mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 13:02:36 +00:00
Merge branch 'main' into add-nvidia-inference-adapter
This commit is contained in:
commit
2a25ace2fa
131 changed files with 3927 additions and 1286 deletions
|
|
@ -49,7 +49,7 @@ class BatchChatCompletionResponse(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class BatchInference(Protocol):
|
||||
@webmethod(route="/batch_inference/completion")
|
||||
@webmethod(route="/batch-inference/completion")
|
||||
async def batch_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
@ -58,7 +58,7 @@ class BatchInference(Protocol):
|
|||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> BatchCompletionResponse: ...
|
||||
|
||||
@webmethod(route="/batch_inference/chat_completion")
|
||||
@webmethod(route="/batch-inference/chat-completion")
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ class DatasetIO(Protocol):
|
|||
# keeping for aligning with inference/safety, but this is not used
|
||||
dataset_store: DatasetStore
|
||||
|
||||
@webmethod(route="/datasetio/get_rows_paginated", method="GET")
|
||||
@webmethod(route="/datasetio/get-rows-paginated", method="GET")
|
||||
async def get_rows_paginated(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
|
|||
|
|
@ -74,14 +74,14 @@ class EvaluateResponse(BaseModel):
|
|||
|
||||
|
||||
class Eval(Protocol):
|
||||
@webmethod(route="/eval/run_eval", method="POST")
|
||||
@webmethod(route="/eval/run-eval", method="POST")
|
||||
async def run_eval(
|
||||
self,
|
||||
task_id: str,
|
||||
task_config: EvalTaskConfig,
|
||||
) -> Job: ...
|
||||
|
||||
@webmethod(route="/eval/evaluate_rows", method="POST")
|
||||
@webmethod(route="/eval/evaluate-rows", method="POST")
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
task_id: str,
|
||||
|
|
|
|||
|
|
@ -42,13 +42,13 @@ class EvalTaskInput(CommonEvalTaskFields, BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class EvalTasks(Protocol):
|
||||
@webmethod(route="/eval_tasks/list", method="GET")
|
||||
@webmethod(route="/eval-tasks/list", method="GET")
|
||||
async def list_eval_tasks(self) -> List[EvalTask]: ...
|
||||
|
||||
@webmethod(route="/eval_tasks/get", method="GET")
|
||||
@webmethod(route="/eval-tasks/get", method="GET")
|
||||
async def get_eval_task(self, name: str) -> Optional[EvalTask]: ...
|
||||
|
||||
@webmethod(route="/eval_tasks/register", method="POST")
|
||||
@webmethod(route="/eval-tasks/register", method="POST")
|
||||
async def register_eval_task(
|
||||
self,
|
||||
eval_task_id: str,
|
||||
|
|
|
|||
|
|
@ -234,7 +234,7 @@ class Inference(Protocol):
|
|||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]: ...
|
||||
|
||||
@webmethod(route="/inference/chat_completion")
|
||||
@webmethod(route="/inference/chat-completion")
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
|||
|
|
@ -130,13 +130,13 @@ class MemoryBankInput(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class MemoryBanks(Protocol):
|
||||
@webmethod(route="/memory_banks/list", method="GET")
|
||||
@webmethod(route="/memory-banks/list", method="GET")
|
||||
async def list_memory_banks(self) -> List[MemoryBank]: ...
|
||||
|
||||
@webmethod(route="/memory_banks/get", method="GET")
|
||||
@webmethod(route="/memory-banks/get", method="GET")
|
||||
async def get_memory_bank(self, memory_bank_id: str) -> Optional[MemoryBank]: ...
|
||||
|
||||
@webmethod(route="/memory_banks/register", method="POST")
|
||||
@webmethod(route="/memory-banks/register", method="POST")
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank_id: str,
|
||||
|
|
@ -145,5 +145,5 @@ class MemoryBanks(Protocol):
|
|||
provider_memory_bank_id: Optional[str] = None,
|
||||
) -> MemoryBank: ...
|
||||
|
||||
@webmethod(route="/memory_banks/unregister", method="POST")
|
||||
@webmethod(route="/memory-banks/unregister", method="POST")
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...
|
||||
|
|
|
|||
|
|
@ -31,6 +31,8 @@ class Model(CommonModelFields, Resource):
|
|||
def provider_model_id(self) -> str:
|
||||
return self.provider_resource_id
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class ModelInput(CommonModelFields):
|
||||
model_id: str
|
||||
|
|
|
|||
|
|
@ -176,7 +176,7 @@ class PostTrainingJobArtifactsResponse(BaseModel):
|
|||
|
||||
|
||||
class PostTraining(Protocol):
|
||||
@webmethod(route="/post_training/supervised_fine_tune")
|
||||
@webmethod(route="/post-training/supervised-fine-tune")
|
||||
def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
|
|
@ -193,7 +193,7 @@ class PostTraining(Protocol):
|
|||
logger_config: Dict[str, Any],
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post_training/preference_optimize")
|
||||
@webmethod(route="/post-training/preference-optimize")
|
||||
def preference_optimize(
|
||||
self,
|
||||
job_uuid: str,
|
||||
|
|
@ -208,22 +208,22 @@ class PostTraining(Protocol):
|
|||
logger_config: Dict[str, Any],
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post_training/jobs")
|
||||
@webmethod(route="/post-training/jobs")
|
||||
def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/post_training/job/logs")
|
||||
@webmethod(route="/post-training/job/logs")
|
||||
def get_training_job_logstream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
|
||||
|
||||
@webmethod(route="/post_training/job/status")
|
||||
@webmethod(route="/post-training/job/status")
|
||||
def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/post_training/job/cancel")
|
||||
@webmethod(route="/post-training/job/cancel")
|
||||
def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post_training/job/artifacts")
|
||||
@webmethod(route="/post-training/job/artifacts")
|
||||
def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobArtifactsResponse: ...
|
||||
|
|
|
|||
|
|
@ -46,7 +46,7 @@ class ShieldStore(Protocol):
|
|||
class Safety(Protocol):
|
||||
shield_store: ShieldStore
|
||||
|
||||
@webmethod(route="/safety/run_shield")
|
||||
@webmethod(route="/safety/run-shield")
|
||||
async def run_shield(
|
||||
self,
|
||||
shield_id: str,
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ class ScoringFunctionStore(Protocol):
|
|||
class Scoring(Protocol):
|
||||
scoring_function_store: ScoringFunctionStore
|
||||
|
||||
@webmethod(route="/scoring/score_batch")
|
||||
@webmethod(route="/scoring/score-batch")
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
|
|||
|
|
@ -104,13 +104,13 @@ class ScoringFnInput(CommonScoringFnFields, BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class ScoringFunctions(Protocol):
|
||||
@webmethod(route="/scoring_functions/list", method="GET")
|
||||
@webmethod(route="/scoring-functions/list", method="GET")
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]: ...
|
||||
|
||||
@webmethod(route="/scoring_functions/get", method="GET")
|
||||
@webmethod(route="/scoring-functions/get", method="GET")
|
||||
async def get_scoring_function(self, scoring_fn_id: str) -> Optional[ScoringFn]: ...
|
||||
|
||||
@webmethod(route="/scoring_functions/register", method="POST")
|
||||
@webmethod(route="/scoring-functions/register", method="POST")
|
||||
async def register_scoring_function(
|
||||
self,
|
||||
scoring_fn_id: str,
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ class SyntheticDataGenerationResponse(BaseModel):
|
|||
|
||||
|
||||
class SyntheticDataGeneration(Protocol):
|
||||
@webmethod(route="/synthetic_data_generation/generate")
|
||||
@webmethod(route="/synthetic-data-generation/generate")
|
||||
def synthetic_data_generate(
|
||||
self,
|
||||
dialogs: List[Message],
|
||||
|
|
|
|||
|
|
@ -125,8 +125,8 @@ Event = Annotated[
|
|||
|
||||
@runtime_checkable
|
||||
class Telemetry(Protocol):
|
||||
@webmethod(route="/telemetry/log_event")
|
||||
@webmethod(route="/telemetry/log-event")
|
||||
async def log_event(self, event: Event) -> None: ...
|
||||
|
||||
@webmethod(route="/telemetry/get_trace", method="GET")
|
||||
@webmethod(route="/telemetry/get-trace", method="GET")
|
||||
async def get_trace(self, trace_id: str) -> Trace: ...
