = child.children[0].text.decode("utf-8")
value = child.children[2].text.decode("utf-8")
if (value.startswith('"') and value.endswith('"')) or (value.startswith("'") and value.endswith("'")):
value = value[1:-1] # Trim the quotation marks
if name in args:
if not isinstance(args[name], list):
args[name] = [args[name]]
args[name].append(value)
else:
args[name] = value
elif child.type == "identifier" or child.type == "true":
# Handle non-named arguments and boolean values
value = child.text.decode("utf-8")
if None in args:
if not isinstance(args[None], list):
args[None] = [args[None]]
args[None].append(value)
else:
args[None] = value
return args
# Find the function call and extract its name and arguments
if root_node.type == "program":
for child in root_node.children:
if child.type == "expression_statement":
for sub_child in child.children:
if sub_child.type == "call_expression":
function_name = sub_child.children[0].text.decode("utf8")
arguments_node = sub_child.children[1]
parameters = extract_arguments(arguments_node)
for key, value in parameters.items():
if isinstance(value, list):
raise Exception("Error: Multiple arguments with the same name are not supported.")
result = [{function_name: parameters}]
return result
def ast_parse(input_str, language="Python"):
if language == "Python":
cleaned_input = input_str.strip("[]'")
parsed = ast.parse(cleaned_input, mode="eval")
extracted = []
if isinstance(parsed.body, ast.Call):
extracted.append(resolve_ast_call(parsed.body))
else:
for elem in parsed.body.elts:
extracted.append(resolve_ast_call(elem))
return extracted
elif language == "Java":
return parse_java_function_call(input_str[1:-1]) # Remove the [ and ] from the string
elif language == "JavaScript":
return parse_javascript_function_call(input_str[1:-1])
else:
raise NotImplementedError(f"Unsupported language: {language}")
def resolve_ast_call(elem):
# Handle nested attributes for deeply nested module paths
func_parts = []
func_part = elem.func
while isinstance(func_part, ast.Attribute):
func_parts.append(func_part.attr)
func_part = func_part.value
if isinstance(func_part, ast.Name):
func_parts.append(func_part.id)
func_name = ".".join(reversed(func_parts))
args_dict = {}
# Parse when args are simply passed as an unnamed dictionary arg
for arg in elem.args:
if isinstance(arg, ast.Dict):
for key, value in zip(arg.keys, arg.values):
if isinstance(key, ast.Constant):
arg_name = key.value
output = resolve_ast_by_type(value)
args_dict[arg_name] = output
for arg in elem.keywords:
output = resolve_ast_by_type(arg.value)
args_dict[arg.arg] = output
return {func_name: args_dict}
def resolve_ast_by_type(value):
if isinstance(value, ast.Constant):
if value.value is Ellipsis:
output = "..."
else:
output = value.value
elif isinstance(value, ast.UnaryOp):
output = -value.operand.value
elif isinstance(value, ast.List):
output = [resolve_ast_by_type(v) for v in value.elts]
elif isinstance(value, ast.Dict):
output = {resolve_ast_by_type(k): resolve_ast_by_type(v) for k, v in zip(value.keys, value.values)}
elif isinstance(value, ast.NameConstant): # Added this condition to handle boolean values
output = value.value
elif isinstance(value, ast.BinOp): # Added this condition to handle function calls as arguments
output = eval(ast.unparse(value))
elif isinstance(value, ast.Name):
output = value.id
elif isinstance(value, ast.Call):
if len(value.keywords) == 0:
output = ast.unparse(value)
else:
output = resolve_ast_call(value)
elif isinstance(value, ast.Tuple):
output = tuple(resolve_ast_by_type(v) for v in value.elts)
elif isinstance(value, ast.Lambda):
output = eval(ast.unparse(value.body[0].value))
elif isinstance(value, ast.Ellipsis):
output = "..."
elif isinstance(value, ast.Subscript):
try:
output = ast.unparse(value.body[0].value)
except:
output = ast.unparse(value.value) + "[" + ast.unparse(value.slice) + "]"
else:
raise Exception(f"Unsupported AST type: {type(value)}")
return output
def decode_ast(result, language="Python"):
func = result
func = func.replace("\n", "") # remove new line characters
if not func.startswith("["):
func = "[" + func
if not func.endswith("]"):
func = func + "]"
decoded_output = ast_parse(func, language)
return decoded_output
def decode_execute(result):
func = result
func = func.replace("\n", "") # remove new line characters
if not func.startswith("["):
func = "[" + func
if not func.endswith("]"):
func = func + "]"
decode_output = ast_parse(func)
execution_list = []
for function_call in decode_output:
for key, value in function_call.items():
execution_list.append(f"{key}({','.join([f'{k}={repr(v)}' for k, v in value.items()])})")
return execution_list

