address commit

This commit is contained in:
Botao Chen 2024-12-13 10:38:53 -08:00
parent 0f78a5fb2d
commit 29d0896ec8

View file

@ -38,27 +38,22 @@ class ModelConfig(BaseModel):
checkpoint_type: str
class ModelConfigs(BaseModel):
Llama3_2_3B_Instruct: ModelConfig
Llama_3_8B_Instruct: ModelConfig
class DatasetSchema(BaseModel):
alpaca: List[Dict[str, ParamType]]
MODEL_CONFIGS = ModelConfigs(
Llama3_2_3B_Instruct=ModelConfig(
MODEL_CONFIGS: Dict[str, ModelConfig] = {
"Llama3.2-3B-Instruct": ModelConfig(
model_definition=lora_llama3_2_3b,
tokenizer_type=llama3_tokenizer,
checkpoint_type="LLAMA3_2",
),
Llama_3_8B_Instruct=ModelConfig(
"Llama-3-8B-Instruct": ModelConfig(
model_definition=lora_llama3_8b,
tokenizer_type=llama3_tokenizer,
checkpoint_type="LLAMA3",
),
)
}
EXPECTED_DATASET_SCHEMA = DatasetSchema(
@ -85,14 +80,9 @@ BuildLoraModelCallable = Callable[..., torch.nn.Module]
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
def _modify_model_id(model_id: str) -> str:
return model_id.replace("-", "_").replace(".", "_")
def _validate_model_id(model_id: str) -> Model:
model = resolve_model(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
if model is None or not hasattr(MODEL_CONFIGS, modified_model_id):
if model is None or model.core_model_id.value not in MODEL_CONFIGS:
raise ValueError(f"Model {model_id} is not supported.")
return model
@ -101,8 +91,7 @@ async def get_model_definition(
model_id: str,
) -> BuildLoraModelCallable:
model = _validate_model_id(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
model_config = getattr(MODEL_CONFIGS, modified_model_id)
model_config = MODEL_CONFIGS[model.core_model_id.value]
if not hasattr(model_config, "model_definition"):
raise ValueError(f"Model {model_id} does not have model definition.")
return model_config.model_definition
@ -112,8 +101,7 @@ async def get_tokenizer_type(
model_id: str,
) -> BuildTokenizerCallable:
model = _validate_model_id(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
model_config = getattr(MODEL_CONFIGS, modified_model_id)
model_config = MODEL_CONFIGS[model.core_model_id.value]
if not hasattr(model_config, "tokenizer_type"):
raise ValueError(f"Model {model_id} does not have tokenizer_type.")
return model_config.tokenizer_type
@ -127,8 +115,7 @@ async def get_checkpointer_model_type(
For example, llama3.2 model tied weights (https://github.com/pytorch/torchtune/blob/main/torchtune/training/checkpointing/_checkpointer.py#L1041)
"""
model = _validate_model_id(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
model_config = getattr(MODEL_CONFIGS, modified_model_id)
model_config = MODEL_CONFIGS[model.core_model_id.value]
if not hasattr(model_config, "checkpoint_type"):
raise ValueError(f"Model {model_id} does not have checkpoint_type.")
return model_config.checkpoint_type