|
||||
|
|
|
|||
7
llama_stack/apis/version.py
Normal file
7
llama_stack/apis/version.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
LLAMA_STACK_API_VERSION = "alpha"
|
||||
|
|
@ -19,7 +19,7 @@ import httpx
|
|||
|
||||
from llama_models.datatypes import Model
|
||||
from llama_models.sku_list import LlamaDownloadInfo
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
from rich.console import Console
|
||||
from rich.progress import (
|
||||
|
|
@ -293,8 +293,8 @@ class ParallelDownloader:
|
|||
|
||||
if free_space < required_space:
|
||||
self.console.print(
|
||||
f"[red]Not enough disk space. Required: {required_space // (1024*1024)} MB, "
|
||||
f"Available: {free_space // (1024*1024)} MB[/red]"
|
||||
f"[red]Not enough disk space. Required: {required_space // (1024 * 1024)} MB, "
|
||||
f"Available: {free_space // (1024 * 1024)} MB[/red]"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
|
|
@ -413,8 +413,7 @@ class ModelEntry(BaseModel):
|
|||
model_id: str
|
||||
files: Dict[str, str]
|
||||
|
||||
class Config:
|
||||
protected_namespaces = ()
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class Manifest(BaseModel):
|
||||
|
|
|
|||
|
|
@ -8,10 +8,14 @@ import argparse
|
|||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
import importlib
|
||||
import os
|
||||
import shutil
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
|
||||
from llama_stack.distribution.distribution import get_provider_registry
|
||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||
|
||||
|
|
@ -99,7 +103,9 @@ class StackBuild(Subcommand):
|
|||
self.parser.error(
|
||||
f"Please specify a image-type (docker | conda) for {args.template}"
|
||||
)
|
||||
self._run_stack_build_command_from_build_config(build_config)
|
||||
self._run_stack_build_command_from_build_config(
|
||||
build_config, template_name=args.template
|
||||
)
|
||||
return
|
||||
|
||||
self.parser.error(
|
||||
|
|
@ -193,7 +199,6 @@ class StackBuild(Subcommand):
|
|||
|
||||
apis = list(build_config.distribution_spec.providers.keys())
|
||||
run_config = StackRunConfig(
|
||||
built_at=datetime.now(),
|
||||
docker_image=(
|
||||
build_config.name
|
||||
if build_config.image_type == ImageType.docker.value
|
||||
|
|
@ -217,15 +222,23 @@ class StackBuild(Subcommand):
|
|||
provider_types = [provider_types]
|
||||
|
||||
for i, provider_type in enumerate(provider_types):
|
||||
p_spec = Provider(
|
||||
provider_id=f"{provider_type}-{i}",
|
||||
provider_type=provider_type,
|
||||
config={},
|
||||
)
|
||||
pid = provider_type.split("::")[-1]
|
||||
|
||||
config_type = instantiate_class_type(
|
||||
provider_registry[Api(api)][provider_type].config_class
|
||||
)
|
||||
p_spec.config = config_type()
|
||||
if hasattr(config_type, "sample_run_config"):
|
||||
config = config_type.sample_run_config(
|
||||
__distro_dir__=f"distributions/{build_config.name}"
|
||||
)
|
||||
else:
|
||||
config = {}
|
||||
|
||||
p_spec = Provider(
|
||||
provider_id=f"{pid}-{i}" if len(provider_types) > 1 else pid,
|
||||
provider_type=provider_type,
|
||||
config=config,
|
||||
)
|
||||
run_config.providers[api].append(p_spec)
|
||||
|
||||
os.makedirs(build_dir, exist_ok=True)
|
||||
|
|
@ -241,12 +254,13 @@ class StackBuild(Subcommand):
|
|||
)
|
||||
|
||||
def _run_stack_build_command_from_build_config(
|
||||
self, build_config: BuildConfig
|
||||
self, build_config: BuildConfig, template_name: Optional[str] = None
|
||||
) -> None:
|
||||
import json
|
||||
import os
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.build import build_image
|
||||
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
|
|
@ -264,7 +278,29 @@ class StackBuild(Subcommand):
|
|||
if return_code != 0:
|
||||
return
|
||||
|
||||
self._generate_run_config(build_config, build_dir)
|
||||
if template_name:
|
||||
# copy run.yaml from template to build_dir instead of generating it again
|
||||
template_path = pkg_resources.resource_filename(
|
||||
"llama_stack", f"templates/{template_name}/run.yaml"
|
||||
)
|
||||
os.makedirs(build_dir, exist_ok=True)
|
||||
run_config_file = build_dir / f"{build_config.name}-run.yaml"
|
||||
shutil.copy(template_path, run_config_file)
|
||||
module_name = f"llama_stack.templates.{template_name}"
|
||||
module = importlib.import_module(module_name)
|
||||
distribution_template = module.get_distribution_template()
|
||||
cprint("Build Successful! Next steps: ", color="green")
|
||||
env_vars = ", ".join(distribution_template.run_config_env_vars.keys())
|
||||
cprint(
|
||||
f" 1. Set the environment variables: {env_vars}",
|
||||
color="green",
|
||||
)
|
||||
cprint(
|
||||
f" 2. `llama stack run {run_config_file}`",
|
||||
color="green",
|
||||
)
|
||||
else:
|
||||
self._generate_run_config(build_config, build_dir)
|
||||
|
||||
def _run_template_list_cmd(self, args: argparse.Namespace) -> None:
|
||||
import json
|
||||
|
|
|
|||
|
|
@ -39,6 +39,13 @@ class StackRun(Subcommand):
|
|||
help="Disable IPv6 support",
|
||||
default=False,
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--env",
|
||||
action="append",
|
||||
help="Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times.",
|
||||
default=[],
|
||||
metavar="KEY=VALUE",
|
||||
)
|
||||
|
||||
def _run_stack_run_cmd(self, args: argparse.Namespace) -> None:
|
||||
from pathlib import Path
|
||||
|
|
@ -108,4 +115,16 @@ class StackRun(Subcommand):
|
|||
if args.disable_ipv6:
|
||||
run_args.append("--disable-ipv6")
|
||||
|
||||
for env_var in args.env:
|
||||
if "=" not in env_var:
|
||||
self.parser.error(
|
||||
f"Environment variable '{env_var}' must be in KEY=VALUE format"
|
||||
)
|
||||
return
|
||||
key, value = env_var.split("=", 1) # split on first = only
|
||||
if not key:
|
||||
self.parser.error(f"Environment variable '{env_var}' has empty key")
|
||||
return
|
||||
run_args.extend(["--env", f"{key}={value}"])
|
||||
|
||||
run_with_pty(run_args)
|
||||
|
|
|
|||
|
|
@ -146,6 +146,8 @@ fi
|
|||
# Set version tag based on PyPI version
|
||||
if [ -n "$TEST_PYPI_VERSION" ]; then
|
||||
version_tag="test-$TEST_PYPI_VERSION"
|
||||
elif [[ -n "$LLAMA_STACK_DIR" || -n "$LLAMA_MODELS_DIR" ]]; then
|
||||
version_tag="dev"
|
||||
else
|
||||
URL="https://pypi.org/pypi/llama-stack/json"
|
||||
version_tag=$(curl -s $URL | jq -r '.info.version')
|
||||
|
|
|
|||
|
|
@ -186,6 +186,5 @@ def parse_and_maybe_upgrade_config(config_dict: Dict[str, Any]) -> StackRunConfi
|
|||
config_dict = upgrade_from_routing_table(config_dict)
|
||||
|
||||
config_dict["version"] = LLAMA_STACK_RUN_CONFIG_VERSION
|
||||
config_dict["built_at"] = datetime.now().isoformat()
|
||||
|
||||
return StackRunConfig(**config_dict)
|
||||
|
|
|
|||
|
|
@ -4,8 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
|
@ -115,7 +113,6 @@ class Provider(BaseModel):
|
|||
|
||||
class StackRunConfig(BaseModel):
|
||||
version: str = LLAMA_STACK_RUN_CONFIG_VERSION
|
||||
built_at: datetime
|
||||
|
||||
image_name: str = Field(
|
||||
...,
|
||||
|
|
|
|||
|
|
@ -4,12 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import functools
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import sys
|
||||
import traceback
|
||||
|
|
@ -19,7 +19,6 @@ from contextlib import asynccontextmanager
|
|||
from ssl import SSLError
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import fire
|
||||
import httpx
|
||||
import yaml
|
||||
|
||||
|
|
@ -41,7 +40,11 @@ from llama_stack.providers.utils.telemetry.tracing import (
|
|||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import set_request_provider_data
|
||||
from llama_stack.distribution.resolver import InvalidProviderError
|
||||
from llama_stack.distribution.stack import construct_stack
|
||||
from llama_stack.distribution.stack import (
|
||||
construct_stack,
|
||||
replace_env_vars,
|
||||
validate_env_pair,
|
||||
)
|
||||
|
||||
from .endpoints import get_all_api_endpoints
|
||||
|
||||
|
|
@ -271,64 +274,36 @@ def create_dynamic_typed_route(func: Any, method: str):
|
|||
return endpoint
|
||||
|
||||
|
||||
class EnvVarError(Exception):
|
||||
def __init__(self, var_name: str, path: str = ""):
|
||||
self.var_name = var_name
|
||||
self.path = path
|
||||
super().__init__(
|
||||
f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}"
|
||||
)
|
||||
def main():
|
||||
"""Start the LlamaStack server."""
|
||||
parser = argparse.ArgumentParser(description="Start the LlamaStack server.")
|
||||
parser.add_argument(
|
||||
"--yaml-config",
|
||||
default="llamastack-run.yaml",
|
||||
help="Path to YAML configuration file",
|
||||
)
|
||||
parser.add_argument("--port", type=int, default=5000, help="Port to listen on")
|
||||
parser.add_argument(
|
||||
"--disable-ipv6", action="store_true", help="Whether to disable IPv6 support"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env",
|
||||
action="append",
|
||||
help="Environment variables in KEY=value format. Can be specified multiple times.",
|
||||
)
|
||||
|
||||
|
||||
def replace_env_vars(config: Any, path: str = "") -> Any:
|
||||
if isinstance(config, dict):
|
||||
result = {}
|
||||
for k, v in config.items():
|
||||
args = parser.parse_args()
|
||||
if args.env:
|
||||
for env_pair in args.env:
|
||||
try:
|
||||
result[k] = replace_env_vars(v, f"{path}.{k}" if path else k)
|
||||
except EnvVarError as e:
|
||||
raise EnvVarError(e.var_name, e.path) from None
|
||||
return result
|
||||
key, value = validate_env_pair(env_pair)
|
||||
print(f"Setting CLI environment variable {key} => {value}")
|
||||
os.environ[key] = value
|
||||
except ValueError as e:
|
||||
print(f"Error: {str(e)}")
|
||||
sys.exit(1)
|
||||
|
||||
elif isinstance(config, list):
|
||||
result = []
|
||||
for i, v in enumerate(config):
|
||||
try:
|
||||
result.append(replace_env_vars(v, f"{path}[{i}]"))
|
||||
except EnvVarError as e:
|
||||
raise EnvVarError(e.var_name, e.path) from None
|
||||
return result
|
||||
|
||||
elif isinstance(config, str):
|
||||
pattern = r"\${env\.([A-Z0-9_]+)(?::([^}]*))?}"
|
||||
|
||||
def get_env_var(match):
|
||||
env_var = match.group(1)
|
||||
default_val = match.group(2)
|
||||
|
||||
value = os.environ.get(env_var)
|
||||
if not value:
|
||||
if default_val is None:
|
||||
raise EnvVarError(env_var, path)
|
||||
else:
|
||||
value = default_val
|
||||
|
||||
return value
|
||||
|
||||
try:
|
||||
return re.sub(pattern, get_env_var, config)
|
||||
except EnvVarError as e:
|
||||
raise EnvVarError(e.var_name, e.path) from None
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def main(
|
||||
yaml_config: str = "llamastack-run.yaml",
|
||||
port: int = 5000,
|
||||
disable_ipv6: bool = False,
|
||||
):
|
||||
with open(yaml_config, "r") as fp:
|
||||
with open(args.yaml_config, "r") as fp:
|
||||
config = replace_env_vars(yaml.safe_load(fp))
|
||||
config = StackRunConfig(**config)
|
||||
|
||||
|
|
@ -395,10 +370,10 @@ def main(
|
|||
|
||||
# FYI this does not do hot-reloads
|
||||
|
||||
listen_host = ["::", "0.0.0.0"] if not disable_ipv6 else "0.0.0.0"
|
||||
print(f"Listening on {listen_host}:{port}")
|
||||
uvicorn.run(app, host=listen_host, port=port)
|
||||
listen_host = ["::", "0.0.0.0"] if not args.disable_ipv6 else "0.0.0.0"
|
||||
print(f"Listening on {listen_host}:{args.port}")
|
||||
uvicorn.run(app, host=listen_host, port=args.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
||||
main()
|
||||
|
|
|
|||
|
|
@ -4,8 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
import pkg_resources
|
||||
import yaml
|
||||
|
||||
from termcolor import colored
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
|
@ -35,6 +40,9 @@ from llama_stack.distribution.store.registry import create_dist_registry
|
|||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
|
||||
LLAMA_STACK_API_VERSION = "alpha"
|
||||
|
||||
|
||||
class LlamaStack(
|
||||
MemoryBanks,
|
||||
Inference,
|
||||
|
|
@ -92,6 +100,77 @@ async def register_resources(run_config: StackRunConfig, impls: Dict[Api, Any]):
|
|||
print("")
|
||||
|
||||
|
||||
class EnvVarError(Exception):
|
||||
def __init__(self, var_name: str, path: str = ""):
|
||||
self.var_name = var_name
|
||||
self.path = path
|
||||
super().__init__(
|
||||
f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}"
|
||||
)
|
||||
|
||||
|
||||
def replace_env_vars(config: Any, path: str = "") -> Any:
|
||||
if isinstance(config, dict):
|
||||
result = {}
|
||||
for k, v in config.items():
|
||||
try:
|
||||
result[k] = replace_env_vars(v, f"{path}.{k}" if path else k)
|
||||
except EnvVarError as e:
|
||||
raise EnvVarError(e.var_name, e.path) from None
|
||||
return result
|
||||
|
||||
elif isinstance(config, list):
|
||||
result = []
|
||||
for i, v in enumerate(config):
|
||||
try:
|
||||
result.append(replace_env_vars(v, f"{path}[{i}]"))
|
||||
except EnvVarError as e:
|
||||
raise EnvVarError(e.var_name, e.path) from None
|
||||
return result
|
||||
|
||||
elif isinstance(config, str):
|
||||
pattern = r"\${env\.([A-Z0-9_]+)(?::([^}]*))?}"
|
||||
|
||||
def get_env_var(match):
|
||||
env_var = match.group(1)
|
||||
default_val = match.group(2)
|
||||
|
||||
value = os.environ.get(env_var)
|
||||
if not value:
|
||||
if default_val is None:
|
||||
raise EnvVarError(env_var, path)
|
||||
else:
|
||||
value = default_val
|
||||
|
||||
# expand "~" from the values
|
||||
return os.path.expanduser(value)
|
||||
|
||||
try:
|
||||
return re.sub(pattern, get_env_var, config)
|
||||
except EnvVarError as e:
|
||||
raise EnvVarError(e.var_name, e.path) from None
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def validate_env_pair(env_pair: str) -> tuple[str, str]:
|
||||
"""Validate and split an environment variable key-value pair."""