View file

@ -0,0 +1,989 @@
# ruff: noqa
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import re
import time
from typing import Any
# Comment out for now until we actually use the rest checker in evals
# import requests # Do not remove this import even though it seems to be unused. It's used in the executable_checker_rest function.
class NoAPIKeyError(Exception):
def __init__(self):
self.message = "Please fill in the API keys in the function_credential_config.json file. If you do not provide the API keys, the executable test category results will be inaccurate."
super().__init__(self.message)
REAL_TIME_MATCH_ALLOWED_DIFFERENCE = 0.2
JAVA_TYPE_CONVERSION = {
"byte": int,
"short": int,
"integer": int,
"float": float,
"double": float,
"long": int,
"boolean": bool,
"char": str,
"Array": list,
"ArrayList": list,
"Set": set,
"HashMap": dict,
"Hashtable": dict,
"Queue": list, # this can be `queue.Queue` as well, for simplicity we check with list
"Stack": list,
"String": str,
"any": str,
}
JS_TYPE_CONVERSION = {
"String": str,
"integer": int,
"float": float,
"Bigint": int,
"Boolean": bool,
"dict": dict,
"array": list,
"any": str,
}
# We switch to conditional import for the following two imports to avoid unnecessary installations.
# User doesn't need to setup the tree-sitter packages if they are not running the test for that language.
# from js_type_converter import js_type_converter
# from java_type_converter import java_type_converter
PYTHON_TYPE_MAPPING = {
"string": str,
"integer": int,
"float": float,
"boolean": bool,
"array": list,
"tuple": list,
"dict": dict,
"any": str,
}
# This is the list of types that we need to recursively check its values
PYTHON_NESTED_TYPE_CHECK_LIST = ["array", "tuple"]
NESTED_CONVERSION_TYPE_LIST = ["Array", "ArrayList", "array"]
#### Helper functions for AST ####
def find_description(func_descriptions, name):
if type(func_descriptions) == list:
for func_description in func_descriptions:
if func_description["name"] == name:
return func_description
return None
else:
# it is a dict, there is only one function
return func_descriptions
def get_possible_answer_type(possible_answer: list):
for answer in possible_answer:
if answer != "": # Optional parameter
return type(answer)
return None
def type_checker(
param: str,
value,
possible_answer: list,
expected_type_description: str,
expected_type_converted,
nested_type_converted,
):
# NOTE: This type checker only supports nested type checking for one level deep.
# We didn't implement recursive type checking for nested types, as it's not needed for the current use case and it's very complex.
result: Any = {
"valid": True,
"error": [],
"is_variable": False,
"error_type": "type_error:simple",
}
is_variable = False
# check for the case where a variable is used instead of a actual value.
# use the type in possible_answer as the expected type
possible_answer_type = get_possible_answer_type(possible_answer)
# if possible_answer only contains optional parameters, we can't determine the type
if possible_answer_type != None:
# we are being precise here.
# in fact, possible_answer_type should always be string, as that's how we treat varibale in possible_answer
if possible_answer_type != expected_type_converted:
is_variable = True
# value is the same type as in function description
if type(value) == expected_type_converted:
# We don't need to do recursive check for simple types
if nested_type_converted == None:
result["is_variable"] = is_variable
return result
else:
for possible_answer_item in possible_answer:
flag = True # Each parameter should match to at least one possible answer type.
# Here, we assume that each item should be the same type. We could also relax it.
if type(possible_answer_item) == list:
for value_item in value:
checker_result = type_checker(
param,
value_item,
possible_answer_item,
str(nested_type_converted),
nested_type_converted,
None,
)
if not checker_result["valid"]:
flag = False
break
if flag:
return {"valid": True, "error": [], "is_variable": is_variable}
result["valid"] = False
result["error"] = [
f"Nested type checking failed for parameter {repr(param)}. Expected outer type {expected_type_description} with inner type {str(nested_type_converted)}. Parameter value: {repr(value)}."
]
result["error_type"] = "type_error:nested"
# value is not as expected, check for the case where a variable is used instead of a actual value
# use the type in possible_answer as the expected type
possible_answer_type = get_possible_answer_type(possible_answer)
# if possible_answer only contains optional parameters, we can't determine the type
if possible_answer_type != None:
# we are being precise here.
# in fact, possible_answer_type should always be string, as that's how we treat varibale in possible_answer
if type(value) == possible_answer_type:
result["is_variable"] = True
return result
result["valid"] = False
result["error"].append(
f"Incorrect type for parameter {repr(param)}. Expected type {expected_type_description}, got {type(value).__name__}. Parameter value: {repr(value)}."
)
result["error_type"] = "type_error:simple"
return result
def standardize_string(input_string: str):
# This function standardizes the string by removing all the spaces, ",./-_*^" punctuation, and converting it to lowercase
# It will also convert all the single quotes to double quotes
# This is used to compare the model output with the possible answers
# We don't want to punish model for answer like April 1, 2024 vs April 1,2024, vs April 1 2024
regex_string = r"[ \,\.\/\-\_\*\^]"
return re.sub(regex_string, "", input_string).lower().replace("'", '"')
def string_checker(param: str, model_output: str, possible_answer: list):
standardize_possible_answer = []
standardize_model_output = standardize_string(model_output)
for i in range(len(possible_answer)):
if type(possible_answer[i]) == str:
standardize_possible_answer.append(standardize_string(possible_answer[i]))
if standardize_model_output not in standardize_possible_answer:
return {
"valid": False,
"error": [
f"Invalid value for parameter {repr(param)}: {repr(model_output)}. Expected one of {possible_answer}. Case insensitive."
],
"error_type": "value_error:string",
}
return {"valid": True, "error": []}
def list_checker(param: str, model_output: list, possible_answer: list):
# Convert the tuple to a list
standardize_model_output = list(model_output)
# If the element in the list is a string, we need to standardize it
for i in range(len(standardize_model_output)):
if type(standardize_model_output[i]) == str:
standardize_model_output[i] = standardize_string(model_output[i])
standardize_possible_answer: Any = []
# We also need to standardize the possible answers
for i in range(len(possible_answer)):
standardize_possible_answer.append([])
for j in range(len(possible_answer[i])):
if type(possible_answer[i][j]) == str:
standardize_possible_answer[i].append(standardize_string(possible_answer[i][j]))
else:
standardize_possible_answer[i].append(possible_answer[i][j])
if standardize_model_output not in standardize_possible_answer:
return {
"valid": False,
"error": [
f"Invalid value for parameter {repr(param)}: {repr(model_output)}. Expected one of {possible_answer}."
],
"error_type": "value_error:list/tuple",
}
return {"valid": True, "error": []}
def dict_checker(param: str, model_output: dict, possible_answers: list):
# This function works for simple dictionaries, but not dictionaries with nested dictionaries.
# The current dataset only contains simple dictionaries, so this is sufficient.
result = {"valid": False, "error": [], "error_type": "dict_checker:unclear"}
for i in range(len(possible_answers)):
if possible_answers[i] == "":
continue
result = {"valid": False, "error": [], "error_type": "dict_checker:unclear"}
flag = True
possible_answer = possible_answers[i]
# possible_anwer is a single dictionary
for key, value in model_output.items():
if key not in possible_answer:
result["valid"] = False
result["error"].append(f"Unexpected dict key parameter: '{key}'.") # type: ignore[attr-defined]
result["error_type"] = "value_error:dict_key"
flag = False
break
standardize_value = value
# If the value is a string, we need to standardize it
if type(value) == str:
standardize_value = standardize_string(value)
# We also need to standardize the possible answers if they are string
standardize_possible_answer = []
for i in range(len(possible_answer[key])):
if type(possible_answer[key][i]) == str:
standardize_possible_answer.append(standardize_string(possible_answer[key][i]))
else:
standardize_possible_answer.append(possible_answer[key][i])
if standardize_value not in standardize_possible_answer:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Invalid value for parameter {repr(key)}: {repr(value)}. Expected one of {standardize_possible_answer}."
)
result["error_type"] = "value_error:dict_value"
flag = False
break
for key, value in possible_answer.items():
if key not in model_output and "" not in value:
result["valid"] = False
result["error"].append(f"Missing dict key parameter: '{key}'.") # type: ignore[attr-defined]
result["error_type"] = "value_error:dict_key"
flag = False
break
if flag:
return {"valid": True, "error": []}
return result
def list_dict_checker(param: str, model_output: list, possible_answers: list):
# This function takes in a list of dictionaries and checks if each dictionary is valid
# The order of the dictionaries in the list must match the order of the possible answers
result = {"valid": False, "error": [], "error_type": "list_dict_checker:unclear"}
for answer_index in range(len(possible_answers)):
flag = True # True means so far, all dictionaries are valid
# Only proceed if the number of dictionaries in the list matches the number of dictionaries in the possible answers
if len(model_output) != len(possible_answers[answer_index]):
result["valid"] = False
result["error"] = ["Wrong number of dictionaries in the list."]
result["error_type"] = "value_error:list_dict_count"
flag = False
continue
for dict_index in range(len(model_output)):
result = dict_checker(
param,
model_output[dict_index],
[possible_answers[answer_index][dict_index]],
)
if not result["valid"]:
flag = False
break
if flag:
return {"valid": True, "error": []}
return result
def simple_function_checker(
func_description: dict,
model_output: dict,
possible_answer: dict,
language: str,
model_name: str,
):
possible_answer = list(possible_answer.values())[0]
# Extract function name and parameters details
func_name = func_description["name"]
param_details = func_description["parameters"]["properties"]
required_params = func_description["parameters"]["required"]
# Initialize a result dictionary
result = {
"valid": True,
"error": [],
"error_type": "simple_function_checker:unclear",
}
# Check if function name matches
if func_name not in model_output:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Function name {repr(func_name)} not found in model output."
)
result["error_type"] = "simple_function_checker:wrong_func_name"
return result
model_params = model_output[func_name]
# Check for required parameters in model output
for param in required_params:
if param not in model_params:
result["valid"] = False
result["error"].append(f"Missing required parameter: {repr(param)}.") # type: ignore[attr-defined]
result["error_type"] = "simple_function_checker:missing_required"
return result
# Validate types and values for each parameter in model output
for param, value in model_params.items():
if param not in param_details or param not in possible_answer:
result["valid"] = False
result["error"].append(f"Unexpected parameter: {repr(param)}.") # type: ignore[attr-defined]
result["error_type"] = "simple_function_checker:unexpected_param"
return result
full_param_details = param_details[param]
expected_type_description = full_param_details["type"] # This is a string
is_variable = False
nested_type_converted = None
if language == "Java":
from evals.utils.bfcl.java_type_converter import java_type_converter
expected_type_converted = JAVA_TYPE_CONVERSION[expected_type_description]
if expected_type_description in JAVA_TYPE_CONVERSION:
if type(value) != str:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Incorrect type for parameter {repr(param)}. Expected type String, got {type(value).__name__}. Parameter value: {repr(value)}."
)
result["error_type"] = "type_error:java"
return result
if expected_type_description in NESTED_CONVERSION_TYPE_LIST:
nested_type = param_details[param]["items"]["type"]
nested_type_converted = JAVA_TYPE_CONVERSION[nested_type]
value = java_type_converter(value, expected_type_description, nested_type)
else:
value = java_type_converter(value, expected_type_description)
elif language == "JavaScript":
from evals.utils.bfcl.js_type_converter import js_type_converter
expected_type_converted = JS_TYPE_CONVERSION[expected_type_description]
if expected_type_description in JS_TYPE_CONVERSION:
if type(value) != str:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Incorrect type for parameter {repr(param)}. Expected type String, got {type(value).__name__}. Parameter value: {repr(value)}."
)
result["error_type"] = "type_error:js"
return result
if expected_type_description in NESTED_CONVERSION_TYPE_LIST:
nested_type = param_details[param]["items"]["type"]
nested_type_converted = JS_TYPE_CONVERSION[nested_type]
value = js_type_converter(value, expected_type_description, nested_type)
else:
value = js_type_converter(value, expected_type_description)
elif language == "Python":
expected_type_converted = PYTHON_TYPE_MAPPING[expected_type_description]
if expected_type_description in PYTHON_NESTED_TYPE_CHECK_LIST:
nested_type = param_details[param]["items"]["type"]
nested_type_converted = PYTHON_TYPE_MAPPING[nested_type]
# We convert all tuple value to list when the expected type is tuple.
# The conversion is necessary because any tuple in the possible answer would become a list after being processed through json.dump() and json.load().
# This does introduce some false positive (eg, when the model provides a list value instead of tuple). We hope to find a better solution in the future.
if expected_type_description == "tuple" and type(value) == tuple:
value = list(value)
# Allow python auto conversion from int to float
if language == "Python" and expected_type_description == "float" and type(value) == int:
value = float(value)
# Type checking
# In fact, we only check for Python here.
# Type check for other languages are handled by the type converter, and so their value (after conversion) is always correct.
type_check_result = type_checker(
param,
value,
possible_answer[param],
expected_type_description,
expected_type_converted,
nested_type_converted,
)
is_variable = type_check_result["is_variable"]
if not type_check_result["valid"]:
return type_check_result
# It doesn't make sense to special handle dictionaries and list of dictionaries if the value is a variable.
# We can just treat the variable as a string and use the normal flow.
if not is_variable:
# Special handle for dictionaries
if expected_type_converted == dict:
result = dict_checker(param, value, possible_answer[param])
if not result["valid"]:
return result
continue
# Special handle for list of dictionaries
elif expected_type_converted == list and nested_type_converted == dict:
result = list_dict_checker(param, value, possible_answer[param])
if not result["valid"]:
return result
continue
# Special handle for strings
elif expected_type_converted == str:
# We don't check for case sensitivity for string, as long as it's not a variable
result = string_checker(param, value, possible_answer[param])
if not result["valid"]:
return result
continue
elif expected_type_converted == list:
result = list_checker(param, value, possible_answer[param])
if not result["valid"]:
return result
continue
# Check if the value is within the possible answers
if value not in possible_answer[param]:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Invalid value for parameter {repr(param)}: {repr(value)}. Expected one of {possible_answer[param]}."
)
result["error_type"] = "value_error:others"
return result
# Check for optional parameters not provided but allowed
for param in possible_answer:
if param not in model_params and "" not in possible_answer[param]:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Optional parameter {repr(param)} not provided and not marked as optional."
)
result["error_type"] = "simple_function_checker:missing_optional"
return result
return result
def parallel_function_checker_enforce_order(
func_descriptions: list,
model_output: list,
possible_answers: dict,
language: str,
model_name: str,
):
if len(model_output) != len(possible_answers):
return {
"valid": False,
"error": ["Wrong number of functions."],
"error_type": "parallel_function_checker_enforce_order:wrong_count",
}
func_name_list = list(possible_answers.keys())
possible_answers_list = []
for key, value in possible_answers.items():
possible_answers_list.append({key: value})
for i in range(len(possible_answers_list)):
func_description = find_description(func_descriptions, func_name_list[i])
result = simple_function_checker(
func_description,
model_output[i],
possible_answers_list[i],
language,
model_name,
)
if not result["valid"]:
return result
return {"valid": True, "error": []}
def parallel_function_checker_no_order(
func_descriptions: list,
model_output: list,
possible_answers: list,
language: str,
model_name: str,
):
if len(model_output) != len(possible_answers):
return {
"valid": False,
"error": ["Wrong number of functions."],
"error_type": "parallel_function_checker_no_order:wrong_count",
}
matched_indices = []
# We go throught the possible answers one by one, and eliminate the model output that matches the possible answer
# It must be this way because we need ground truth to fetch the correct function description
for i in range(len(possible_answers)):
# possible_answers[i] is a dictionary with only one key
func_name_expected = list(possible_answers[i].keys())[0]
func_description = find_description(func_descriptions, func_name_expected)
all_errors = []
for index in range(len(model_output)):
if index in matched_indices:
continue
result = simple_function_checker(
func_description,
model_output[index],
possible_answers[i],
language,
model_name,
)
if result["valid"]:
matched_indices.append(index)
break
else:
all_errors.append(
{
f"Model Result Index {index}": {
"sub_error": result["error"],
"sub_error_type": result["error_type"],
"model_output_item": model_output[index],
"possible_answer_item": possible_answers[i],
}
}
)
if not result["valid"]:
considered_indices = [i for i in range(len(model_output)) if i not in matched_indices]
all_errors.insert(
0,
f"Could not find a matching function among index {considered_indices} of model output for index {i} of possible answers.", # type: ignore[arg-type]
)
return {
"valid": False,
"error": all_errors,
"error_type": "parallel_function_checker_no_order:cannot_find_match",
}
return {"valid": True, "error": []}
def multiple_function_checker(
func_descriptions: list,
model_output: list,
possible_answers: list,
language: str,
model_name: str,
):
if len(model_output) != len(possible_answers):
return {
"valid": False,
"error": ["Wrong number of functions."],
"error_type": "multiple_function_checker:wrong_count",
}
# possible_answers is a list of only one dictionary with only one key
func_name_expected = list(possible_answers[0].keys())[0]
func_description = find_description(func_descriptions, func_name_expected)
return simple_function_checker(
func_description,
model_output[0],
possible_answers[0],
language,
model_name,
)
def patten_matcher(exec_output, expected_result, function_call, is_sanity_check):
result = {"valid": True, "error": [], "error_type": "executable_checker:unclear"}
if type(exec_output) != type(expected_result):
return {
"valid": False,
"error": [
f"Wrong execution result type for {repr(function_call)}. Expected type: {type(expected_result)}, but got: {type(exec_output)}."
],
"error_type": "executable_checker:wrong_result_type",
"model_executed_output": exec_output,
}
if type(exec_output) == dict:
# We loose the requirement for the sanity check as the expected result used in the sanity check might not be the most up-to-date one.
# This happens when the key is a timestamp or a random number.
if is_sanity_check:
if len(exec_output) != len(expected_result):
return {
"valid": False,
"error": [
f"Wrong execution result pattern for {repr(function_call)}. Expect type Dict, but wrong number of elements in the output. Expected length: {len(expected_result)}, but got: {len(exec_output)}."
],
"error_type": "executable_checker:wrong_result_type:dict_length",
"model_executed_output": exec_output,
}
else:
return result
for key, value in expected_result.items():
if key not in exec_output:
return {
"valid": False,
"error": [
f"Wrong execution result pattern for {repr(function_call)}. Expect type Dict, but key {repr(key)} not found in the model output."
],
"error_type": "executable_checker:wrong_result_type:dict_key_not_found",
"model_executed_output": exec_output,
}
for key, value in exec_output.items():
if key not in expected_result:
return {
"valid": False,
"error": [
f"Wrong execution result pattern for {repr(function_call)}. Expect type Dict, but key {repr(key)} not expected in the model output."
],
"error_type": "executable_checker:wrong_result_type:dict_extra_key",
"model_executed_output": exec_output,
}
if type(exec_output) == list:
if len(exec_output) != len(expected_result):
return {
"valid": False,
"error": [
f"Wrong execution result pattern for {repr(function_call)}. Expect type list, but wrong number of elements in the output. Expected length: {len(expected_result)}, but got: {len(exec_output)}."
],
"error_type": "executable_checker:wrong_result_type:list_length",
"model_executed_output": exec_output,
}
return result
#### Helper functions for Exec ####
def executable_checker_simple(
function_call: str,
expected_result,
expected_result_type: str,
is_sanity_check=False,
):
result = {"valid": True, "error": [], "error_type": "executable_checker:unclear"}
exec_dict: Any = {}
try:
exec(
"from executable_python_function import *" + "\nresult=" + function_call,
exec_dict,
)
exec_output = exec_dict["result"]
except NoAPIKeyError as e:
raise e
except Exception as e:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Error in execution: {repr(function_call)}. Error: {str(e)}"
)
result["error_type"] = "executable_checker:execution_error"
return result
# We need to special handle the case where the execution result is a tuple and convert it to a list
# Because when json is stored, the tuple is converted to a list, and so the expected result is a list when loaded from json
if isinstance(exec_output, tuple):
exec_output = list(exec_output)
if expected_result_type == "exact_match":
if exec_output != expected_result:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Wrong execution result for {repr(function_call)}. Expected: {expected_result}, but got: {exec_output}."
)
result["error_type"] = "executable_checker:wrong_result"
result["model_executed_output"] = exec_output
return result
elif expected_result_type == "real_time_match":
# Allow for 5% difference
if (type(expected_result) == float or type(expected_result) == int) and (
type(exec_output) == float or type(exec_output) == int
):
if not (
expected_result * (1 - REAL_TIME_MATCH_ALLOWED_DIFFERENCE)
<= exec_output
<= expected_result * (1 + REAL_TIME_MATCH_ALLOWED_DIFFERENCE)
):
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Wrong execution result for {repr(function_call)}. Expected: {expected_result}, but got: {exec_output}. {REAL_TIME_MATCH_ALLOWED_DIFFERENCE * 100}% difference allowed."
)
result["error_type"] = "executable_checker:wrong_result_real_time"
result["model_executed_output"] = exec_output
return result
else:
result["valid"] = False
result["error"].append( # type: ignore[attr-defined]
f"Wrong execution result for {repr(function_call)}. Expected: {expected_result}, but got: {exec_output}. Type needs to be float or int for real time match criteria."
)
result["error_type"] = "executable_checker:wrong_result_real_time"
result["model_executed_output"] = exec_output
return result
else:
# structural match
pattern_match_result = patten_matcher(exec_output, expected_result, function_call, is_sanity_check)
if not pattern_match_result["valid"]:
return pattern_match_result
return result
def executable_checker_parallel_no_order(
decoded_result: list, expected_exec_result: list, expected_exec_result_type: list
):
if len(decoded_result) != len(expected_exec_result):
return {
"valid": False,
"error": [
f"Wrong number of functions provided. Expected {len(expected_exec_result)}, but got {len(decoded_result)}."
],
"error_type": "value_error:exec_result_count",
}
matched_indices = []
for i in range(len(expected_exec_result)):
all_errors = []
for index in range(len(decoded_result)):
if index in matched_indices:
continue
result = executable_checker_simple(
decoded_result[index],
expected_exec_result[i],
expected_exec_result_type[i],
False,
)
if result["valid"]:
matched_indices.append(index)
break
else:
all_errors.append(
{
f"Model Result Index {index}": {
"sub_error": result["error"],
"sub_error_type": result["error_type"],
"model_executed_output": (
result["model_executed_output"] if "model_executed_output" in result else None
),
}
}
)
if not result["valid"]:
considered_indices = [i for i in range(len(decoded_result)) if i not in matched_indices]
all_errors.insert(
0,
f"Could not find a matching function among index {considered_indices} of model output for index {i} of possible answers.", # type: ignore[arg-type]
)
return {
"valid": False,
"error": all_errors,
"error_type": "executable_checker:cannot_find_match",
}
return {"valid": True, "error": [], "error_type": "executable_checker:unclear"}
#### Main function ####
def executable_checker_rest(func_call, idx):
# Move this here for now to avoid needing to read this file / fix paths to be relative to dataset_dir. Fix when it's actually needed / used.
EVAL_GROUND_TRUTH_PATH = "/mnt/wsfuse/fair_llm_v2/datasets/eval/bfcl/rest-eval-response_v5.jsonl" # Ground truth file for v5 for rest execution
with open(EVAL_GROUND_TRUTH_PATH, "r") as f:
EVAL_GROUND_TRUTH = f.readlines()
if "https://geocode.maps.co" in func_call:
time.sleep(2)
if "requests_get" in func_call:
func_call = func_call.replace("requests_get", "requests.get")
try:
response = eval(func_call)
except Exception as e:
return {
"valid": False,
"error": [f"Execution failed. {str(e)}"],
"error_type": "executable_checker_rest:execution_error",
}
try:
if response.status_code == 200:
eval_GT_json = json.loads(EVAL_GROUND_TRUTH[idx])
try:
if isinstance(eval_GT_json, dict):
if isinstance(response.json(), dict):
if set(eval_GT_json.keys()) == set(response.json().keys()):
return {"valid": True, "error": [], "error_type": ""}
return {
"valid": False,
"error": ["Key inconsistency"],
"error_type": "executable_checker_rest:wrong_key",
}
return {
"valid": False,
"error": [f"Expected dictionary, but got {type(response.json())}"],
"error_type": "executable_checker_rest:wrong_type",
}
elif isinstance(eval_GT_json, list):
if isinstance(response.json(), list):
if len(eval_GT_json) != len(response.json()):
return {
"valid": False,
"error": [f"Response list length inconsistency."],
"error_type": "value_error:exec_result_rest_count",
}
else:
for i in range(len(eval_GT_json)):
if set(eval_GT_json[i].keys()) != set(response.json()[i].keys()):
return {
"valid": False,
"error": [f"Key inconsistency"],
"error_type": "executable_checker_rest:wrong_key",
}
return {"valid": True, "error": []}
else:
return {
"valid": False,
"error": [f"Expected list, but got {type(response.json())}"],
"error_type": "executable_checker_rest:wrong_type",
}
return {
"valid": False,
"error": [f"Expected dict or list, but got {type(response.json())}"],
"error_type": "executable_checker_rest:wrong_type",
}
except Exception as e:
return {
"valid": False,
"error": [
f"Error in execution and type checking. Status code: {response.status_code}. Error: {str(e)}"
],
"error_type": "executable_checker_rest:response_format_error",
}
else:
return {
"valid": False,
"error": [f"Execution result status code is not 200, got {response.status_code}"],
"error_type": "executable_checker_rest:wrong_status_code",
}
except Exception as e:
return {
"valid": False,
"error": [f"Cannot get status code of the response. Error: {str(e)}"],
"error_type": "executable_checker_rest:cannot_get_status_code",
}
def ast_checker(func_description, model_output, possible_answer, language, test_category, model_name):
if "parallel" in test_category:
return parallel_function_checker_no_order(func_description, model_output, possible_answer, language, model_name)
elif "multiple" in test_category:
return multiple_function_checker(func_description, model_output, possible_answer, language, model_name)
else:
if len(model_output) != 1:
return {
"valid": False,
"error": ["Wrong number of functions."],
"error_type": "simple_function_checker:wrong_count",
}
return simple_function_checker(
func_description[0],
model_output[0],
possible_answer[0],
language,
model_name,
)
def exec_checker(decoded_result: list, func_description: dict, test_category: str):
if "multiple" in test_category or "parallel" in test_category:
return executable_checker_parallel_no_order(
decoded_result,
func_description["execution_result"],
func_description["execution_result_type"],
)
else:
if len(decoded_result) != 1:
return {
"valid": False,
"error": ["Wrong number of functions."],
"error_type": "simple_exec_checker:wrong_count",
}
return executable_checker_simple(
decoded_result[0],
func_description["execution_result"][0],
func_description["execution_result_type"][0],
False,
)
def is_empty_output(decoded_output):
# This function is a patch to the ast decoder for relevance detection
# Sometimes the ast decoder will parse successfully, but the input doens't really have a function call
# [], [{}], and anything that is not in function calling format is considered empty (and thus should be marked as correct)
if not is_function_calling_format_output(decoded_output):
return True
if len(decoded_output) == 0:
return True
if len(decoded_output) == 1 and len(decoded_output[0]) == 0:
return True
def is_function_calling_format_output(decoded_output):
# Ensure the output is a list of dictionaries
if type(decoded_output) == list:
for item in decoded_output:
if type(item) != dict:
return False
return True
return False