|
||||
try:
|
||||
key, value = env_pair.split("=", 1)
|
||||
key = key.strip()
|
||||
if not key:
|
||||
raise ValueError(f"Empty key in environment variable pair: {env_pair}")
|
||||
if not all(c.isalnum() or c == "_" for c in key):
|
||||
raise ValueError(
|
||||
f"Key must contain only alphanumeric characters and underscores: {key}"
|
||||
)
|
||||
return key, value
|
||||
except ValueError as e:
|
||||
raise ValueError(
|
||||
f"Invalid environment variable format '{env_pair}': {str(e)}. Expected format: KEY=value"
|
||||
) from e
|
||||
|
||||
|
||||
# Produces a stack of providers for the given run config. Not all APIs may be
|
||||
# asked for in the run config.
|
||||
async def construct_stack(
|
||||
|
|
@ -105,3 +184,17 @@ async def construct_stack(
|
|||
)
|
||||
await register_resources(run_config, impls)
|
||||
return impls
|
||||
|
||||
|
||||
def get_stack_run_config_from_template(template: str) -> StackRunConfig:
|
||||
template_path = pkg_resources.resource_filename(
|
||||
"llama_stack", f"templates/{template}/run.yaml"
|
||||
)
|
||||
|
||||
if not Path(template_path).exists():
|
||||
raise ValueError(f"Template '{template}' not found at {template_path}")
|
||||
|
||||
with open(template_path) as f:
|
||||
run_config = yaml.safe_load(f)
|
||||
|
||||
return StackRunConfig(**replace_env_vars(run_config))
|
||||
|
|
|
|||
|
|
@ -33,10 +33,33 @@ shift
|
|||
port="$1"
|
||||
shift
|
||||
|
||||
# Process environment variables from --env arguments
|
||||
env_vars=""
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case "$1" in
|
||||
--env)
|
||||
|
||||
if [[ -n "$2" ]]; then
|
||||
# collect environment variables so we can set them after activating the conda env
|
||||
env_vars="$env_vars --env $2"
|
||||
shift 2
|
||||
else
|
||||
echo -e "${RED}Error: --env requires a KEY=VALUE argument${NC}" >&2
|
||||
exit 1
|
||||
fi
|
||||
;;
|
||||
*)
|
||||
shift
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
eval "$(conda shell.bash hook)"
|
||||
conda deactivate && conda activate "$env_name"
|
||||
|
||||
set -x
|
||||
$CONDA_PREFIX/bin/python \
|
||||
-m llama_stack.distribution.server.server \
|
||||
--yaml_config "$yaml_config" \
|
||||
--port "$port" "$@"
|
||||
--yaml-config "$yaml_config" \
|
||||
--port "$port" \
|
||||
$env_vars
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ if [ $# -lt 3 ]; then
|
|||
fi
|
||||
|
||||
build_name="$1"
|
||||
docker_image="distribution-$build_name"
|
||||
docker_image="localhost/distribution-$build_name"
|
||||
shift
|
||||
|
||||
yaml_config="$1"
|
||||
|
|
@ -40,6 +40,26 @@ shift
|
|||
port="$1"
|
||||
shift
|
||||
|
||||
# Process environment variables from --env arguments
|
||||
env_vars=""
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case "$1" in
|
||||
--env)
|
||||
echo "env = $2"
|
||||
if [[ -n "$2" ]]; then
|
||||
env_vars="$env_vars -e $2"
|
||||
shift 2
|
||||
else
|
||||
echo -e "${RED}Error: --env requires a KEY=VALUE argument${NC}" >&2
|
||||
exit 1
|
||||
fi
|
||||
;;
|
||||
*)
|
||||
shift
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
set -x
|
||||
|
||||
if command -v selinuxenabled &> /dev/null && selinuxenabled; then
|
||||
|
|
@ -59,15 +79,18 @@ fi
|
|||
version_tag="latest"
|
||||
if [ -n "$PYPI_VERSION" ]; then
|
||||
version_tag="$PYPI_VERSION"
|
||||
elif [ -n "$LLAMA_STACK_DIR" ]; then
|
||||
version_tag="dev"
|
||||
elif [ -n "$TEST_PYPI_VERSION" ]; then
|
||||
version_tag="test-$TEST_PYPI_VERSION"
|
||||
fi
|
||||
|
||||
$DOCKER_BINARY run $DOCKER_OPTS -it \
|
||||
-p $port:$port \
|
||||
$env_vars \
|
||||
-v "$yaml_config:/app/config.yaml" \
|
||||
$mounts \
|
||||
$docker_image:$version_tag \
|
||||
python -m llama_stack.distribution.server.server \
|
||||
--yaml_config /app/config.yaml \
|
||||
--port $port "$@"
|
||||
--yaml-config /app/config.yaml \
|
||||
--port "$port"
|
||||
|
|
|
|||
|
|
@ -4,11 +4,22 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore import KVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
|
||||
class MetaReferenceAgentsImplConfig(BaseModel):
|
||||
persistence_store: KVStoreConfig = Field(default=SqliteKVStoreConfig())
|
||||
persistence_store: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
|
||||
return {
|
||||
"persistence_store": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="agents_store.db",
|
||||
)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@ async def get_provider_impl(
|
|||
deps[Api.datasets],
|
||||
deps[Api.scoring],
|
||||
deps[Api.inference],
|
||||
deps[Api.agents],
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
|
|||
from .....apis.common.job_types import Job
|
||||
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.eval_tasks import EvalTask
|
||||
|
|
@ -39,12 +40,14 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
datasets_api: Datasets,
|
||||
scoring_api: Scoring,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.scoring_api = scoring_api
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
# TODO: assume sync job, will need jobs API for async scheduling
|
||||
self.jobs = {}
|
||||
|
|
@ -126,18 +129,50 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
self.jobs[job_id] = res
|
||||
return Job(job_id=job_id)
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
task_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
task_config: EvalTaskConfig,
|
||||
) -> EvaluateResponse:
|
||||
async def _run_agent_generation(
|
||||
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = task_config.eval_candidate
|
||||
if candidate.type == "agent":
|
||||
raise NotImplementedError(
|
||||
"Evaluation with generation has not been implemented for agents"
|
||||
create_response = await self.agents_api.create_agent(candidate.config)
|
||||
agent_id = create_response.agent_id
|
||||
|
||||
generations = []
|
||||
for i, x in tqdm(enumerate(input_rows)):
|
||||
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
|
||||
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
|
||||
input_messages = [UserMessage(**x) for x in input_messages]
|
||||
|
||||
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
|
||||
session_create_response = await self.agents_api.create_agent_session(
|
||||
agent_id, f"session-{i}"
|
||||
)
|
||||
session_id = session_create_response.session_id
|
||||
|
||||
turn_request = dict(
|
||||
agent_id=agent_id,
|
||||
session_id=session_id,
|
||||
messages=input_messages,
|
||||
stream=True,
|
||||
)
|
||||
turn_response = [
|
||||
chunk
|
||||
async for chunk in await self.agents_api.create_agent_turn(
|
||||
**turn_request
|
||||
)
|
||||
]
|
||||
final_event = turn_response[-1].event.payload
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: final_event.turn.output_message.content
|
||||
}
|
||||
)
|
||||
|
||||
return generations
|
||||
|
||||
async def _run_model_generation(
|
||||
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = task_config.eval_candidate
|
||||
assert (
|
||||
candidate.sampling_params.max_tokens is not None
|
||||
), "SamplingParams.max_tokens must be provided"
|
||||
|
|
@ -179,6 +214,23 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
||||
return generations
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
task_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
task_config: EvalTaskConfig,
|
||||
) -> EvaluateResponse:
|
||||
candidate = task_config.eval_candidate
|
||||
if candidate.type == "agent":
|
||||
generations = await self._run_agent_generation(input_rows, task_config)
|
||||
elif candidate.type == "model":
|
||||
generations = await self._run_model_generation(input_rows, task_config)
|
||||
else:
|
||||
raise ValueError(f"Invalid candidate type: {candidate.type}")
|
||||
|
||||
# scoring with generated_answer
|
||||
score_input_rows = [
|
||||
input_r | generated_r
|
||||
|
|
|
|||
|
|
@ -49,6 +49,18 @@ class MetaReferenceInferenceConfig(BaseModel):
|
|||
resolved = resolve_model(self.model)
|
||||
return resolved.pth_file_count
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
model: str = "Llama3.2-3B-Instruct",
|
||||
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"model": model,
|
||||
"max_seq_len": 4096,
|
||||
"checkpoint_dir": checkpoint_dir,
|
||||
}
|
||||
|
||||
|
||||
class MetaReferenceQuantizedInferenceConfig(MetaReferenceInferenceConfig):
|
||||
quantization: QuantizationConfig
|
||||
|
|
|
|||
|
|
@ -107,7 +107,7 @@ class Llama:
|
|||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
start_time = time.time()
|
||||
if config.checkpoint_dir:
|
||||
if config.checkpoint_dir and config.checkpoint_dir != "null":
|
||||
ckpt_dir = config.checkpoint_dir
|
||||
else:
|
||||
ckpt_dir = model_checkpoint_dir(model)
|
||||
|
|
@ -137,7 +137,6 @@ class Llama:
|
|||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
|
||||
if isinstance(config, MetaReferenceQuantizedInferenceConfig):
|
||||
|
||||
if isinstance(config.quantization, Fp8QuantizationConfig):
|
||||
from .quantization.loader import convert_to_fp8_quantized_model
|
||||
|
||||
|
|
|
|||
|
|
@ -34,6 +34,16 @@ class VLLMConfig(BaseModel):
|
|||
default=0.3,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls):
|
||||
return {
|
||||
"model": "${env.VLLM_INFERENCE_MODEL:Llama3.2-3B-Instruct}",
|
||||
"tensor_parallel_size": "${env.VLLM_TENSOR_PARALLEL_SIZE:1}",
|
||||
"max_tokens": "${env.VLLM_MAX_TOKENS:4096}",
|
||||
"enforce_eager": "${env.VLLM_ENFORCE_EAGER:False}",
|
||||
"gpu_memory_utilization": "${env.VLLM_GPU_MEMORY_UTILIZATION:0.3}",
|
||||
}
|
||||
|
||||
@field_validator("model")
|
||||
@classmethod
|
||||
def validate_model(cls, model: str) -> str:
|
||||
|
|
|
|||
|
|
@ -4,10 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
|
|
@ -16,6 +17,13 @@ from llama_stack.providers.utils.kvstore.config import (
|
|||
|
||||
@json_schema_type
|
||||
class FaissImplConfig(BaseModel):
|
||||
kvstore: KVStoreConfig = SqliteKVStoreConfig(
|
||||
db_path=(RUNTIME_BASE_DIR / "faiss_store.db").as_posix()
|
||||
) # Uses SQLite config specific to FAISS storage
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="faiss_store.db",
|
||||
)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -73,18 +73,21 @@ DEFAULT_LG_V3_SAFETY_CATEGORIES = [
|
|||
CAT_ELECTIONS,
|
||||
]
|
||||
|
||||
LLAMA_GUARD_MODEL_IDS = [
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
CoreModelId.llama_guard_3_1b.value,
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
]
|
||||
# accept both CoreModelId and huggingface repo id
|
||||
LLAMA_GUARD_MODEL_IDS = {
|
||||
CoreModelId.llama_guard_3_8b.value: "meta-llama/Llama-Guard-3-8B",
|
||||
"meta-llama/Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
|
||||
CoreModelId.llama_guard_3_1b.value: "meta-llama/Llama-Guard-3-1B",
|
||||
"meta-llama/Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
|
||||
CoreModelId.llama_guard_3_11b_vision.value: "meta-llama/Llama-Guard-3-11B-Vision",
|
||||
"meta-llama/Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
|
||||
}
|
||||
|
||||
MODEL_TO_SAFETY_CATEGORIES_MAP = {
|
||||
CoreModelId.llama_guard_3_8b.value: (
|
||||
DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE]
|
||||
),
|
||||
CoreModelId.llama_guard_3_1b.value: DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
CoreModelId.llama_guard_3_11b_vision.value: DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
"meta-llama/Llama-Guard-3-8B": DEFAULT_LG_V3_SAFETY_CATEGORIES
|
||||
+ [CAT_CODE_INTERPRETER_ABUSE],
|
||||
"meta-llama/Llama-Guard-3-1B": DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
"meta-llama/Llama-Guard-3-11B-Vision": DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -150,8 +153,9 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
if len(messages) > 0 and messages[0].role != Role.user.value:
|
||||
messages[0] = UserMessage(content=messages[0].content)
|
||||
|
||||
model = LLAMA_GUARD_MODEL_IDS[shield.provider_resource_id]
|
||||
impl = LlamaGuardShield(
|
||||
model=shield.provider_resource_id,
|
||||
model=model,
|
||||
inference_api=self.inference_api,
|
||||
excluded_categories=self.config.excluded_categories,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,91 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams, ScoringFn
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Your job is to look at a question, a gold target, and a predicted answer, and then assign a grade of either ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].
|
||||
First, I will give examples of each grade, and then you will grade a new example.
|
||||
The following are examples of CORRECT predicted answers.
|
||||
```
|
||||
Question: What are the names of Barack Obama's children?
|
||||
Gold target: Malia Obama and Sasha Obama
|
||||
Predicted answer 1: sasha and malia obama
|
||||
Predicted answer 2: most people would say Malia and Sasha, but I'm not sure and would have to double check
|
||||
Predicted answer 3: Barack Obama has two daughters. Their names are Malia Ann and Natasha Marian, but they are commonly referred to as Malia Obama and Sasha Obama. Malia was born on July 4, 1998, and Sasha was born on June 10, 2001.
|
||||
```
|
||||
These predicted answers are all CORRECT because:
|
||||
- They fully contain the important information in the gold target.
|
||||
- They do not contain any information that contradicts the gold target.
|
||||
- Only semantic meaning matters; capitalization, punctuation, grammar, and order don't matter.
|
||||
- Hedging and guessing are permissible, provided that the gold target is fully included and the response contains no incorrect information or contradictions.
|
||||
The following are examples of INCORRECT predicted answers.
|
||||
```
|
||||
Question: What are the names of Barack Obama's children?
|
||||
Gold target: Malia and Sasha
|
||||
Predicted answer 1: Malia.
|
||||
Predicted answer 2: Malia, Sasha, and Susan.
|
||||
Predicted answer 3: Barack Obama does not have any children.
|
||||
Predicted answer 4: I think it's either Malia and Sasha. Or it could be Malia and Jackie. Or it could be Joey and Malia.
|
||||
Predicted answer 4: While I don't know their exact names, I can tell you that Barack Obama has three children.
|
||||
Predicted answer 5: It's possible you may mean Betsy and Olivia. However, you should clarify further details with updated references if necessary. Is that the correct answer?
|
||||
Predicted answer 6: It may be the case that Obama's child is named James. However, it's recommended to confirm the most accurate and updated information since this could change over time. This model may not always reflect the most current information.
|
||||
```
|
||||
These predicted answers are all INCORRECT because:
|
||||
- A factual statement in the answer contradicts the gold target. Incorrect statements that have some hedging (e.g., "it is possible that", "although i'm not sure, i think") are also considered incorrect.
|
||||
The following are examples of NOT_ATTEMPTED predicted answers.
|
||||
```
|
||||
Question: What are the names of Barack Obama's children?
|
||||
Gold target: Malia and Sasha
|
||||
Predicted answer 1: I don't know.
|
||||
Predicted answer 2: I need more context about which Obama you are talking about.
|
||||
Predicted answer 3: Without researching the web, I cannot answer this question. However, I can tell you that Barack Obama has two children.
|
||||
Predicted answer 4: Barack Obama has two children. I know that one of them is Malia, but I'm not sure about the other one.
|
||||
```
|
||||
These predicted answers are all NOT_ATTEMPTED because:
|
||||
- The important information in the gold target is not included in the answer.
|
||||
- No statements in the answer contradict the gold target.
|
||||
Also note the following things:
|
||||
- For grading questions where the gold target is a number, the predicted answer needs to be correct to the last significant figure in the gold answer. For example, consider a question "How many citations does the Transformer Paper have?" with gold target "120k".
|
||||
- Predicted answers "120k", "124k", and 115k" are all CORRECT.
|
||||
- Predicted answers "100k" and "113k" are INCORRECT.
|
||||
- Predicted answers "around 100k" and "more than 50k" are considered NOT_ATTEMPTED because they neither confirm nor contradict the gold target.
|
||||
- The gold target may contain more information than the question. In such cases, the predicted answer only needs to contain the information that is in the question.
|
||||
- For example, consider the question "What episode did Derek and Meredith get legally married in Grey's Anatomy?" with gold target "Season 7, Episode 20: White Wedding". Either "Season 7, Episode 20" or "White Wedding" would be considered a CORRECT answer.
|
||||
- Do not punish predicted answers if they omit information that would be clearly inferred from the question.
|
||||
- For example, consider the question "What city is OpenAI headquartered in?" and the gold target "San Francisco, California". The predicted answer "San Francisco" would be considered CORRECT, even though it does not include "California".
|
||||
- Consider the question "What award did A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity win at NAACL '24?", the gold target is "Outstanding Paper Award". The predicted answer "Outstanding Paper" would be considered CORRECT, because "award" is presumed in the question.
|
||||
- For the question "What is the height of Jason Wei in meters?", the gold target is "1.73 m". The predicted answer "1.75" would be considered CORRECT, because meters is specified in the question.
|
||||
- For the question "What is the name of Barack Obama's wife?", the gold target is "Michelle Obama". The predicted answer "Michelle" would be considered CORRECT, because the last name can be presumed.
|
||||
- Do not punish for typos in people's name if it's clearly the same name.
|
||||
- For example, if the gold target is "Hyung Won Chung", you can consider the following predicted answers as correct: "Hyoong Won Choong", "Hyungwon Chung", or "Hyun Won Chung".
|
||||
Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT ATTEMPTED. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
```
|
||||
Question: {input_query}
|
||||
Gold target: {expected_answer}
|
||||
Predicted answer: {generated_answer}
|
||||
```
|
||||
Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
C: NOT_ATTEMPTED
|
||||
Just return the letters "A", "B", or "C", with no text around it.