View file

@ -0,0 +1,40 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Tree-sitter changes its API with unfortunate frequency. Modules that need it should
import it from here so that we can centrally manage things as necessary.
"""
# These currently work with tree-sitter 0.23.0
# NOTE: Don't import tree-sitter or any of the language modules in the main module
# because not all environments have them. Import lazily inside functions where needed.
import importlib
import typing
if typing.TYPE_CHECKING:
import tree_sitter
def get_language(language: str) -> "tree_sitter.Language":
import tree_sitter
language_module_name = f"tree_sitter_{language}"
try:
language_module = importlib.import_module(language_module_name)
except ModuleNotFoundError as exc:
raise ValueError(
f"Language {language} is not found. Please install the tree-sitter-{language} package."
) from exc
return tree_sitter.Language(language_module.language())
def get_parser(language: str, **kwargs) -> "tree_sitter.Parser":
import tree_sitter
lang = get_language(language)
return tree_sitter.Parser(lang, **kwargs)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,330 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from typing import Sequence
from llama_stack.providers.utils.scoring.basic_scoring_utils import time_limit
# from minerva
SUBSTITUTIONS = [
("an ", ""),
("a ", ""),
(".$", "$"),
("\\$", ""),
(r"\ ", ""),
(" ", ""),
("mbox", "text"),
(",\\text{and}", ","),
("\\text{and}", ","),
("\\text{m}", "\\text{}"),
]
REMOVED_EXPRESSIONS = [
"square",
"ways",
"integers",
"dollars",
"mph",
"inches",
"ft",
"hours",
"km",
"units",
"\\ldots",
"sue",
"points",
"feet",
"minutes",
"digits",
"cents",
"degrees",
"cm",
"gm",
"pounds",
"meters",
"meals",
"edges",
"students",
"childrentickets",
"multiples",
"\\text{s}",
"\\text{.}",
"\\text{\ns}",
"\\text{}^2",
"\\text{}^3",
"\\text{\n}",
"\\text{}",
r"\mathrm{th}",
r"^\circ",
r"^{\circ}",
r"\;",
r",\!",
"{,}",
'"',
"\\dots",
]
def try_evaluate_frac(expression: str, fmt: str = "0.2e") -> str:
if isinstance(expression, float):
return expression
new_expression = f"{expression}"
regex = re.compile(r"\\frac{([^}]+)}{([^}]+)}")
for match in re.finditer(regex, expression):
try:
value = float(match.group(1)) / float(match.group(2))
new_expression = new_expression.replace(
match.group(),
f"{{value:{fmt}}}".format(value=value),
1,
)
except Exception:
continue
return new_expression
def try_evaluate_latex(expression: str, fmt: str = ".2e") -> str:
try:
with time_limit(seconds=5):
from sympy.parsing.latex import parse_latex
value = parse_latex(expression).evalf() # type: ignore
return f"{{value:{fmt}}}".format(value=value)
except Exception:
return expression
def first_answer(text: str, markers: Sequence[str] = ("Q:", "A:")) -> str:
for marker in markers:
text = text.split(marker)[0]
return text
def extract_result_from_boxed(answer: str) -> str:
box_start = "\\boxed"
# format is `\\boxed <value>$` or `\\boxed{<value>}`, with potential white spaces framing `<value>`
start = answer.rfind(box_start)
if start < 0:
return ""
answer = answer[start + len(box_start) :].strip()
ends_with_curly = answer.startswith("{")
i = 0
open_braces = 0
while i < len(answer):
if answer[i] == "{":
open_braces += 1
elif answer[i] == "}":
open_braces -= 1
if open_braces == 0:
if ends_with_curly:
answer = answer[: i + 1].strip()
break
elif answer[i] == "$":
answer = answer[:i].strip()
break
i += 1
else:
return ""
# remove extra curly braces
while True:
if answer.startswith("{") and answer.endswith("}"):
answer = answer[1:-1].strip()
else:
break
return answer
# from minerva paper + _normalise_result from xavierm
def normalize_final_answer(final_answer: str, regex_pattern: str, match_first: bool = True) -> str:
"""Extract and normalize a final answer to a quantitative reasoning question."""
match = re.findall(regex_pattern, final_answer)
extraction: str
if len(match) > 0:
if match_first:
extraction = match[0]
else:
extraction = match[-1]
else:
extraction = extract_result_from_boxed(final_answer)
if len(extraction) == 0:
return final_answer
else:
final_answer = extraction
final_answer = final_answer.split("=")[-1]
for before, after in SUBSTITUTIONS:
final_answer = final_answer.replace(before, after)
for expr in REMOVED_EXPRESSIONS:
final_answer = final_answer.replace(expr, "")
# Extract answer that is in LaTeX math, is bold,
# is surrounded by a box, etc.
final_answer = re.sub(r"(.*?)(\$)(.*?)(\$)(.*)", "$\\3$", final_answer)
final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)
# Normalize shorthand TeX:
# \fracab -> \frac{a}{b}
# \frac{abc}{bef} -> \frac{abc}{bef}
# \fracabc -> \frac{a}{b}c
# \sqrta -> \sqrt{a}
# \sqrtab -> sqrt{a}b
final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
final_answer = final_answer.replace("$", "")
# Normalize 100,000 -> 100000
if final_answer.replace(",", "").isdigit():
final_answer = final_answer.replace(",", "")
# If the final answer is a single letter in parentheses, remove the parentheses
# Example: (a) -> a (but not (ab) -> ab)
if re.match(r"\([a-zA-Z]\)", final_answer):
final_answer = final_answer[1]
return _normalise_result(final_answer)
def _normalise_result(string: str) -> str:
# linebreaks
string = string.replace("\n", "")
# remove inverse spaces
string = string.replace("\\!", "")
# replace \\ with \
string = string.replace("\\\\", "\\")
# replace tfrac and dfrac with frac
string = string.replace("cfrac", "frac")
string = string.replace("tfrac", "frac")
string = string.replace("dfrac", "frac")
# remove \left and \right
string = string.replace("\\left", "")
string = string.replace("\\le", "")
string = string.replace("\\right", "")
# Remove circ (degrees)
string = string.replace("^{\\circ}", "")
string = string.replace("^\\circ", "")
# remove dollar signs
string = string.replace("\\$", "")
# remove units (on the right)
string = _remove_right_units(string)
# remove percentage
string = string.replace("\\%", "")
string = string.replace(r"\%", "")
# " 0." equivalent to " ." and "{0." equivalent to "{." Alternatively, add "0" if "." is the start of the string
string = string.replace(" .", " 0.")
string = string.replace("{.", "{0.")
# if empty, return empty string
if len(string) == 0:
return string
if string[0] == ".":
string = "0" + string
# to consider: get rid of e.g. "k = " or "q = " at beginning
string = string.split("=")[-1]
# fix sqrt3 --> sqrt{3}
string = _fix_sqrt(string)
# remove spaces
string = string.replace(" ", "")
# \frac1b or \frac12 --> \frac{1}{b} and \frac{1}{2}, etc. Even works with \frac1{72} (but not \frac{72}1). Also does a/b --> \\frac{a}{b}
string = _fix_fracs(string)
# manually change 0.5 --> \frac{1}{2}
if string == "0.5":
string = "\\frac{1}{2}"
# NOTE: X/Y changed to \frac{X}{Y} in dataset, but in simple cases fix in case the model output is X/Y
string = _fix_a_slash_b(string)
return string
def _remove_right_units(string: str) -> str:
# "\\text{ " only ever occurs (at least in the val set) when describing units
try:
if "\\text{ " in string:
splits = string.split("\\text{ ")
assert len(splits) == 2
return splits[0]
else:
return string
except AssertionError:
return string
def _fix_sqrt(string: str) -> str:
if "\\sqrt" not in string:
return string
splits = string.split("\\sqrt")
new_string = splits[0]
for split in splits[1:]:
if len(split) == 0:
return string
if split[0] != "{":
a = split[0]
new_substr = "\\sqrt{" + a + "}" + split[1:]
else:
new_substr = "\\sqrt" + split
new_string += new_substr
return new_string
def _fix_fracs(string: str) -> str:
substrs = string.split("\\frac")
new_str = substrs[0]
if len(substrs) > 1:
substrs = substrs[1:]
for substr in substrs:
new_str += "\\frac"
if len(substr) == 0:
return string
if substr[0] == "{":
new_str += substr
else:
try:
assert len(substr) >= 2
except AssertionError:
return string
a = substr[0]
b = substr[1]
if b != "{":
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}{" + b + "}" + post_substr
else:
new_str += "{" + a + "}{" + b + "}"
else:
if len(substr) > 2:
post_substr = substr[2:]
new_str += "{" + a + "}" + b + post_substr
else:
new_str += "{" + a + "}" + b
string = new_str
return string
def _fix_a_slash_b(string: str) -> str:
if len(string.split("/")) != 2:
return string
a = string.split("/")[0]
b = string.split("/")[1]
try:
ia = int(a)
ib = int(b)
assert string == "{}/{}".format(ia, ib)
new_string = "\\frac{" + str(ia) + "}{" + str(ib) + "}"
return new_string
except (ValueError, AssertionError):
return string