|
||||
""".strip()
|
||||
|
||||
|
||||
llm_as_judge_405b_simpleqa = ScoringFn(
|
||||
identifier="llm-as-judge::405b-simpleqa",
|
||||
description="Llm As Judge Scoring Function for SimpleQA Benchmark (https://github.com/openai/simple-evals/blob/main/simpleqa_eval.py)",
|
||||
return_type=NumberType(),
|
||||
provider_id="llm-as-judge",
|
||||
provider_resource_id="llm-as-judge-405b-simpleqa",
|
||||
params=LLMAsJudgeScoringFnParams(
|
||||
judge_model="Llama3.1-405B-Instruct",
|
||||
prompt_template=GRADER_TEMPLATE,
|
||||
judge_score_regexes=[r"(A|B|C)"],
|
||||
),
|
||||
)
|
||||
|
|
@ -9,7 +9,7 @@ from llama_stack.apis.scoring_functions import ScoringFn
|
|||
|
||||
|
||||
llm_as_judge_base = ScoringFn(
|
||||
identifier="llm-as-judge::llm_as_judge_base",
|
||||
identifier="llm-as-judge::base",
|
||||
description="Llm As Judge Scoring Function",
|
||||
return_type=NumberType(),
|
||||
provider_id="llm-as-judge",
|
||||
|
|
|
|||
|
|
@ -11,6 +11,8 @@ from llama_stack.apis.scoring import * # noqa: F401, F403
|
|||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
import re
|
||||
|
||||
from .fn_defs.llm_as_judge_405b_simpleqa import llm_as_judge_405b_simpleqa
|
||||
|
||||
from .fn_defs.llm_as_judge_base import llm_as_judge_base
|
||||
|
||||
|
||||
|
|
@ -24,6 +26,7 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
|
|||
self.inference_api = inference_api
|
||||
self.supported_fn_defs_registry = {
|
||||
llm_as_judge_base.identifier: llm_as_judge_base,
|
||||
llm_as_judge_405b_simpleqa.identifier: llm_as_judge_405b_simpleqa,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
Api.datasets,
|
||||
Api.scoring,
|
||||
Api.inference,
|
||||
Api.agents,
|
||||
],
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
|
@ -20,3 +20,10 @@ class FireworksImplConfig(BaseModel):
|
|||
default=None,
|
||||
description="The Fireworks.ai API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.fireworks.ai/inference",
|
||||
"api_key": "${env.FIREWORKS_API_KEY}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import FireworksImplConfig
|
||||
|
||||
|
||||
model_aliases = [
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"fireworks/llama-v3p1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
|
|
@ -79,7 +79,7 @@ class FireworksInferenceAdapter(
|
|||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, model_aliases)
|
||||
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@ from llama_stack.apis.inference import (
|
|||
ResponseFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
build_model_alias_with_just_provider_model_id,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
|
|
@ -43,39 +43,39 @@ from ._openai_utils import (
|
|||
from ._utils import check_health
|
||||
|
||||
_MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama3-8b-instruct",
|
||||
CoreModelId.llama3_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama3-70b-instruct",
|
||||
CoreModelId.llama3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.1-405b-instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.2-3b-instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.2-11b-vision-instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"meta/llama-3.2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
|
|
|
|||
|
|
@ -4,14 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
||||
from .config import OllamaImplConfig
|
||||
|
||||
|
||||
class OllamaImplConfig(RemoteProviderConfig):
|
||||
port: int = 11434
|
||||
|
||||
|
||||
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
|
||||
async def get_adapter_impl(config: OllamaImplConfig, _deps):
|
||||
from .ollama import OllamaInferenceAdapter
|
||||
|
||||
impl = OllamaInferenceAdapter(config.url)
|
||||
|
|
|
|||
22
llama_stack/providers/remote/inference/ollama/config.py
Normal file
22
llama_stack/providers/remote/inference/ollama/config.py
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
DEFAULT_OLLAMA_URL = "http://localhost:11434"
|
||||
|
||||
|
||||
class OllamaImplConfig(BaseModel):
|
||||
url: str = DEFAULT_OLLAMA_URL
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls, url: str = "${env.OLLAMA_URL:http://localhost:11434}", **kwargs
|
||||
) -> Dict[str, Any]:
|
||||
return {"url": url}
|
||||
|
|
@ -16,6 +16,7 @@ from ollama import AsyncClient
|
|||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
build_model_alias_with_just_provider_model_id,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
|
|
@ -44,10 +45,18 @@ model_aliases = [
|
|||
"llama3.1:8b-instruct-fp16",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.1:8b",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.1:70b-instruct-fp16",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.1:70b",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.2:1b-instruct-fp16",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
|
|
@ -56,6 +65,24 @@ model_aliases = [
|
|||
"llama3.2:3b-instruct-fp16",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2:1b",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2:3b",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.2-vision:11b-instruct-fp16",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2-vision",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
# The Llama Guard models don't have their full fp16 versions
|
||||
# so we are going to alias their default version to the canonical SKU
|
||||
build_model_alias(
|
||||
"llama-guard3:8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
|
|
@ -64,10 +91,6 @@ model_aliases = [
|
|||
"llama-guard3:1b",
|
||||
CoreModelId.llama_guard_3_1b.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"x/llama3.2-vision:11b-instruct-fp16",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
|
@ -82,7 +105,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
return AsyncClient(host=self.url)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
print("Initializing Ollama, checking connectivity to server...")
|
||||
print(f"checking connectivity to Ollama at `{self.url}`...")
|
||||
try:
|
||||
await self.client.ps()
|
||||
except httpx.ConnectError as e:
|
||||
|
|
|
|||
|
|
@ -12,19 +12,20 @@ from pydantic import BaseModel, Field
|
|||
|
||||
@json_schema_type
|
||||
class TGIImplConfig(BaseModel):
|
||||
host: str = "localhost"
|
||||
port: int = 8080
|
||||
protocol: str = "http"
|
||||
|
||||
@property
|
||||
def url(self) -> str:
|
||||
return f"{self.protocol}://{self.host}:{self.port}"
|
||||
|
||||
url: str = Field(
|
||||
description="The URL for the TGI serving endpoint",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
default=None,
|
||||
description="A bearer token if your TGI endpoint is protected.",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.TGI_URL}", **kwargs):
|
||||
return {
|
||||
"url": url,
|
||||
}
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class InferenceEndpointImplConfig(BaseModel):
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
|
@ -20,3 +20,10 @@ class TogetherImplConfig(BaseModel):
|
|||
default=None,
|
||||
description="The Together AI API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.together.xyz/v1",
|
||||
"api_key": "${env.TOGETHER_API_KEY}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import TogetherImplConfig
|
||||
|
||||
|
||||
model_aliases = [
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
|
|
@ -78,7 +78,7 @@ class TogetherInferenceAdapter(
|
|||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, model_aliases)
|
||||
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
|
|
|
|||
|
|
@ -24,3 +24,15 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
default="fake",
|
||||
description="The API token",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
url: str = "${env.VLLM_URL}",
|
||||
**kwargs,
|
||||
):
|
||||
return {
|
||||
"url": url,
|
||||
"max_tokens": "${env.VLLM_MAX_TOKENS:4096}",
|
||||
"api_token": "${env.VLLM_API_TOKEN:fake}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -44,7 +44,7 @@ Finally, you can override the model completely by doing:
|
|||
```bash
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py \
|
||||
-m fireworks \
|
||||
--inference-model "Llama3.1-70B-Instruct" \
|
||||
--inference-model "meta-llama/Llama3.1-70B-Instruct" \
|
||||
--env FIREWORKS_API_KEY=<...>
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -81,13 +81,13 @@ def pytest_addoption(parser):
|
|||
parser.addoption(
|
||||
"--inference-model",
|
||||
action="store",
|
||||
default="Llama3.1-8B-Instruct",
|
||||
default="meta-llama/Llama-3.1-8B-Instruct",
|
||||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
parser.addoption(
|
||||
"--safety-shield",
|
||||
action="store",
|
||||
default="Llama-Guard-3-8B",
|
||||
default="meta-llama/Llama-Guard-3-8B",
|
||||
help="Specify the safety shield to use for testing",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -83,6 +83,6 @@ async def agents_stack(request, inference_model, safety_shield):
|
|||
)
|
||||
for model in inference_models
|
||||
],
|
||||
shields=[safety_shield],
|
||||
shields=[safety_shield] if safety_shield else [],
|
||||
)
|
||||
return test_stack
|
||||
|
|
|
|||
|
|
@ -63,7 +63,7 @@ def pytest_addoption(parser):
|
|||
parser.addoption(
|
||||
"--inference-model",
|
||||
action="store",
|
||||
default="Llama3.2-3B-Instruct",
|
||||
default="meta-llama/Llama-3.2-3B-Instruct",
|
||||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -32,8 +32,12 @@ def pytest_configure(config):
|
|||
|
||||
|
||||
MODEL_PARAMS = [
|
||||
pytest.param("Llama3.1-8B-Instruct", marks=pytest.mark.llama_8b, id="llama_8b"),
|
||||
pytest.param("Llama3.2-3B-Instruct", marks=pytest.mark.llama_3b, id="llama_3b"),
|
||||
pytest.param(
|
||||
"meta-llama/Llama-3.1-8B-Instruct", marks=pytest.mark.llama_8b, id="llama_8b"
|
||||
),
|
||||
pytest.param(
|
||||
"meta-llama/Llama-3.2-3B-Instruct", marks=pytest.mark.llama_3b, id="llama_3b"
|
||||
),
|
||||
]
|
||||
|
||||
VISION_MODEL_PARAMS = [
|
||||
|
|
|
|||
|
|
@ -6,7 +6,6 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
|
|
@ -17,11 +16,22 @@ from llama_models.datatypes import CoreModelId
|
|||
|
||||
class TestModelRegistration:
|
||||
@pytest.mark.asyncio
|
||||
async def test_register_unsupported_model(self, inference_stack):
|
||||
_, models_impl = inference_stack
|
||||
async def test_register_unsupported_model(self, inference_stack, inference_model):
|
||||
inference_impl, models_impl = inference_stack
|
||||
|
||||
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||
if provider.__provider_spec__.provider_type not in (
|
||||
"meta-reference",
|
||||
"remote::ollama",
|
||||
"remote::vllm",
|
||||
"remote::tgi",
|
||||
):
|
||||
pytest.skip(
|
||||
"Skipping test for remote inference providers since they can handle large models like 70B instruct"
|
||||
)
|
||||
|
||||
# Try to register a model that's too large for local inference
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
await models_impl.register_model(
|
||||
model_id="Llama3.1-70B-Instruct",
|
||||
)
|
||||
|
|
@ -37,21 +47,27 @@ class TestModelRegistration:
|
|||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_model(self, inference_stack):
|
||||
async def test_register_with_llama_model(self, inference_stack):
|
||||
_, models_impl = inference_stack
|
||||
|
||||
# Register a model to update
|
||||
model_id = CoreModelId.llama3_1_8b_instruct.value
|
||||