View file

@ -3,11 +3,11 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import BraintrustScoringConfig
@ -18,7 +18,7 @@ class BraintrustProviderDataValidator(BaseModel):
async def get_provider_impl(
config: BraintrustScoringConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .braintrust import BraintrustScoringImpl

View file

@ -167,11 +167,11 @@ class BraintrustScoringImpl(
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
limit=-1,
)
res = await self.score(input_rows=all_rows.rows, scoring_functions=scoring_functions)
res = await self.score(input_rows=all_rows.data, scoring_functions=scoring_functions)
if save_results_dataset:
# TODO: persist and register dataset on to server for reading
# self.datasets_api.register_dataset()

View file

@ -3,16 +3,16 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from llama_stack.distribution.datatypes import Api
from .config import LlmAsJudgeScoringConfig
async def get_provider_impl(
config: LlmAsJudgeScoringConfig,
deps: Dict[Api, ProviderSpec],
deps: Dict[Api, Any],
):
from .scoring import LlmAsJudgeScoringImpl

View file

@ -3,7 +3,12 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class LlmAsJudgeScoringConfig(BaseModel): ...
class LlmAsJudgeScoringConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -72,12 +72,12 @@ class LlmAsJudgeScoringImpl(
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
limit=-1,
)
res = await self.score(
input_rows=all_rows.rows,
input_rows=all_rows.data,
scoring_functions=scoring_functions,
)
if save_results_dataset:

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
import json
from datetime import datetime
from datetime import datetime, timezone
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanProcessor
@ -34,7 +34,7 @@ class ConsoleSpanProcessor(SpanProcessor):
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.utcfromtimestamp(span.start_time / 1e9).strftime("%H:%M:%S.%f")[:-3]
timestamp = datetime.fromtimestamp(span.start_time / 1e9, tz=timezone.utc).strftime("%H:%M:%S.%f")[:-3]
print(
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
@ -46,7 +46,7 @@ class ConsoleSpanProcessor(SpanProcessor):
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.utcfromtimestamp(span.end_time / 1e9).strftime("%H:%M:%S.%f")[:-3]
timestamp = datetime.fromtimestamp(span.end_time / 1e9, tz=timezone.utc).strftime("%H:%M:%S.%f")[:-3]
span_context = (
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
@ -74,7 +74,7 @@ class ConsoleSpanProcessor(SpanProcessor):
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
for event in span.events:
event_time = datetime.utcfromtimestamp(event.timestamp / 1e9).strftime("%H:%M:%S.%f")[:-3]
event_time = datetime.fromtimestamp(event.timestamp / 1e9, tz=timezone.utc).strftime("%H:%M:%S.%f")[:-3]
severity = event.attributes.get("severity", "info")
message = event.attributes.get("message", event.name)

View file

@ -8,7 +8,7 @@ import json
import os
import sqlite3
import threading
from datetime import datetime
from datetime import datetime, timezone
from opentelemetry.sdk.trace import SpanProcessor
from opentelemetry.trace import Span
@ -124,8 +124,8 @@ class SQLiteSpanProcessor(SpanProcessor):
trace_id,
service_name,
(span_id if not parent_span_id else None),
datetime.fromtimestamp(span.start_time / 1e9).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9).isoformat(),
datetime.fromtimestamp(span.start_time / 1e9, timezone.utc).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9, timezone.utc).isoformat(),
),
)
@ -143,8 +143,8 @@ class SQLiteSpanProcessor(SpanProcessor):
trace_id,
parent_span_id,
span.name,
datetime.fromtimestamp(span.start_time / 1e9).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9).isoformat(),
datetime.fromtimestamp(span.start_time / 1e9, timezone.utc).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9, timezone.utc).isoformat(),
json.dumps(dict(span.attributes)),
span.status.status_code.name,
span.kind.name,
@ -161,7 +161,7 @@ class SQLiteSpanProcessor(SpanProcessor):
(
span_id,
event.name,
datetime.fromtimestamp(event.timestamp / 1e9).isoformat(),
datetime.fromtimestamp(event.timestamp / 1e9, timezone.utc).isoformat(),
json.dumps(dict(event.attributes)),
),
)

View file

@ -73,6 +73,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
def __init__(self, config: TelemetryConfig, deps: Dict[str, Any]) -> None:
self.config = config
self.datasetio_api = deps.get(Api.datasetio)
self.meter = None
resource = Resource.create(
{
@ -171,6 +172,8 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
return _GLOBAL_STORAGE["gauges"][name]
def _log_metric(self, event: MetricEvent) -> None:
if self.meter is None:
return
if isinstance(event.value, int):
counter = self._get_or_create_counter(event.metric, event.unit)
counter.add(event.value, attributes=event.attributes)

View file

@ -1,12 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class SampleConfig(BaseModel):
host: str = "localhost"
port: int = 9999

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.telemetry import Telemetry
from .config import SampleConfig
class SampleTelemetryImpl(Telemetry):
def __init__(self, config: SampleConfig):
self.config = config
async def initialize(self):
pass

View file

@ -4,12 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from .config import CodeInterpreterToolConfig
__all__ = ["CodeInterpreterToolConfig", "CodeInterpreterToolRuntimeImpl"]
async def get_provider_impl(config: CodeInterpreterToolConfig, _deps):
async def get_provider_impl(config: CodeInterpreterToolConfig, _deps: Dict[str, Any]):
from .code_interpreter import CodeInterpreterToolRuntimeImpl
impl = CodeInterpreterToolRuntimeImpl(config)

View file

@ -76,6 +76,7 @@ class CodeExecutionRequest:
only_last_cell_fail: bool = True
seed: int = 0
strip_fpaths_in_stderr: bool = True
use_bwrap: bool = True
class CodeExecutor:
@ -103,8 +104,6 @@ _set_seeds()\
script = "\n\n".join([seeds_prefix] + [CODE_ENV_PREFIX] + scripts)
with tempfile.TemporaryDirectory() as dpath:
bwrap_prefix = "bwrap " + generate_bwrap_command(bind_dirs=[dpath])
cmd = [*bwrap_prefix.split(), sys.executable, "-c", script]
code_fpath = os.path.join(dpath, "code.py")
with open(code_fpath, "w") as f:
f.write(script)
@ -118,6 +117,13 @@ _set_seeds()\
MPLBACKEND="module://matplotlib_custom_backend",
PYTHONPATH=f"{DIRNAME}:{python_path}",
)
if req.use_bwrap:
bwrap_prefix = "bwrap " + generate_bwrap_command(bind_dirs=[dpath])
cmd = [*bwrap_prefix.split(), sys.executable, "-c", script]
else:
cmd = [sys.executable, "-c", script]
stdout, stderr, returncode = do_subprocess(
cmd=cmd,
env=env,
@ -162,7 +168,7 @@ def process_matplotlib_response(response, matplotlib_dump_dir: str):
image_paths = []
for i, img in enumerate(images):
# create new directory for each day to better organize data:
dump_dname = datetime.today().strftime("%Y-%m-%d")
dump_dname = datetime.today().strftime("%Y-%m-%d") # noqa: DTZ002 - we don't care about timezones here since we are displaying the date
dump_dpath = Path(matplotlib_dump_dir, dump_dname)
dump_dpath.mkdir(parents=True, exist_ok=True)
# save image into a file