old_model = await models_impl.register_model(model_id=model_id)
|
||||
|
||||
# Update the model
|
||||
new_model_id = CoreModelId.llama3_2_3b_instruct.value
|
||||
updated_model = await models_impl.update_model(
|
||||
model_id=model_id, provider_model_id=new_model_id
|
||||
_ = await models_impl.register_model(
|
||||
model_id="custom-model",
|
||||
metadata={"llama_model": "meta-llama/Llama-2-7b"},
|
||||
)
|
||||
|
||||
# Retrieve the updated model to verify changes
|
||||
assert updated_model.provider_resource_id != old_model.provider_resource_id
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
await models_impl.register_model(
|
||||
model_id="custom-model-2",
|
||||
metadata={"llama_model": "meta-llama/Llama-2-7b"},
|
||||
provider_model_id="custom-model",
|
||||
)
|
||||
|
||||
# Cleanup
|
||||
await models_impl.unregister_model(model_id=model_id)
|
||||
@pytest.mark.asyncio
|
||||
async def test_register_with_invalid_llama_model(self, inference_stack):
|
||||
_, models_impl = inference_stack
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
await models_impl.register_model(
|
||||
model_id="custom-model-2",
|
||||
metadata={"llama_model": "invalid-llama-model"},
|
||||
)
|
||||
|
|
|
|||
|
|
@ -6,7 +6,6 @@
|
|||
|
||||
import json
|
||||
import tempfile
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
|
@ -37,7 +36,6 @@ async def construct_stack_for_test(
|
|||
) -> TestStack:
|
||||
sqlite_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
|
||||
run_config = dict(
|
||||
built_at=datetime.now(),
|
||||
image_name="test-fixture",
|
||||
apis=apis,
|
||||
providers=providers,
|
||||
|
|
|
|||
|
|
@ -47,6 +47,9 @@ def safety_shield(request):
|
|||
else:
|
||||
params = {}
|
||||
|
||||
if not shield_id:
|
||||
return None
|
||||
|
||||
return ShieldInput(
|
||||
shield_id=shield_id,
|
||||
params=params,
|
||||
|
|
|
|||
|
|
@ -58,7 +58,7 @@ def pytest_addoption(parser):
|
|||
parser.addoption(
|
||||
"--inference-model",
|
||||
action="store",
|
||||
default="Llama3.2-3B-Instruct",
|
||||
default="meta-llama/Llama-3.2-3B-Instruct",
|
||||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -31,3 +31,8 @@ def supported_inference_models() -> List[str]:
|
|||
or is_supported_safety_model(m)
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR = {
|
||||
m.huggingface_repo: m.descriptor() for m in all_registered_models()
|
||||
}
|
||||
|
|
|
|||
|
|
@ -11,6 +11,10 @@ from llama_models.sku_list import all_registered_models
|
|||
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference import (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
|
||||
)
|
||||
|
||||
ModelAlias = namedtuple("ModelAlias", ["provider_model_id", "aliases", "llama_model"])
|
||||
|
||||
|
||||
|
|
@ -32,6 +36,16 @@ def build_model_alias(provider_model_id: str, model_descriptor: str) -> ModelAli
|
|||
)
|
||||
|
||||
|
||||
def build_model_alias_with_just_provider_model_id(
|
||||
provider_model_id: str, model_descriptor: str
|
||||
) -> ModelAlias:
|
||||
return ModelAlias(
|
||||
provider_model_id=provider_model_id,
|
||||
aliases=[],
|
||||
llama_model=model_descriptor,
|
||||
)
|
||||
|
||||
|
||||
class ModelRegistryHelper(ModelsProtocolPrivate):
|
||||
def __init__(self, model_aliases: List[ModelAlias]):
|
||||
self.alias_to_provider_id_map = {}
|
||||
|
|
@ -51,7 +65,7 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
if identifier in self.alias_to_provider_id_map:
|
||||
return self.alias_to_provider_id_map[identifier]
|
||||
else:
|
||||
raise ValueError(f"Unknown model: `{identifier}`")
|
||||
return None
|
||||
|
||||
def get_llama_model(self, provider_model_id: str) -> str:
|
||||
if provider_model_id in self.provider_id_to_llama_model_map:
|
||||
|
|
@ -60,8 +74,34 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
return None
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model.provider_resource_id = self.get_provider_model_id(
|
||||
model.provider_resource_id
|
||||
)
|
||||
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id:
|
||||
model.provider_resource_id = provider_resource_id
|
||||
else:
|
||||
if model.metadata.get("llama_model") is None:
|
||||
raise ValueError(
|
||||
f"Model '{model.provider_resource_id}' is not available and no llama_model was specified in metadata. "
|
||||
"Please specify a llama_model in metadata or use a supported model identifier"
|
||||
)
|
||||
existing_llama_model = self.get_llama_model(model.provider_resource_id)
|
||||
if existing_llama_model:
|
||||
if existing_llama_model != model.metadata["llama_model"]:
|
||||
raise ValueError(
|
||||
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
|
||||
)
|
||||
else:
|
||||
if (
|
||||
model.metadata["llama_model"]
|
||||
not in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR
|
||||
):
|
||||
raise ValueError(
|
||||
f"Invalid llama_model '{model.metadata['llama_model']}' specified in metadata. "
|
||||
f"Must be one of: {', '.join(ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR.keys())}"
|
||||
)
|
||||
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[
|
||||
model.metadata["llama_model"]
|
||||
]
|
||||
)
|
||||
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -36,6 +36,15 @@ class RedisKVStoreConfig(CommonConfig):
|
|||
def url(self) -> str:
|
||||
return f"redis://{self.host}:{self.port}"
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls):
|
||||
return {
|
||||
"type": "redis",
|
||||
"namespace": None,
|
||||
"host": "${env.REDIS_HOST:localhost}",
|
||||
"port": "${env.REDIS_PORT:6379}",
|
||||
}
|
||||
|
||||
|
||||
class SqliteKVStoreConfig(CommonConfig):
|
||||
type: Literal[KVStoreType.sqlite.value] = KVStoreType.sqlite.value
|
||||
|
|
@ -44,6 +53,19 @@ class SqliteKVStoreConfig(CommonConfig):
|
|||
description="File path for the sqlite database",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls, __distro_dir__: str = "runtime", db_name: str = "kvstore.db"
|
||||
):
|
||||
return {
|
||||
"type": "sqlite",
|
||||
"namespace": None,
|
||||
"db_path": "${env.SQLITE_STORE_DIR:~/.llama/"
|
||||
+ __distro_dir__
|
||||
+ "}/"
|
||||
+ db_name,
|
||||
}
|
||||
|
||||
|
||||
class PostgresKVStoreConfig(CommonConfig):
|
||||
type: Literal[KVStoreType.postgres.value] = KVStoreType.postgres.value
|
||||
|
|
@ -54,6 +76,19 @@ class PostgresKVStoreConfig(CommonConfig):
|
|||
password: Optional[str] = None
|
||||
table_name: str = "llamastack_kvstore"
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, table_name: str = "llamastack_kvstore"):
|
||||
return {
|
||||
"type": "postgres",
|
||||
"namespace": None,
|
||||
"host": "${env.POSTGRES_HOST:localhost}",
|
||||
"port": "${env.POSTGRES_PORT:5432}",
|
||||
"db": "${env.POSTGRES_DB}",
|
||||
"user": "${env.POSTGRES_USER}",
|
||||
"password": "${env.POSTGRES_PASSWORD}",
|
||||
"table_name": "${env.POSTGRES_TABLE_NAME:" + table_name + "}",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@field_validator("table_name")
|
||||
def validate_table_name(cls, v: str) -> str:
|
||||
|
|
|
|||
102
llama_stack/scripts/distro_codegen.py
Normal file
102
llama_stack/scripts/distro_codegen.py
Normal file
|
|
@ -0,0 +1,102 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import concurrent.futures
|
||||
import importlib
|
||||
import subprocess
|
||||
import sys
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Iterator
|
||||
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn
|
||||
|
||||
|
||||
REPO_ROOT = Path(__file__).parent.parent.parent
|
||||
|
||||
|
||||
def find_template_dirs(templates_dir: Path) -> Iterator[Path]:
|
||||
"""Find immediate subdirectories in the templates folder."""
|
||||
if not templates_dir.exists():
|
||||
raise FileNotFoundError(f"Templates directory not found: {templates_dir}")
|
||||
|
||||
return (
|
||||
d for d in templates_dir.iterdir() if d.is_dir() and d.name != "__pycache__"
|
||||
)
|
||||
|
||||
|
||||
def process_template(template_dir: Path, progress) -> None:
|
||||
"""Process a single template directory."""
|
||||
progress.print(f"Processing {template_dir.name}")
|
||||
|
||||
try:
|
||||
# Import the module directly
|
||||
module_name = f"llama_stack.templates.{template_dir.name}"
|
||||
module = importlib.import_module(module_name)
|
||||
|
||||
# Get and save the distribution template
|
||||
if template_func := getattr(module, "get_distribution_template", None):
|
||||
template = template_func()
|
||||
|
||||
template.save_distribution(
|
||||
yaml_output_dir=REPO_ROOT / "llama_stack" / "templates" / template.name,
|
||||
doc_output_dir=REPO_ROOT
|
||||
/ "docs/source/getting_started/distributions"
|
||||
/ f"{template.distro_type}_distro",
|
||||
)
|
||||
else:
|
||||
progress.print(
|
||||
f"[yellow]Warning: {template_dir.name} has no get_distribution_template function"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
progress.print(f"[red]Error processing {template_dir.name}: {str(e)}")
|
||||
raise e
|
||||
|
||||
|
||||
def check_for_changes() -> bool:
|
||||
"""Check if there are any uncommitted changes."""
|
||||
result = subprocess.run(
|
||||
["git", "diff", "--exit-code"],
|
||||
cwd=REPO_ROOT,
|
||||
capture_output=True,
|
||||
)
|
||||
return result.returncode != 0
|
||||
|
||||
|
||||
def main():
|
||||
templates_dir = REPO_ROOT / "llama_stack" / "templates"
|
||||
|
||||
with Progress(
|
||||
SpinnerColumn(),
|
||||
TextColumn("[progress.description]{task.description}"),
|
||||
) as progress:
|
||||
template_dirs = list(find_template_dirs(templates_dir))
|
||||
task = progress.add_task(
|
||||
"Processing distribution templates...", total=len(template_dirs)
|
||||
)
|
||||
|
||||
# Create a partial function with the progress bar
|
||||
process_func = partial(process_template, progress=progress)
|
||||
|
||||
# Process templates in parallel
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
# Submit all tasks and wait for completion
|
||||
list(executor.map(process_func, template_dirs))
|
||||
progress.update(task, advance=len(template_dirs))
|
||||
|
||||
if check_for_changes():
|
||||
print(
|
||||
"Distribution template changes detected. Please commit the changes.",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
5
llama_stack/templates/__init__.py
Normal file
5
llama_stack/templates/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
7
llama_stack/templates/fireworks/__init__.py
Normal file
7
llama_stack/templates/fireworks/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .fireworks import get_distribution_template # noqa: F401
|
||||
|
|
@ -1,11 +1,19 @@
|
|||
version: '2'
|
||||
name: fireworks
|
||||
distribution_spec:
|
||||
description: Use Fireworks.ai for running LLM inference
|
||||
description: Use Fireworks.AI for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: remote::fireworks
|
||||
inference:
|
||||
- remote::fireworks
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::weaviate
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
|
|||
60
llama_stack/templates/fireworks/doc_template.md
Normal file
60
llama_stack/templates/fireworks/doc_template.md
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
# Fireworks Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{% if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }} ({{ model.provider_model_id }})`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a Fireworks API Key. You can get one by visiting [fireworks.ai](https://fireworks.ai/).
|
||||
|
||||
|
||||
## Running Llama Stack with Fireworks
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template fireworks --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
|
||||
```
|
||||
71
llama_stack/templates/fireworks/fireworks.py
Normal file
71
llama_stack/templates/fireworks/fireworks.py
Normal file
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.fireworks.fireworks import MODEL_ALIASES
|
||||
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::fireworks"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="fireworks",
|
||||
provider_type="remote::fireworks",
|
||||
config=FireworksImplConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
core_model_to_hf_repo = {
|
||||
m.descriptor(): m.huggingface_repo for m in all_registered_models()
|
||||
}
|
||||
default_models = [
|
||||
ModelInput(
|
||||
model_id=core_model_to_hf_repo[m.llama_model],
|
||||
provider_model_id=m.provider_model_id,
|
||||
)
|
||||
for m in MODEL_ALIASES
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name="fireworks",
|
||||
distro_type="self_hosted",
|
||||
description="Use Fireworks.AI for running LLM inference",
|
||||
docker_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=default_models,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"FIREWORKS_API_KEY": (
|
||||
"",
|
||||
"Fireworks.AI API Key",
|
||||
),
|
||||
},
|
||||
)
|
||||
91
llama_stack/templates/fireworks/run.yaml
Normal file
91
llama_stack/templates/fireworks/run.yaml
Normal file
|
|
@ -0,0 +1,91 @@
|
|||
version: '2'
|
||||
image_name: fireworks
|
||||
docker_image: null
|
||||
conda_env: fireworks
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inference
|
||||
api_key: ${env.FIREWORKS_API_KEY}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/fireworks}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/fireworks}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/fireworks}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p1-8b-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p1-70b-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p1-405b-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-3B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p2-1b-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p2-3b-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p2-11b-vision-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-v3p2-90b-vision-instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-guard-3-8b
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: null
|
||||
provider_model_id: fireworks/llama-guard-3-11b-vision
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
7
llama_stack/templates/meta-reference-gpu/__init__.py
Normal file
7
llama_stack/templates/meta-reference-gpu/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .meta_reference import get_distribution_template # noqa: F401
|
||||
|
|
@ -1,13 +1,19 @@
|
|||
version: '2'
|
||||
name: meta-reference-gpu
|
||||
distribution_spec:
|
||||
docker_image: pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
description: Use Meta Reference for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
inference:
|
||||
- inline::meta-reference
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
|
|||
82
llama_stack/templates/meta-reference-gpu/doc_template.md
Normal file
82
llama_stack/templates/meta-reference-gpu/doc_template.md
Normal file
|
|
@ -0,0 +1,82 @@
|
|||
# Meta Reference Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations:
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ ls ~/.llama/checkpoints
|
||||
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
|
||||
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
/root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port 5001 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
100
llama_stack/templates/meta-reference-gpu/meta_reference.py
Normal file
100
llama_stack/templates/meta-reference-gpu/meta_reference.py
Normal file
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.inline.inference.meta_reference import (
|
||||
MetaReferenceInferenceConfig,
|
||||
)
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["inline::meta-reference"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="meta-reference-inference",
|
||||
provider_type="inline::meta-reference",
|
||||
config=MetaReferenceInferenceConfig.sample_run_config(
|
||||
model="${env.INFERENCE_MODEL}",
|
||||
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:null}",
|
||||
),
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="meta-reference-inference",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="meta-reference-safety",
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name="meta-reference-gpu",
|
||||
distro_type="self_hosted",
|
||||
description="Use Meta Reference for running LLM inference",
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=[inference_model, safety_model],
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=[inference_model],
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
Provider(
|
||||
provider_id="meta-reference-safety",
|
||||
provider_type="inline::meta-reference",
|
||||
config=MetaReferenceInferenceConfig.sample_run_config(
|
||||
model="${env.SAFETY_MODEL}",
|
||||
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:null}",
|
||||
),
|
||||
),
|
||||
],
|
||||
},
|
||||
default_models=[
|
||||
inference_model,
|
||||
safety_model,
|
||||
],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the Meta Reference server",
|
||||
),
|
||||
"INFERENCE_CHECKPOINT_DIR": (
|
||||
"null",
|
||||
"Directory containing the Meta Reference model checkpoint",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Name of the safety (Llama-Guard) model to use",
|
||||
),
|
||||
"SAFETY_CHECKPOINT_DIR": (
|
||||
"null",
|
||||
"Directory containing the Llama-Guard model checkpoint",
|
||||
),
|
||||
},
|
||||
)
|
||||
|
|
@ -0,0 +1,70 @@
|
|||
version: '2'
|
||||
image_name: meta-reference-gpu
|
||||
docker_image: null
|
||||
conda_env: meta-reference-gpu
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference-inference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.INFERENCE_MODEL}
|
||||
max_seq_len: 4096
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
||||
- provider_id: meta-reference-safety
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.SAFETY_MODEL}
|
||||
max_seq_len: 4096
|
||||
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:null}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: meta-reference-safety
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
56
llama_stack/templates/meta-reference-gpu/run.yaml
Normal file
56
llama_stack/templates/meta-reference-gpu/run.yaml
Normal file
|
|
@ -0,0 +1,56 @@
|
|||
version: '2'
|
||||
image_name: meta-reference-gpu
|
||||
docker_image: null
|
||||
conda_env: meta-reference-gpu
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference-inference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
model: ${env.INFERENCE_MODEL}
|
||||
max_seq_len: 4096
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
7
llama_stack/templates/ollama/__init__.py
Normal file
7
llama_stack/templates/ollama/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .ollama import get_distribution_template # noqa: F401
|
||||
|
|
@ -1,12 +1,19 @@
|
|||
version: '2'
|
||||
name: ollama
|
||||
distribution_spec:
|
||||
description: Use ollama for running LLM inference
|
||||
description: Use (an external) Ollama server for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
inference:
|
||||
- remote::ollama
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
|
|||
134
llama_stack/templates/ollama/doc_template.md
Normal file
134
llama_stack/templates/ollama/doc_template.md
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
# Ollama Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
|
||||
|
||||
{%- if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Setting up Ollama server
|
||||
|
||||
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
|
||||
|
||||
In order to load models, you can run:
|
||||
|
||||
```bash
|
||||
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
||||
|
||||
# ollama names this model differently, and we must use the ollama name when loading the model
|
||||
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
||||
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
||||
|
||||
```bash
|
||||
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
||||
|
||||
# ollama names this model differently, and we must use the ollama name when loading the model
|
||||
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
|
||||
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env OLLAMA_URL=http://host.docker.internal:11434
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
llama stack build --template ollama --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env OLLAMA_URL=http://localhost:11434
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env OLLAMA_URL=http://localhost:11434
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
> [!NOTE]
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers.remote/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
|
||||
|
||||
To serve a new model with `ollama`
|
||||
```bash
|
||||
ollama run <model_name>
|
||||
```
|
||||
|
||||
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
||||
```
|
||||
$ ollama ps
|
||||
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
|
||||
To verify that the model served by ollama is correctly connected to Llama Stack server
|
||||
```bash
|
||||
$ llama-stack-client models list
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+===============================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
```
|
||||
84
llama_stack/templates/ollama/ollama.py
Normal file
84
llama_stack/templates/ollama/ollama.py
Normal file
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::ollama"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="ollama",
|
||||
provider_type="remote::ollama",
|
||||
config=OllamaImplConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="ollama",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="ollama",
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name="ollama",
|
||||
distro_type="self_hosted",
|
||||
description="Use (an external) Ollama server for running LLM inference",
|
||||
docker_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=[inference_model, safety_model],
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=[inference_model],
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
]
|
||||
},
|
||||
default_models=[
|
||||
inference_model,
|
||||
safety_model,
|
||||
],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"OLLAMA_URL": (
|
||||
"http://127.0.0.1:11434",
|
||||
"URL of the Ollama server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the Ollama server",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Safety model loaded into the Ollama server",
|
||||
),
|
||||
},
|
||||
)
|
||||
62
llama_stack/templates/ollama/run-with-safety.yaml
Normal file
62
llama_stack/templates/ollama/run-with-safety.yaml
Normal file
|
|
@ -0,0 +1,62 @@
|
|||
version: '2'
|
||||
image_name: ollama
|
||||
docker_image: null
|
||||
conda_env: ollama
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:http://localhost:11434}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
54
llama_stack/templates/ollama/run.yaml
Normal file
54
llama_stack/templates/ollama/run.yaml
Normal file
|
|
@ -0,0 +1,54 @@
|
|||
version: '2'
|
||||
image_name: ollama
|
||||
docker_image: null
|
||||
conda_env: ollama
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: ${env.OLLAMA_URL:http://localhost:11434}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ollama
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
7
llama_stack/templates/remote-vllm/__init__.py
Normal file
7
llama_stack/templates/remote-vllm/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .vllm import get_distribution_template # noqa: F401
|
||||
|
|
@ -1,12 +1,19 @@
|
|||
version: '2'
|
||||
name: remote-vllm
|
||||
distribution_spec:
|
||||
description: Use (an external) vLLM server for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: remote::vllm
|
||||
inference:
|
||||
- remote::vllm
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
|
|||
136
llama_stack/templates/remote-vllm/doc_template.md
Normal file
136
llama_stack/templates/remote-vllm/doc_template.md
Normal file
|
|
@ -0,0 +1,136 @@
|
|||
# Remote vLLM Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations:
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Setting up vLLM server
|
||||
|
||||
Please check the [vLLM Documentation](https://docs.vllm.ai/en/v0.5.5/serving/deploying_with_docker.html) to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
docker run \
|
||||
--runtime nvidia \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--ipc=host \
|
||||
vllm/vllm-openai:latest \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run \
|
||||
--runtime nvidia \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--ipc=host \
|
||||
vllm/vllm-openai:latest \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env SAFETY_VLLM_URL=http://host.docker.internal:$SAFETY_PORT/v1
|
||||
```
|
||||
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
cd distributions/remote-vllm
|
||||
llama stack build --template remote-vllm --image-type conda
|
||||
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1 \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env SAFETY_VLLM_URL=http://localhost:$SAFETY_PORT/v1
|
||||
```
|
||||
70
llama_stack/templates/remote-vllm/run-with-safety.yaml
Normal file
70
llama_stack/templates/remote-vllm/run-with-safety.yaml
Normal file
|
|
@ -0,0 +1,70 @@
|
|||
version: '2'
|
||||
image_name: remote-vllm
|
||||
docker_image: null
|
||||
conda_env: remote-vllm
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
- provider_id: vllm-safety
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.SAFETY_VLLM_URL}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: vllm-inference
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: vllm-safety
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
56
llama_stack/templates/remote-vllm/run.yaml
Normal file
56
llama_stack/templates/remote-vllm/run.yaml
Normal file
|
|
@ -0,0 +1,56 @@
|
|||
version: '2'
|
||||
image_name: remote-vllm
|
||||
docker_image: null
|
||||
conda_env: remote-vllm
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: vllm-inference
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
100
llama_stack/templates/remote-vllm/vllm.py
Normal file
100
llama_stack/templates/remote-vllm/vllm.py
Normal file
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::vllm"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="vllm-inference",
|
||||
provider_type="remote::vllm",
|
||||
config=VLLMInferenceAdapterConfig.sample_run_config(
|
||||
url="${env.VLLM_URL}",
|
||||
),
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="vllm-inference",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="vllm-safety",
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name="remote-vllm",
|
||||
distro_type="self_hosted",
|
||||
description="Use (an external) vLLM server for running LLM inference",
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=[inference_model, safety_model],
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=[inference_model],
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
Provider(
|
||||
provider_id="vllm-safety",
|
||||
provider_type="remote::vllm",
|
||||
config=VLLMInferenceAdapterConfig.sample_run_config(
|
||||
url="${env.SAFETY_VLLM_URL}",
|
||||
),
|
||||
),
|
||||
],
|
||||
},
|
||||
default_models=[
|
||||
inference_model,
|
||||
safety_model,
|
||||
],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the vLLM server",
|
||||
),
|
||||
"VLLM_URL": (
|
||||
"http://host.docker.internal:5100}/v1",
|
||||
"URL of the vLLM server with the main inference model",
|
||||
),
|
||||
"MAX_TOKENS": (
|
||||
"4096",
|
||||
"Maximum number of tokens for generation",
|
||||
),
|
||||
"SAFETY_VLLM_URL": (
|
||||
"http://host.docker.internal:5101/v1",
|
||||
"URL of the vLLM server with the safety model",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Name of the safety (Llama-Guard) model to use",
|
||||
),
|
||||
},
|
||||
)
|
||||
164
llama_stack/templates/template.py
Normal file
164
llama_stack/templates/template.py
Normal file
|
|
@ -0,0 +1,164 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Literal, Optional, Tuple
|
||||
|
||||
import jinja2
|
||||
import yaml
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.distribution.datatypes import (
|
||||
Api,
|
||||
BuildConfig,
|
||||
DistributionSpec,
|
||||
ModelInput,
|
||||
Provider,
|
||||
ShieldInput,
|
||||
StackRunConfig,
|
||||
)
|
||||
from llama_stack.distribution.distribution import get_provider_registry
|
||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
|
||||
class RunConfigSettings(BaseModel):
|
||||
provider_overrides: Dict[str, List[Provider]] = Field(default_factory=dict)
|
||||
default_models: List[ModelInput]
|
||||
default_shields: Optional[List[ShieldInput]] = None
|
||||
|
||||
def run_config(
|
||||
self,
|
||||
name: str,
|
||||
providers: Dict[str, List[str]],
|
||||
docker_image: Optional[str] = None,
|
||||
) -> StackRunConfig:
|
||||
provider_registry = get_provider_registry()
|
||||
|
||||
provider_configs = {}
|
||||
for api_str, provider_types in providers.items():
|
||||
if api_providers := self.provider_overrides.get(api_str):
|
||||
provider_configs[api_str] = api_providers
|
||||
continue
|
||||
|
||||
provider_type = provider_types[0]
|
||||
provider_id = provider_type.split("::")[-1]
|
||||
|
||||
api = Api(api_str)
|
||||
if provider_type not in provider_registry[api]:
|
||||
raise ValueError(
|
||||
f"Unknown provider type: {provider_type} for API: {api_str}"
|
||||
)
|
||||
|
||||
config_class = provider_registry[api][provider_type].config_class
|
||||
assert (
|
||||
config_class is not None
|
||||
), f"No config class for provider type: {provider_type} for API: {api_str}"
|
||||
|
||||
config_class = instantiate_class_type(config_class)
|
||||
if hasattr(config_class, "sample_run_config"):
|
||||
config = config_class.sample_run_config(
|
||||
__distro_dir__=f"distributions/{name}"
|
||||
)
|
||||
else:
|
||||
config = {}
|
||||
|
||||
provider_configs[api_str] = [
|
||||
Provider(
|
||||
provider_id=provider_id,
|
||||
provider_type=provider_type,
|
||||
config=config,
|
||||
)
|
||||
]
|
||||
|
||||
# Get unique set of APIs from providers
|
||||
apis = list(sorted(providers.keys()))
|
||||
|
||||
return StackRunConfig(
|
||||
image_name=name,
|
||||
docker_image=docker_image,
|
||||
conda_env=name,
|
||||
apis=apis,
|
||||
providers=provider_configs,
|
||||
metadata_store=SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=f"distributions/{name}",
|
||||
db_name="registry.db",
|
||||
),
|
||||
models=self.default_models,
|
||||
shields=self.default_shields or [],
|
||||
)
|
||||
|
||||
|
||||
class DistributionTemplate(BaseModel):
|
||||
"""
|
||||
Represents a Llama Stack distribution instance that can generate configuration
|
||||
and documentation files.