View file

@ -5,7 +5,9 @@
# the root directory of this source tree.
import asyncio
import logging
import os
import tempfile
from typing import Any, Dict, List, Optional
@ -36,7 +38,7 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
async def initialize(self):
pass
async def register_tool(self, tool: Tool):
async def register_tool(self, tool: Tool) -> None:
pass
async def unregister_tool(self, tool_id: str) -> None:
@ -61,8 +63,10 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
script = kwargs["code"]
req = CodeExecutionRequest(scripts=[script])
res = self.code_executor.execute(req)
# Use environment variable to control bwrap usage
force_disable_bwrap = os.environ.get("DISABLE_CODE_SANDBOX", "").lower() in ("1", "true", "yes")
req = CodeExecutionRequest(scripts=[script], use_bwrap=not force_disable_bwrap)
res = await asyncio.to_thread(self.code_executor.execute, req)
pieces = [res["process_status"]]
for out_type in ["stdout", "stderr"]:
res_out = res[out_type]

View file

@ -4,8 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class CodeInterpreterToolConfig(BaseModel):
pass
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -4,8 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class RagToolRuntimeConfig(BaseModel):
pass
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {}

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.datatypes import Api
from .config import ChromaVectorIOConfig
async def get_provider_impl(config: ChromaVectorIOConfig, deps: Dict[Api, ProviderSpec]):
async def get_provider_impl(config: ChromaVectorIOConfig, deps: Dict[Api, Any]):
from llama_stack.providers.remote.vector_io.chroma.chroma import (
ChromaVectorIOAdapter,
)

View file

@ -13,5 +13,5 @@ class ChromaVectorIOConfig(BaseModel):
db_path: str
@classmethod
def sample_config(cls) -> Dict[str, Any]:
return {"db_path": "{env.CHROMADB_PATH}"}
def sample_run_config(cls, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any) -> Dict[str, Any]:
return {"db_path": db_path}

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.datatypes import Api
from .config import FaissVectorIOConfig
async def get_provider_impl(config: FaissVectorIOConfig, deps: Dict[Api, ProviderSpec]):
async def get_provider_impl(config: FaissVectorIOConfig, deps: Dict[Api, Any]):
from .faiss import FaissVectorIOAdapter
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.datatypes import Api
from .config import MilvusVectorIOConfig
async def get_provider_impl(config: MilvusVectorIOConfig, deps: Dict[Api, ProviderSpec]):
async def get_provider_impl(config: MilvusVectorIOConfig, deps: Dict[Api, Any]):
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusVectorIOAdapter
impl = MilvusVectorIOAdapter(config, deps[Api.inference])

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import QdrantVectorIOConfig
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: Dict[Api, ProviderSpec]):
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
return {
"path": "${env.QDRANT_PATH:~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
}

View file

@ -4,14 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from typing import Any, Dict
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.datatypes import Api
from .config import SQLiteVectorIOConfig
async def get_provider_impl(config: SQLiteVectorIOConfig, deps: Dict[Api, ProviderSpec]):
async def get_provider_impl(config: SQLiteVectorIOConfig, deps: Dict[Api, Any]):
from .sqlite_vec import SQLiteVecVectorIOAdapter
assert isinstance(config, SQLiteVectorIOConfig), f"Unexpected config type: {type(config)}"

View file

@ -7,11 +7,9 @@
from typing import List
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
InlineProviderSpec,
ProviderSpec,
remote_provider_spec,
)
from llama_stack.providers.utils.kvstore import kvstore_dependencies
@ -39,13 +37,4 @@ def available_providers() -> List[ProviderSpec]:
Api.tool_groups,
],
),
remote_provider_spec(
api=Api.agents,
adapter=AdapterSpec(
adapter_type="sample",
pip_packages=[],
module="llama_stack.providers.remote.agents.sample",
config_class="llama_stack.providers.remote.agents.sample.SampleConfig",
),
),
]

View file

@ -14,7 +14,7 @@ def available_providers() -> List[ProviderSpec]:
InlineProviderSpec(
api=Api.eval,
provider_type="inline::meta-reference",
pip_packages=[],
pip_packages=["tree_sitter", "pythainlp", "langdetect", "emoji", "nltk"],
module="llama_stack.providers.inline.eval.meta_reference",
config_class="llama_stack.providers.inline.eval.meta_reference.MetaReferenceEvalConfig",
api_dependencies=[

View file

@ -68,15 +68,6 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.inline.inference.sentence_transformers",
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="sample",
pip_packages=[],
module="llama_stack.providers.remote.inference.sample",
config_class="llama_stack.providers.remote.inference.sample.SampleConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -27,27 +27,6 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.inline.safety.prompt_guard",
config_class="llama_stack.providers.inline.safety.prompt_guard.PromptGuardConfig",
),
InlineProviderSpec(
api=Api.safety,
provider_type="inline::meta-reference",
pip_packages=[
"transformers",
"torch --index-url https://download.pytorch.org/whl/cpu",
],
module="llama_stack.providers.inline.safety.meta_reference",
config_class="llama_stack.providers.inline.safety.meta_reference.SafetyConfig",
api_dependencies=[
Api.inference,
],
deprecation_error="""
Provider `inline::meta-reference` for API `safety` does not work with the latest Llama Stack.
- if you are using Llama Guard v3, please use the `inline::llama-guard` provider instead.
- if you are using Prompt Guard, please use the `inline::prompt-guard` provider instead.
- if you are using Code Scanner, please use the `inline::code-scanner` provider instead.
""",
),
InlineProviderSpec(
api=Api.safety,
provider_type="inline::llama-guard",
@ -67,15 +46,6 @@ Provider `inline::meta-reference` for API `safety` does not work with the latest
module="llama_stack.providers.inline.safety.code_scanner",
config_class="llama_stack.providers.inline.safety.code_scanner.CodeScannerConfig",
),
remote_provider_spec(
api=Api.safety,
adapter=AdapterSpec(
adapter_type="sample",
pip_packages=[],
module="llama_stack.providers.remote.safety.sample",
config_class="llama_stack.providers.remote.safety.sample.SampleConfig",
),
),
remote_provider_spec(
api=Api.safety,
adapter=AdapterSpec(
@ -85,4 +55,13 @@ Provider `inline::meta-reference` for API `safety` does not work with the latest
config_class="llama_stack.providers.remote.safety.bedrock.BedrockSafetyConfig",
),
),
remote_provider_spec(
api=Api.safety,
adapter=AdapterSpec(
adapter_type="nvidia",
pip_packages=["requests"],
module="llama_stack.providers.remote.safety.nvidia",
config_class="llama_stack.providers.remote.safety.nvidia.NVIDIASafetyConfig",
),
),
]

View file

@ -7,11 +7,9 @@
from typing import List
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
InlineProviderSpec,
ProviderSpec,
remote_provider_spec,
)
@ -28,13 +26,4 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.inline.telemetry.meta_reference",
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
),
remote_provider_spec(
api=Api.telemetry,
adapter=AdapterSpec(
adapter_type="sample",
pip_packages=[],
module="llama_stack.providers.remote.telemetry.sample",
config_class="llama_stack.providers.remote.telemetry.sample.SampleConfig",
),
),
]

View file

@ -34,6 +34,8 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
api_dependencies=[Api.inference],
),
# NOTE: sqlite-vec cannot be bundled into the container image because it does not have a
# source distribution and the wheels are not available for all platforms.
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::sqlite-vec",
@ -90,15 +92,13 @@ def available_providers() -> List[ProviderSpec]:
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
InlineProviderSpec(
api=Api.vector_io,
adapter=AdapterSpec(
adapter_type="sample",
pip_packages=[],
module="llama_stack.providers.remote.vector_io.sample",
config_class="llama_stack.providers.remote.vector_io.sample.SampleVectorIOConfig",
),
api_dependencies=[],
provider_type="inline::qdrant",
pip_packages=["qdrant-client"],
module="llama_stack.providers.inline.vector_io.qdrant",
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.vector_io,

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from .config import SampleConfig
async def get_adapter_impl(config: SampleConfig, _deps) -> Any:
from .sample import SampleAgentsImpl
impl = SampleAgentsImpl(config)
await impl.initialize()
return impl

View file

@ -1,12 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class SampleConfig(BaseModel):
host: str = "localhost"
port: int = 9999

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.agents import Agents
from .config import SampleConfig
class SampleAgentsImpl(Agents):
def __init__(self, config: SampleConfig):
self.config = config
async def initialize(self):
pass

View file

@ -3,9 +3,10 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
@ -13,6 +14,13 @@ from llama_stack.providers.utils.kvstore.config import (
class HuggingfaceDatasetIOConfig(BaseModel):
kvstore: KVStoreConfig = SqliteKVStoreConfig(
db_path=(RUNTIME_BASE_DIR / "huggingface_datasetio.db").as_posix()
) # Uses SQLite config specific to HF storage
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="huggingface_datasetio.db",
)
}

View file

@ -4,13 +4,13 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from urllib.parse import parse_qs, urlparse
import datasets as hf_datasets
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
from llama_stack.providers.utils.kvstore import kvstore_impl
from .config import HuggingfaceDatasetIOConfig
@ -18,22 +18,14 @@ from .config import HuggingfaceDatasetIOConfig
DATASETS_PREFIX = "datasets:"
def load_hf_dataset(dataset_def: Dataset):
if dataset_def.metadata.get("path", None):
dataset = hf_datasets.load_dataset(**dataset_def.metadata)
else:
df = get_dataframe_from_url(dataset_def.url)
def parse_hf_params(dataset_def: Dataset):
uri = dataset_def.source.uri
parsed_uri = urlparse(uri)
params = parse_qs(parsed_uri.query)
params = {k: v[0] for k, v in params.items()}
path = parsed_uri.path.lstrip("/")
if df is None:
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
dataset = hf_datasets.Dataset.from_pandas(df)
# drop columns not specified by schema
if dataset_def.dataset_schema:
dataset = dataset.select_columns(list(dataset_def.dataset_schema.keys()))
return dataset
return path, params
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
@ -64,7 +56,7 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
await self.kvstore.set(
key=key,
value=dataset_def.json(),
value=dataset_def.model_dump_json(),
)
self.dataset_infos[dataset_def.identifier] = dataset_def
@ -73,41 +65,34 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
dataset_def = self.dataset_infos[dataset_id]
loaded_dataset = load_hf_dataset(dataset_def)
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
start_index = start_index or 0
if page_token is None or len(page_token) == 0:
next_page_token = 0
else:
next_page_token = int(page_token)
start = next_page_token
if rows_in_page == -1:
if limit is None or limit == -1:
end = len(loaded_dataset)
else:
end = min(start + rows_in_page, len(loaded_dataset))
end = min(start_index + limit, len(loaded_dataset))
rows = [loaded_dataset[i] for i in range(start, end)]
rows = [loaded_dataset[i] for i in range(start_index, end)]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
return IterrowsResponse(
data=rows,
next_start_index=end if end < len(loaded_dataset) else None,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_def = self.dataset_infos[dataset_id]
loaded_dataset = load_hf_dataset(dataset_def)
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
# Convert rows to HF Dataset format
new_dataset = hf_datasets.Dataset.from_list(rows)

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel, Field
@ -20,3 +21,15 @@ class DatabricksImplConfig(BaseModel):
default=None,
description="The Databricks API token",
)
@classmethod
def sample_run_config(
cls,
url: str = "${env.DATABRICKS_URL}",
api_token: str = "${env.DATABRICKS_API_TOKEN}",
**kwargs: Any,
) -> Dict[str, Any]:
return {
"url": url,
"api_token": api_token,
}

View file

@ -24,10 +24,6 @@ MODEL_ENTRIES = [
"accounts/fireworks/models/llama-v3p1-405b-instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
build_hf_repo_model_entry(
"accounts/fireworks/models/llama-v3p2-1b-instruct",
CoreModelId.llama3_2_1b_instruct.value,
),
build_hf_repo_model_entry(
"accounts/fireworks/models/llama-v3p2-3b-instruct",
CoreModelId.llama3_2_3b_instruct.value,

View file

@ -6,6 +6,7 @@
import logging
import warnings
from functools import lru_cache
from typing import AsyncIterator, List, Optional, Union
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
@ -82,12 +83,42 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
# )
self._config = config
# make sure the client lives longer than any async calls
self._client = AsyncOpenAI(
base_url=f"{self._config.url}/v1",
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
timeout=self._config.timeout,
)
@lru_cache # noqa: B019
def _get_client(self, provider_model_id: str) -> AsyncOpenAI:
"""
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
some models are hosted on different URLs. This function returns the appropriate client
for the given provider_model_id.
This relies on lru_cache and self._default_client to avoid creating a new client for each request
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
:param provider_model_id: The provider model ID
:return: An OpenAI client
"""
@lru_cache # noqa: B019
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
"""
Maintain a single OpenAI client per base_url.
"""
return AsyncOpenAI(
base_url=base_url,
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
timeout=self._config.timeout,
)
special_model_urls = {
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
}
base_url = f"{self._config.url}/v1"
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
base_url = special_model_urls[provider_model_id]
return _get_client_for_base_url(base_url)
async def completion(
self,
@ -105,9 +136,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
request = convert_completion_request(
request=CompletionRequest(
model=self.get_provider_model_id(model_id),
model=provider_model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
@ -118,7 +150,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
)
try:
response = await self._client.completions.create(**request)
response = await self._get_client(provider_model_id).completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
@ -206,6 +238,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
request = await convert_chat_completion_request(
request=ChatCompletionRequest(
model=self.get_provider_model_id(model_id),
@ -221,7 +254,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
)
try:
response = await self._client.chat.completions.create(**request)
response = await self._get_client(provider_model_id).chat.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e

View file

@ -4,12 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional
from typing import Any, AsyncGenerator, Dict, List, Optional
from llama_stack_client import LlamaStackClient
from llama_stack_client import AsyncLlamaStackClient
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionMessage,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
@ -24,6 +27,7 @@ from llama_stack.apis.inference import (
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from .config import PassthroughImplConfig
@ -46,7 +50,7 @@ class PassthroughInferenceAdapter(Inference):
async def register_model(self, model: Model) -> Model:
return model
def _get_client(self) -> LlamaStackClient:
def _get_client(self) -> AsyncLlamaStackClient:
passthrough_url = None
passthrough_api_key = None
provider_data = None
@ -71,7 +75,7 @@ class PassthroughInferenceAdapter(Inference):
)
passthrough_api_key = provider_data.passthrough_api_key
return LlamaStackClient(
return AsyncLlamaStackClient(
base_url=passthrough_url,
api_key=passthrough_api_key,
provider_data=provider_data,
@ -91,7 +95,7 @@ class PassthroughInferenceAdapter(Inference):
client = self._get_client()
model = await self.model_store.get_model(model_id)
params = {
request_params = {
"model_id": model.provider_resource_id,
"content": content,
"sampling_params": sampling_params,
@ -100,10 +104,13 @@ class PassthroughInferenceAdapter(Inference):
"logprobs": logprobs,
}
params = {key: value for key, value in params.items() if value is not None}
request_params = {key: value for key, value in request_params.items() if value is not None}
# cast everything to json dict
json_params = self.cast_value_to_json_dict(request_params)
# only pass through the not None params
return client.inference.completion(**params)
return await client.inference.completion(**json_params)
async def chat_completion(
self,
@ -120,10 +127,14 @@ class PassthroughInferenceAdapter(Inference):
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
client = self._get_client()
model = await self.model_store.get_model(model_id)
params = {
# TODO: revisit this remove tool_calls from messages logic
for message in messages:
if hasattr(message, "tool_calls"):
message.tool_calls = None
request_params = {
"model_id": model.provider_resource_id,
"messages": messages,
"sampling_params": sampling_params,
@ -135,10 +146,41 @@ class PassthroughInferenceAdapter(Inference):
"logprobs": logprobs,
}
params = {key: value for key, value in params.items() if value is not None}
# only pass through the not None params
return client.inference.chat_completion(**params)
request_params = {key: value for key, value in request_params.items() if value is not None}
# cast everything to json dict
json_params = self.cast_value_to_json_dict(request_params)
if stream:
return self._stream_chat_completion(json_params)
else:
return await self._nonstream_chat_completion(json_params)
async def _nonstream_chat_completion(self, json_params: Dict[str, Any]) -> ChatCompletionResponse:
client = self._get_client()
response = await client.inference.chat_completion(**json_params)
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=response.completion_message.content.text,
stop_reason=response.completion_message.stop_reason,
tool_calls=response.completion_message.tool_calls,
),
logprobs=response.logprobs,
)
async def _stream_chat_completion(self, json_params: Dict[str, Any]) -> AsyncGenerator:
client = self._get_client()
stream_response = await client.inference.chat_completion(**json_params)
async for chunk in stream_response:
chunk = chunk.to_dict()
# temporary hack to remove the metrics from the response
chunk["metrics"] = []
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
yield chunk
async def embeddings(
self,
@ -151,10 +193,29 @@ class PassthroughInferenceAdapter(Inference):
client = self._get_client()
model = await self.model_store.get_model(model_id)
return client.inference.embeddings(
return await client.inference.embeddings(
model_id=model.provider_resource_id,
contents=contents,
text_truncation=text_truncation,
output_dimension=output_dimension,
task_type=task_type,
)
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
json_params = {}
for key, value in request_params.items():
json_input = convert_pydantic_to_json_value(value)
if isinstance(json_input, dict):
json_input = {k: v for k, v in json_input.items() if v is not None}
elif isinstance(json_input, list):
json_input = [x for x in json_input if x is not None]
new_input = []
for x in json_input:
if isinstance(x, dict):
x = {k: v for k, v in x.items() if v is not None}
new_input.append(x)
json_input = new_input
json_params[key] = json_input
return json_params

View file

@ -5,10 +5,11 @@
# the root directory of this source tree.
from .config import RunpodImplConfig
from .runpod import RunpodInferenceAdapter
async def get_adapter_impl(config: RunpodImplConfig, _deps):
from .runpod import RunpodInferenceAdapter
assert isinstance(config, RunpodImplConfig), f"Unexpected config type: {type(config)}"
impl = RunpodInferenceAdapter(config)
await impl.initialize()

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
@ -21,3 +21,10 @@ class RunpodImplConfig(BaseModel):
default=None,
description="The API token",
)
@classmethod
def sample_run_config(cls, **kwargs: Any) -> Dict[str, Any]:
return {
"url": "${env.RUNPOD_URL:}",
"api_token": "${env.RUNPOD_API_TOKEN:}",
}

View file

@ -8,7 +8,6 @@ from typing import AsyncGenerator
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.models.llama.datatypes import Message
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper

View file

@ -42,9 +42,7 @@ from llama_stack.models.llama.datatypes import (
TopKSamplingStrategy,
TopPSamplingStrategy,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
process_chat_completion_stream_response,
)
@ -293,14 +291,12 @@ class SambaNovaInferenceAdapter(ModelRegistryHelper, Inference):
if not tool_calls:
return []
for call in tool_calls:
call_function_arguments = json.loads(call.function.arguments)
compitable_tool_calls = [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=call_function_arguments,
arguments=json.loads(call.function.arguments),
arguments_json=call.function.arguments,
)
for call in tool_calls
]

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from .config import SampleConfig
async def get_adapter_impl(config: SampleConfig, _deps) -> Any:
from .sample import SampleInferenceImpl
impl = SampleInferenceImpl(config)
await impl.initialize()
return impl

View file

@ -1,23 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import Inference
from llama_stack.apis.models import Model
from .config import SampleConfig
class SampleInferenceImpl(Inference):
def __init__(self, config: SampleConfig):
self.config = config
async def register_model(self, model: Model) -> None:
# these are the model names the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass
async def initialize(self):
pass

View file

@ -26,5 +26,5 @@ class TogetherImplConfig(BaseModel):
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"url": "https://api.together.xyz/v1",
"api_key": "${env.TOGETHER_API_KEY}",
"api_key": "${env.TOGETHER_API_KEY:}",
}

View file

@ -6,7 +6,7 @@
from typing import AsyncGenerator, List, Optional, Union
from together import Together
from together import AsyncTogether
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -59,12 +59,15 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
def __init__(self, config: TogetherImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
self.config = config
self._client = None
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
if self._client:
await self._client.close()
self._client = None
async def completion(
self,
@ -91,35 +94,32 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
else:
return await self._nonstream_completion(request)
def _get_client(self) -> Together:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
return Together(api_key=together_api_key)
def _get_client(self) -> AsyncTogether:
if not self._client:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
self._client = AsyncTogether(api_key=together_api_key)
return self._client
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
r = self._get_client().completions.create(**params)
client = self._get_client()
r = await client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
# if we shift to TogetherAsyncClient, we won't need this wrapper
async def _to_async_generator():
s = self._get_client().completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
client = await self._get_client()
stream = await client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
@ -184,25 +184,21 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
client = self._get_client()
if "messages" in params:
r = self._get_client().chat.completions.create(**params)
r = await client.chat.completions.create(**params)
else:
r = self._get_client().completions.create(**params)
r = await client.completions.create(**params)
return process_chat_completion_response(r, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
client = self._get_client()
if "messages" in params:
stream = await client.chat.completions.create(**params)
else:
stream = await client.completions.create(**params)
# if we shift to TogetherAsyncClient, we won't need this wrapper
async def _to_async_generator():
if "messages" in params:
s = self._get_client().chat.completions.create(**params)
else:
s = self._get_client().completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
@ -240,7 +236,8 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
assert all(not content_has_media(content) for content in contents), (
"Together does not support media for embeddings"
)
r = self._get_client().embeddings.create(
client = self._get_client()
r = await client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)

View file

@ -25,6 +25,10 @@ class VLLMInferenceAdapterConfig(BaseModel):
default="fake",
description="The API token",
)
tls_verify: bool = Field(
default=True,
description="Whether to verify TLS certificates",
)
@classmethod
def sample_run_config(
@ -36,4 +40,5 @@ class VLLMInferenceAdapterConfig(BaseModel):
"url": url,
"max_tokens": "${env.VLLM_MAX_TOKENS:4096}",
"api_token": "${env.VLLM_API_TOKEN:fake}",
"tls_verify": "${env.VLLM_TLS_VERIFY:true}",
}

View file

@ -7,6 +7,7 @@ import json
import logging
from typing import AsyncGenerator, List, Optional, Union
import httpx
from openai import AsyncOpenAI
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
@ -89,15 +90,12 @@ def _convert_to_vllm_tool_calls_in_response(
if not tool_calls:
return []
call_function_arguments = None
for call in tool_calls:
call_function_arguments = json.loads(call.function.arguments)
return [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=call_function_arguments,
arguments=json.loads(call.function.arguments),
arguments_json=call.function.arguments,
)
for call in tool_calls
]
@ -182,6 +180,7 @@ async def _process_vllm_chat_completion_stream_response(
call_id=tool_call_buf.call_id,
tool_name=tool_call_buf.tool_name,
arguments=args,
arguments_json=args_str,
),
parse_status=ToolCallParseStatus.succeeded,
),
@ -229,7 +228,11 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def initialize(self) -> None:
log.info(f"Initializing VLLM client with base_url={self.config.url}")
self.client = AsyncOpenAI(base_url=self.config.url, api_key=self.config.api_token)
self.client = AsyncOpenAI(
base_url=self.config.url,
api_key=self.config.api_token,
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
)
async def shutdown(self) -> None:
pass

View file

@ -4,14 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from .config import SampleConfig
from .config import NVIDIASafetyConfig
async def get_adapter_impl(config: SampleConfig, _deps) -> Any:
from .sample import SampleTelemetryImpl
async def get_adapter_impl(config: NVIDIASafetyConfig, _deps) -> Any:
from .nvidia import NVIDIASafetyAdapter
impl = SampleTelemetryImpl(config)
impl = NVIDIASafetyAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,37 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class NVIDIASafetyConfig(BaseModel):
"""
Configuration for the NVIDIA Guardrail microservice endpoint.
Attributes:
guardrails_service_url (str): A base url for accessing the NVIDIA guardrail endpoint, e.g. http://0.0.0.0:7331
config_id (str): The ID of the guardrails configuration to use from the configuration store
(https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/configuration-store-guide.html)
"""
guardrails_service_url: str = Field(
default_factory=lambda: os.getenv("GUARDRAILS_SERVICE_URL", "http://0.0.0.0:7331"),
description="The url for accessing the guardrails service",
)
config_id: Optional[str] = Field(default="self-check", description="Config ID to use from the config store")
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"guardrails_service_url": "${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}",
"config_id": "self-check",
}

View file

@ -0,0 +1,154 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
from typing import Any, List, Optional
import requests
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import RunShieldResponse, Safety, SafetyViolation, ViolationLevel
from llama_stack.apis.shields import Shield
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from .config import NVIDIASafetyConfig
logger = logging.getLogger(__name__)
class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
def __init__(self, config: NVIDIASafetyConfig) -> None:
"""
Initialize the NVIDIASafetyAdapter with a given safety configuration.
Args:
config (NVIDIASafetyConfig): The configuration containing the guardrails service URL and config ID.
"""
print(f"Initializing NVIDIASafetyAdapter({config.guardrails_service_url})...")
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def register_shield(self, shield: Shield) -> None:
if not shield.provider_resource_id:
raise ValueError("Shield model not provided.")
async def run_shield(
self, shield_id: str, messages: List[Message], params: Optional[dict[str, Any]] = None
) -> RunShieldResponse:
"""
Run a safety shield check against the provided messages.
Args:
shield_id (str): The unique identifier for the shield to be used.
messages (List[Message]): A list of Message objects representing the conversation history.
params (Optional[dict[str, Any]]): Additional parameters for the shield check.
Returns:
RunShieldResponse: The response containing safety violation details if any.
Raises:
ValueError: If the shield with the provided shield_id is not found.
"""
shield = await self.shield_store.get_shield(shield_id)
if not shield:
raise ValueError(f"Shield {shield_id} not found")
self.shield = NeMoGuardrails(self.config, shield.shield_id)
return await self.shield.run(messages)
class NeMoGuardrails:
"""
A class that encapsulates NVIDIA's guardrails safety logic.
Sends messages to the guardrails service and interprets the response to determine
if a safety violation has occurred.
"""
def __init__(
self,
config: NVIDIASafetyConfig,
model: str,
threshold: float = 0.9,
temperature: float = 1.0,
):
"""
Initialize a NeMoGuardrails instance with the provided parameters.
Args:
config (NVIDIASafetyConfig): The safety configuration containing the config ID and guardrails URL.
model (str): The identifier or name of the model to be used for safety checks.
threshold (float, optional): The threshold for flagging violations. Defaults to 0.9.
temperature (float, optional): The temperature setting for the underlying model. Must be greater than 0. Defaults to 1.0.
Raises:
ValueError: If temperature is less than or equal to 0.
AssertionError: If config_id is not provided in the configuration.
"""
self.config_id = config.config_id
self.model = model
assert self.config_id is not None, "Must provide config id"
if temperature <= 0:
raise ValueError("Temperature must be greater than 0")
self.temperature = temperature
self.threshold = threshold
self.guardrails_service_url = config.guardrails_service_url
async def run(self, messages: List[Message]) -> RunShieldResponse:
"""
Queries the /v1/guardrails/checks endpoint of the NeMo guardrails deployed API.
Args:
messages (List[Message]): A list of Message objects to be checked for safety violations.
Returns:
RunShieldResponse: If the response indicates a violation ("blocked" status), returns a
RunShieldResponse with a SafetyViolation; otherwise, returns a RunShieldResponse with violation set to None.
Raises:
requests.HTTPError: If the POST request fails.
"""
headers = {
"Accept": "application/json",
}
request_data = {
"model": self.model,
"messages": convert_pydantic_to_json_value(messages),
"temperature": self.temperature,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
"max_tokens": 160,
"stream": False,
"guardrails": {
"config_id": self.config_id,
},
}
response = requests.post(
url=f"{self.guardrails_service_url}/v1/guardrail/checks", headers=headers, json=request_data
)
response.raise_for_status()
if "Content-Type" in response.headers and response.headers["Content-Type"].startswith("application/json"):
response_json = response.json()
if response_json["status"] == "blocked":
user_message = "Sorry I cannot do this."
metadata = response_json["rails_status"]
return RunShieldResponse(
violation=SafetyViolation(
user_message=user_message,
violation_level=ViolationLevel.ERROR,
metadata=metadata,
)
)
return RunShieldResponse(violation=None)

View file

@ -1,17 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from .config import SampleConfig
async def get_adapter_impl(config: SampleConfig, _deps) -> Any:
from .sample import SampleSafetyImpl
impl = SampleSafetyImpl(config)
await impl.initialize()
return impl

Some files were not shown because too many files have changed in this diff Show more