|
||||
"""
|
||||
|
||||
name: str
|
||||
description: str
|
||||
distro_type: Literal["self_hosted", "remote_hosted", "ondevice"]
|
||||
|
||||
providers: Dict[str, List[str]]
|
||||
run_configs: Dict[str, RunConfigSettings]
|
||||
template_path: Path
|
||||
|
||||
# Optional configuration
|
||||
run_config_env_vars: Optional[Dict[str, Tuple[str, str]]] = None
|
||||
docker_image: Optional[str] = None
|
||||
|
||||
default_models: Optional[List[ModelInput]] = None
|
||||
|
||||
def build_config(self) -> BuildConfig:
|
||||
return BuildConfig(
|
||||
name=self.name,
|
||||
distribution_spec=DistributionSpec(
|
||||
description=self.description,
|
||||
docker_image=self.docker_image,
|
||||
providers=self.providers,
|
||||
),
|
||||
image_type="conda", # default to conda, can be overridden
|
||||
)
|
||||
|
||||
def generate_markdown_docs(self) -> str:
|
||||
providers_table = "| API | Provider(s) |\n"
|
||||
providers_table += "|-----|-------------|\n"
|
||||
|
||||
for api, providers in sorted(self.providers.items()):
|
||||
providers_str = ", ".join(f"`{p}`" for p in providers)
|
||||
providers_table += f"| {api} | {providers_str} |\n"
|
||||
|
||||
template = self.template_path.read_text()
|
||||
# Render template with rich-generated table
|
||||
env = jinja2.Environment(trim_blocks=True, lstrip_blocks=True)
|
||||
template = env.from_string(template)
|
||||
return template.render(
|
||||
name=self.name,
|
||||
description=self.description,
|
||||
providers=self.providers,
|
||||
providers_table=providers_table,
|
||||
run_config_env_vars=self.run_config_env_vars,
|
||||
default_models=self.default_models,
|
||||
)
|
||||
|
||||
def save_distribution(self, yaml_output_dir: Path, doc_output_dir: Path) -> None:
|
||||
for output_dir in [yaml_output_dir, doc_output_dir]:
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
build_config = self.build_config()
|
||||
with open(yaml_output_dir / "build.yaml", "w") as f:
|
||||
yaml.safe_dump(build_config.model_dump(), f, sort_keys=False)
|
||||
|
||||
for yaml_pth, settings in self.run_configs.items():
|
||||
run_config = settings.run_config(
|
||||
self.name, self.providers, self.docker_image
|
||||
)
|
||||
with open(yaml_output_dir / yaml_pth, "w") as f:
|
||||
yaml.safe_dump(run_config.model_dump(), f, sort_keys=False)
|
||||
|
||||
docs = self.generate_markdown_docs()
|
||||
with open(doc_output_dir / f"{self.name}.md", "w") as f:
|
||||
f.write(docs)
|
||||
7
llama_stack/templates/tgi/__init__.py
Normal file
7
llama_stack/templates/tgi/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .tgi import get_distribution_template # noqa: F401
|
||||
|
|
@ -1,12 +1,19 @@
|
|||
version: '2'
|
||||
name: tgi
|
||||
distribution_spec:
|
||||
description: Use TGI for running LLM inference
|
||||
description: Use (an external) TGI server for running LLM inference
|
||||
docker_image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
inference:
|
||||
- remote::tgi
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
|
|||
119
llama_stack/templates/tgi/doc_template.md
Normal file
119
llama_stack/templates/tgi/doc_template.md
Normal file
|
|
@ -0,0 +1,119 @@
|
|||
# TGI Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Setting up TGI server
|
||||
|
||||
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8080
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run ./run.yaml
|
||||
--port 5001
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml
|
||||
--port 5001
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL
|
||||
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT
|
||||
```
|
||||
66
llama_stack/templates/tgi/run-with-safety.yaml
Normal file
66
llama_stack/templates/tgi/run-with-safety.yaml
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
version: '2'
|
||||
image_name: tgi
|
||||
docker_image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
conda_env: tgi
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi-inference
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL}
|
||||
- provider_id: tgi-safety
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_SAFETY_URL}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi-inference
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: tgi-safety
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
54
llama_stack/templates/tgi/run.yaml
Normal file
54
llama_stack/templates/tgi/run.yaml
Normal file
|
|
@ -0,0 +1,54 @@
|
|||
version: '2'
|
||||
image_name: tgi
|
||||
docker_image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
conda_env: tgi
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi-inference
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi-inference
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
97
llama_stack/templates/tgi/tgi.py
Normal file
97
llama_stack/templates/tgi/tgi.py
Normal file
|
|
@ -0,0 +1,97 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::tgi"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="tgi-inference",
|
||||
provider_type="remote::tgi",
|
||||
config=TGIImplConfig.sample_run_config(
|
||||
url="${env.TGI_URL}",
|
||||
),
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="tgi-inference",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="tgi-safety",
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name="tgi",
|
||||
distro_type="self_hosted",
|
||||
description="Use (an external) TGI server for running LLM inference",
|
||||
docker_image="llamastack/distribution-tgi:test-0.0.52rc3",
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=[inference_model, safety_model],
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=[inference_model],
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
Provider(
|
||||
provider_id="tgi-safety",
|
||||
provider_type="remote::tgi",
|
||||
config=TGIImplConfig.sample_run_config(
|
||||
url="${env.TGI_SAFETY_URL}",
|
||||
),
|
||||
),
|
||||
],
|
||||
},
|
||||
default_models=[
|
||||
inference_model,
|
||||
safety_model,
|
||||
],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the TGI server",
|
||||
),
|
||||
"TGI_URL": (
|
||||
"http://127.0.0.1:8080}/v1",
|
||||
"URL of the TGI server with the main inference model",
|
||||
),
|
||||
"TGI_SAFETY_URL": (
|
||||
"http://127.0.0.1:8081/v1",
|
||||
"URL of the TGI server with the safety model",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Name of the safety (Llama-Guard) model to use",
|
||||
),
|
||||
},
|
||||
)
|
||||
7
llama_stack/templates/together/__init__.py
Normal file
7
llama_stack/templates/together/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .together import get_distribution_template # noqa: F401
|
||||
|
|
@ -1,11 +1,19 @@
|
|||
version: '2'
|
||||
name: together
|
||||
distribution_spec:
|
||||
description: Use Together.ai for running LLM inference
|
||||
description: Use Together.AI for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: remote::together
|
||||
inference:
|
||||
- remote::together
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::weaviate
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
|
|||
60
llama_stack/templates/together/doc_template.md
Normal file
60
llama_stack/templates/together/doc_template.md
Normal file
|
|
@ -0,0 +1,60 @@
|
|||
# Fireworks Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{% if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a Together API Key. You can get one by visiting [together.xyz](https://together.xyz/).
|
||||
|
||||
|
||||
## Running Llama Stack with Together
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template together --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
|
||||
```
|
||||
87
llama_stack/templates/together/run.yaml
Normal file
87
llama_stack/templates/together/run.yaml
Normal file
|
|
@ -0,0 +1,87 @@
|
|||
version: '2'
|
||||
image_name: together
|
||||
docker_image: null
|
||||
conda_env: together
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: together
|
||||
provider_type: remote::together
|
||||
config:
|
||||
url: https://api.together.xyz/v1
|
||||
api_key: ${env.TOGETHER_API_KEY}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-3B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Meta-Llama-Guard-3-8B
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: null
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
71
llama_stack/templates/together/together.py
Normal file
71
llama_stack/templates/together/together.py
Normal file
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
from llama_stack.providers.remote.inference.together.together import MODEL_ALIASES
|
||||
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::together"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="together",
|
||||
provider_type="remote::together",
|
||||
config=TogetherImplConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
core_model_to_hf_repo = {
|
||||
m.descriptor(): m.huggingface_repo for m in all_registered_models()
|
||||
}
|
||||
default_models = [
|
||||
ModelInput(
|
||||
model_id=core_model_to_hf_repo[m.llama_model],
|
||||
provider_model_id=m.provider_model_id,
|
||||
)
|
||||
for m in MODEL_ALIASES
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name="together",
|
||||
distro_type="self_hosted",
|
||||
description="Use Together.AI for running LLM inference",
|
||||
docker_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=default_models,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"TOGETHER_API_KEY": (
|
||||
"",
|
||||
"Together.AI API Key",
|
||||
),
|
||||
},
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue