mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
revert: do not use MySecretStr
We don't need this if we can set it to empty string. Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
bc64635835
commit
2a34226727
86 changed files with 208 additions and 263 deletions
|
@ -14,7 +14,7 @@ NVIDIA's dataset I/O provider for accessing datasets from NVIDIA's data platform
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The NVIDIA API key. |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The NVIDIA API key. |
|
||||
| `dataset_namespace` | `str \| None` | No | default | The NVIDIA dataset namespace. |
|
||||
| `project_id` | `str \| None` | No | test-project | The NVIDIA project ID. |
|
||||
| `datasets_url` | `<class 'str'>` | No | http://nemo.test | Base URL for the NeMo Dataset API |
|
||||
|
|
|
@ -17,7 +17,7 @@ AWS S3-based file storage provider for scalable cloud file management with metad
|
|||
| `bucket_name` | `<class 'str'>` | No | | S3 bucket name to store files |
|
||||
| `region` | `<class 'str'>` | No | us-east-1 | AWS region where the bucket is located |
|
||||
| `aws_access_key_id` | `str \| None` | No | | AWS access key ID (optional if using IAM roles) |
|
||||
| `aws_secret_access_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | AWS secret access key (optional if using IAM roles) |
|
||||
| `aws_secret_access_key` | `<class 'pydantic.types.SecretStr'>` | No | | AWS secret access key (optional if using IAM roles) |
|
||||
| `endpoint_url` | `str \| None` | No | | Custom S3 endpoint URL (for MinIO, LocalStack, etc.) |
|
||||
| `auto_create_bucket` | `<class 'bool'>` | No | False | Automatically create the S3 bucket if it doesn't exist |
|
||||
| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata |
|
||||
|
|
|
@ -14,7 +14,7 @@ Anthropic inference provider for accessing Claude models and Anthropic's AI serv
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | API key for Anthropic models |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | API key for Anthropic models |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@ https://learn.microsoft.com/en-us/azure/ai-foundry/openai/overview
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | Azure API key for Azure |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | Azure API key for Azure |
|
||||
| `api_base` | `<class 'pydantic.networks.HttpUrl'>` | No | | Azure API base for Azure (e.g., https://your-resource-name.openai.azure.com) |
|
||||
| `api_version` | `str \| None` | No | | Azure API version for Azure (e.g., 2024-12-01-preview) |
|
||||
| `api_type` | `str \| None` | No | azure | Azure API type for Azure (e.g., azure) |
|
||||
|
|
|
@ -15,8 +15,8 @@ AWS Bedrock inference provider for accessing various AI models through AWS's man
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
|
||||
| `aws_secret_access_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `aws_secret_access_key` | `<class 'pydantic.types.SecretStr'>` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `<class 'pydantic.types.SecretStr'>` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
|
||||
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
|
||||
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
|
||||
|
|
|
@ -15,7 +15,7 @@ Cerebras inference provider for running models on Cerebras Cloud platform.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `base_url` | `<class 'str'>` | No | https://api.cerebras.ai | Base URL for the Cerebras API |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | Cerebras API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | Cerebras API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ Databricks inference provider for running models on Databricks' unified analytic
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `<class 'str'>` | No | | The URL for the Databricks model serving endpoint |
|
||||
| `api_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Databricks API token |
|
||||
| `api_token` | `<class 'pydantic.types.SecretStr'>` | No | | The Databricks API token |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ Fireworks AI inference provider for Llama models and other AI models on the Fire
|
|||
|-------|------|----------|---------|-------------|
|
||||
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
|
||||
| `url` | `<class 'str'>` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks server |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Fireworks.ai API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Fireworks.ai API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Google Gemini inference provider for accessing Gemini models and Google's AI ser
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | API key for Gemini models |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | API key for Gemini models |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Groq inference provider for ultra-fast inference using Groq's LPU technology.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Groq API key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Groq API key |
|
||||
| `url` | `<class 'str'>` | No | https://api.groq.com | The URL for the Groq AI server |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -15,7 +15,7 @@ HuggingFace Inference Endpoints provider for dedicated model serving.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `endpoint_name` | `<class 'str'>` | No | | The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided. |
|
||||
| `api_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
|
||||
| `api_token` | `<class 'pydantic.types.SecretStr'>` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ HuggingFace Inference API serverless provider for on-demand model inference.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `huggingface_repo` | `<class 'str'>` | No | | The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct') |
|
||||
| `api_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
|
||||
| `api_token` | `<class 'pydantic.types.SecretStr'>` | No | | Your Hugging Face user access token (will default to locally saved token if not provided) |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Llama OpenAI-compatible provider for using Llama models with OpenAI API format.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Llama API key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Llama API key |
|
||||
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.llama.com/compat/v1/ | The URL for the Llama API server |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -15,7 +15,7 @@ NVIDIA inference provider for accessing NVIDIA NIM models and AI services.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `<class 'str'>` | No | https://integrate.api.nvidia.com | A base url for accessing the NVIDIA NIM |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The NVIDIA API key, only needed of using the hosted service |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The NVIDIA API key, only needed of using the hosted service |
|
||||
| `timeout` | `<class 'int'>` | No | 60 | Timeout for the HTTP requests |
|
||||
| `append_api_version` | `<class 'bool'>` | No | True | When set to false, the API version will not be appended to the base_url. By default, it is true. |
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | API key for OpenAI models |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | API key for OpenAI models |
|
||||
| `base_url` | `<class 'str'>` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -15,7 +15,7 @@ Passthrough inference provider for connecting to any external inference service
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `<class 'str'>` | No | | The URL for the passthrough endpoint |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | API Key for the passthrouth endpoint |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | API Key for the passthrouth endpoint |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ RunPod inference provider for running models on RunPod's cloud GPU platform.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `str \| None` | No | | The URL for the Runpod model serving endpoint |
|
||||
| `api_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The API token |
|
||||
| `api_token` | `<class 'pydantic.types.SecretStr'>` | No | | The API token |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ SambaNova inference provider for running models on SambaNova's dataflow architec
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `<class 'str'>` | No | https://api.sambanova.ai/v1 | The URL for the SambaNova AI server |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The SambaNova cloud API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The SambaNova cloud API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ Together AI inference provider for open-source models and collaborative AI devel
|
|||
|-------|------|----------|---------|-------------|
|
||||
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
|
||||
| `url` | `<class 'str'>` | No | https://api.together.xyz/v1 | The URL for the Together AI server |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Together AI API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Together AI API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ Remote vLLM inference provider for connecting to vLLM servers.
|
|||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `str \| None` | No | | The URL for the vLLM model serving endpoint |
|
||||
| `max_tokens` | `<class 'int'>` | No | 4096 | Maximum number of tokens to generate. |
|
||||
| `api_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The API token |
|
||||
| `api_token` | `<class 'pydantic.types.SecretStr'>` | No | ********** | The API token |
|
||||
| `tls_verify` | `bool \| str` | No | True | Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file. |
|
||||
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ IBM WatsonX inference provider for accessing AI models on IBM's WatsonX platform
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `<class 'str'>` | No | https://us-south.ml.cloud.ibm.com | A base url for accessing the watsonx.ai |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The watsonx API key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The watsonx API key |
|
||||
| `project_id` | `str \| None` | No | | The Project ID key |
|
||||
| `timeout` | `<class 'int'>` | No | 60 | Timeout for the HTTP requests |
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The NVIDIA API key. |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The NVIDIA API key. |
|
||||
| `dataset_namespace` | `str \| None` | No | default | The NVIDIA dataset namespace. |
|
||||
| `project_id` | `str \| None` | No | test-example-model@v1 | The NVIDIA project ID. |
|
||||
| `customizer_url` | `str \| None` | No | | Base URL for the NeMo Customizer API |
|
||||
|
|
|
@ -15,8 +15,8 @@ AWS Bedrock safety provider for content moderation using AWS's safety services.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
|
||||
| `aws_secret_access_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `aws_secret_access_key` | `<class 'pydantic.types.SecretStr'>` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `<class 'pydantic.types.SecretStr'>` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
|
||||
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
|
||||
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
|
||||
|
|
|
@ -15,7 +15,7 @@ SambaNova's safety provider for content moderation and safety filtering.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `<class 'str'>` | No | https://api.sambanova.ai/v1 | The URL for the SambaNova AI server |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The SambaNova cloud API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The SambaNova cloud API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Braintrust scoring provider for evaluation and scoring using the Braintrust plat
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `openai_api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The OpenAI API Key |
|
||||
| `openai_api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The OpenAI API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Bing Search tool for web search capabilities using Microsoft's search engine.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Bing API key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Bing API key |
|
||||
| `top_k` | `<class 'int'>` | No | 3 | |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ Brave Search tool for web search capabilities with privacy-focused results.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Brave Search API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Brave Search API Key |
|
||||
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ Tavily Search tool for AI-optimized web search with structured results.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The Tavily Search API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The Tavily Search API Key |
|
||||
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ Wolfram Alpha tool for computational knowledge and mathematical calculations.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The WolframAlpha API Key |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The WolframAlpha API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -406,7 +406,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `uri` | `<class 'str'>` | No | | The URI of the Milvus server |
|
||||
| `token` | `str \| None` | No | | The token of the Milvus server |
|
||||
| `token` | `<class 'pydantic.types.SecretStr'>` | No | | The token of the Milvus server |
|
||||
| `consistency_level` | `<class 'str'>` | No | Strong | The consistency level of the Milvus server |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend |
|
||||
| `config` | `dict` | No | `{}` | This configuration allows additional fields to be passed through to the underlying Milvus client. See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. |
|
||||
|
|
|
@ -217,7 +217,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
|
|||
| `port` | `int \| None` | No | 5432 | |
|
||||
| `db` | `str \| None` | No | postgres | |
|
||||
| `user` | `str \| None` | No | postgres | |
|
||||
| `password` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | ********** | |
|
||||
| `password` | `<class 'pydantic.types.SecretStr'>` | No | ********** | |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -22,7 +22,7 @@ Please refer to the inline provider documentation.
|
|||
| `grpc_port` | `<class 'int'>` | No | 6334 | |
|
||||
| `prefer_grpc` | `<class 'bool'>` | No | False | |
|
||||
| `https` | `bool \| None` | No | | |
|
||||
| `api_key` | `<class 'llama_stack.core.secret_types.MySecretStr'>` | No | | The API key for the Qdrant instance |
|
||||
| `api_key` | `<class 'pydantic.types.SecretStr'>` | No | | The API key for the Qdrant instance |
|
||||
| `prefix` | `str \| None` | No | | |
|
||||
| `timeout` | `int \| None` | No | | |
|
||||
| `host` | `str \| None` | No | | |
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic.types import SecretStr
|
||||
|
||||
|
||||
class MySecretStr(SecretStr):
|
||||
"""A SecretStr that can accept None values to avoid mypy type errors.
|
||||
|
||||
This is useful for optional secret fields where you want to avoid
|
||||
explicit None checks in consuming code.
|
||||
|
||||
We chose to not use the SecretStr from pydantic because it does not allow None values and will
|
||||
let the provider's library fail if the secret is not provided.
|
||||
"""
|
||||
|
||||
def __init__(self, secret_value: str | None = None) -> None:
|
||||
SecretStr.__init__(self, secret_value) # type: ignore[arg-type]
|
|
@ -288,6 +288,12 @@ def _convert_string_to_proper_type_with_config(value: str, path: str, provider_c
|
|||
field_name = path.split(".")[-1] if "." in path else path
|
||||
|
||||
config_class = provider_context["config_class"]
|
||||
# Only instantiate if the class hasn't been instantiated already
|
||||
# This handles the case we entered replace_env_vars() with a dict, which
|
||||
# could happen if we use a sample_run_config() method that returns a dict. Our unit tests do
|
||||
# this on the adhoc config spec creation.
|
||||
if isinstance(config_class, str):
|
||||
config_class = instantiate_class_type(config_class)
|
||||
|
||||
if hasattr(config_class, "model_fields") and field_name in config_class.model_fields:
|
||||
field_info = config_class.model_fields[field_name]
|
||||
|
@ -563,7 +569,9 @@ def run_config_from_adhoc_config_spec(
|
|||
# call method "sample_run_config" on the provider spec config class
|
||||
provider_config_type = instantiate_class_type(provider_spec.config_class)
|
||||
provider_config = replace_env_vars(
|
||||
provider_config_type.sample_run_config(__distro_dir__=distro_dir), provider_registry=provider_registry
|
||||
provider_config_type.sample_run_config(__distro_dir__=distro_dir),
|
||||
provider_registry=provider_registry,
|
||||
current_provider_context=provider_spec.model_dump(),
|
||||
)
|
||||
|
||||
provider_configs_by_api[api_str] = [
|
||||
|
|
|
@ -5,16 +5,15 @@
|
|||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from llama_stack.core.datatypes import Api
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
|
||||
from .config import BraintrustScoringConfig
|
||||
|
||||
|
||||
class BraintrustProviderDataValidator(BaseModel):
|
||||
openai_api_key: MySecretStr
|
||||
openai_api_key: SecretStr
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
|
|
|
@ -17,7 +17,7 @@ from autoevals.ragas import (
|
|||
ContextRelevancy,
|
||||
Faithfulness,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
|
@ -31,7 +31,6 @@ from llama_stack.apis.scoring import (
|
|||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||
from llama_stack.core.datatypes import Api
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||
get_valid_schemas,
|
||||
|
@ -153,7 +152,7 @@ class BraintrustScoringImpl(
|
|||
raise ValueError(
|
||||
'Pass OpenAI API Key in the header X-LlamaStack-Provider-Data as { "openai_api_key": <your api key>}'
|
||||
)
|
||||
self.config.openai_api_key = MySecretStr(provider_data.openai_api_key)
|
||||
self.config.openai_api_key = SecretStr(provider_data.openai_api_key)
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key.get_secret_value()
|
||||
|
||||
|
|
|
@ -5,13 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BraintrustScoringConfig(BaseModel):
|
||||
openai_api_key: MySecretStr = Field(
|
||||
openai_api_key: SecretStr = Field(
|
||||
description="The OpenAI API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -8,16 +8,14 @@ import os
|
|||
import warnings
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class NvidiaDatasetIOConfig(BaseModel):
|
||||
"""Configuration for NVIDIA DatasetIO implementation."""
|
||||
|
||||
api_key: MySecretStr = Field(
|
||||
default_factory=lambda: MySecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
||||
api_key: SecretStr = Field(
|
||||
default_factory=lambda: SecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
||||
description="The NVIDIA API key.",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
|
||||
|
||||
|
||||
|
@ -18,7 +17,7 @@ class S3FilesImplConfig(BaseModel):
|
|||
bucket_name: str = Field(description="S3 bucket name to store files")
|
||||
region: str = Field(default="us-east-1", description="AWS region where the bucket is located")
|
||||
aws_access_key_id: str | None = Field(default=None, description="AWS access key ID (optional if using IAM roles)")
|
||||
aws_secret_access_key: MySecretStr = Field(description="AWS secret access key (optional if using IAM roles)")
|
||||
aws_secret_access_key: SecretStr = Field(description="AWS secret access key (optional if using IAM roles)")
|
||||
endpoint_url: str | None = Field(default=None, description="Custom S3 endpoint URL (for MinIO, LocalStack, etc.)")
|
||||
auto_create_bucket: bool = Field(
|
||||
default=False, description="Automatically create the S3 bucket if it doesn't exist"
|
||||
|
|
|
@ -28,7 +28,7 @@ class AnthropicInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="anthropic",
|
||||
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="anthropic_api_key",
|
||||
)
|
||||
self.config = config
|
||||
|
|
|
@ -6,21 +6,20 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class AnthropicProviderDataValidator(BaseModel):
|
||||
anthropic_api_key: MySecretStr = Field(
|
||||
anthropic_api_key: SecretStr = Field(
|
||||
description="API key for Anthropic models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AnthropicConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="API key for Anthropic models",
|
||||
)
|
||||
|
||||
|
|
|
@ -7,14 +7,13 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, HttpUrl
|
||||
from pydantic import BaseModel, Field, HttpUrl, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class AzureProviderDataValidator(BaseModel):
|
||||
azure_api_key: MySecretStr = Field(
|
||||
azure_api_key: SecretStr = Field(
|
||||
description="Azure API key for Azure",
|
||||
)
|
||||
azure_api_base: HttpUrl = Field(
|
||||
|
@ -32,7 +31,7 @@ class AzureProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AzureConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="Azure API key for Azure",
|
||||
)
|
||||
api_base: HttpUrl = Field(
|
||||
|
|
|
@ -7,9 +7,8 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
DEFAULT_BASE_URL = "https://api.cerebras.ai"
|
||||
|
@ -21,8 +20,8 @@ class CerebrasImplConfig(BaseModel):
|
|||
default=os.environ.get("CEREBRAS_BASE_URL", DEFAULT_BASE_URL),
|
||||
description="Base URL for the Cerebras API",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
default=MySecretStr(os.environ.get("CEREBRAS_API_KEY")),
|
||||
api_key: SecretStr = Field(
|
||||
default=SecretStr(os.environ.get("CEREBRAS_API_KEY")),
|
||||
description="Cerebras API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -18,7 +17,7 @@ class DatabricksImplConfig(BaseModel):
|
|||
default=None,
|
||||
description="The URL for the Databricks model serving endpoint",
|
||||
)
|
||||
api_token: MySecretStr = Field(
|
||||
api_token: SecretStr = Field(
|
||||
description="The Databricks API token",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import Field
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -19,7 +18,7 @@ class FireworksImplConfig(RemoteInferenceProviderConfig):
|
|||
default="https://api.fireworks.ai/inference/v1",
|
||||
description="The URL for the Fireworks server",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The Fireworks.ai API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,21 +6,20 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class GeminiProviderDataValidator(BaseModel):
|
||||
gemini_api_key: MySecretStr = Field(
|
||||
gemini_api_key: SecretStr = Field(
|
||||
description="API key for Gemini models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GeminiConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="API key for Gemini models",
|
||||
)
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ class GeminiInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="gemini",
|
||||
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="gemini_api_key",
|
||||
)
|
||||
self.config = config
|
||||
|
|
|
@ -6,21 +6,20 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: MySecretStr = Field(
|
||||
groq_api_key: SecretStr = Field(
|
||||
description="API key for Groq models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GroqConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
# The Groq client library loads the GROQ_API_KEY environment variable by default
|
||||
description="The Groq API key",
|
||||
)
|
||||
|
|
|
@ -6,21 +6,20 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class LlamaProviderDataValidator(BaseModel):
|
||||
llama_api_key: MySecretStr = Field(
|
||||
llama_api_key: SecretStr = Field(
|
||||
description="API key for api.llama models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LlamaCompatConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The Llama API key",
|
||||
)
|
||||
|
||||
|
|
|
@ -7,9 +7,8 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -40,8 +39,8 @@ class NVIDIAConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("NVIDIA_BASE_URL", "https://integrate.api.nvidia.com"),
|
||||
description="A base url for accessing the NVIDIA NIM",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
default_factory=lambda: MySecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
||||
api_key: SecretStr = Field(
|
||||
default_factory=lambda: SecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
||||
description="The NVIDIA API key, only needed of using the hosted service",
|
||||
)
|
||||
timeout: int = Field(
|
||||
|
|
|
@ -6,21 +6,20 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class OpenAIProviderDataValidator(BaseModel):
|
||||
openai_api_key: MySecretStr = Field(
|
||||
openai_api_key: SecretStr = Field(
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
base_url: str = Field(
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -19,7 +18,7 @@ class PassthroughImplConfig(BaseModel):
|
|||
description="The URL for the passthrough endpoint",
|
||||
)
|
||||
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="API Key for the passthrouth endpoint",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -18,7 +17,7 @@ class RunpodImplConfig(BaseModel):
|
|||
default=None,
|
||||
description="The URL for the Runpod model serving endpoint",
|
||||
)
|
||||
api_token: MySecretStr = Field(
|
||||
api_token: SecretStr = Field(
|
||||
description="The API token",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,14 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class SambaNovaProviderDataValidator(BaseModel):
|
||||
sambanova_api_key: MySecretStr = Field(
|
||||
sambanova_api_key: SecretStr = Field(
|
||||
description="Sambanova Cloud API key",
|
||||
)
|
||||
|
||||
|
@ -24,7 +23,7 @@ class SambaNovaImplConfig(BaseModel):
|
|||
default="https://api.sambanova.ai/v1",
|
||||
description="The URL for the SambaNova AI server",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The SambaNova cloud API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ class SambaNovaInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="sambanova",
|
||||
api_key_from_config=self.config.api_key.get_secret_value() if self.config.api_key else None,
|
||||
api_key_from_config=self.config.api_key,
|
||||
provider_data_api_key_field="sambanova_api_key",
|
||||
openai_compat_api_base=self.config.url,
|
||||
download_images=True, # SambaNova requires base64 image encoding
|
||||
|
|
|
@ -5,9 +5,8 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -33,7 +32,7 @@ class InferenceEndpointImplConfig(BaseModel):
|
|||
endpoint_name: str = Field(
|
||||
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
|
||||
)
|
||||
api_token: MySecretStr = Field(
|
||||
api_token: SecretStr = Field(
|
||||
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
|
||||
)
|
||||
|
||||
|
@ -55,7 +54,7 @@ class InferenceAPIImplConfig(BaseModel):
|
|||
huggingface_repo: str = Field(
|
||||
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
|
||||
)
|
||||
api_token: MySecretStr = Field(
|
||||
api_token: SecretStr = Field(
|
||||
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
|
||||
)
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
from collections.abc import AsyncGenerator
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -34,7 +35,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
@ -79,7 +79,7 @@ class _HfAdapter(
|
|||
ModelsProtocolPrivate,
|
||||
):
|
||||
url: str
|
||||
api_key: MySecretStr
|
||||
api_key: SecretStr
|
||||
|
||||
hf_client: AsyncInferenceClient
|
||||
max_tokens: int
|
||||
|
@ -337,7 +337,7 @@ class TGIAdapter(_HfAdapter):
|
|||
self.max_tokens = endpoint_info["max_total_tokens"]
|
||||
self.model_id = endpoint_info["model_id"]
|
||||
self.url = f"{config.url.rstrip('/')}/v1"
|
||||
self.api_key = MySecretStr("NO_KEY")
|
||||
self.api_key = SecretStr("NO_KEY")
|
||||
|
||||
|
||||
class InferenceAPIAdapter(_HfAdapter):
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import Field
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -19,7 +18,7 @@ class TogetherImplConfig(RemoteInferenceProviderConfig):
|
|||
default="https://api.together.xyz/v1",
|
||||
description="The URL for the Together AI server",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The Together AI API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -8,9 +8,9 @@ from typing import Any
|
|||
|
||||
import google.auth.transport.requests
|
||||
from google.auth import default
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
|
||||
LiteLLMOpenAIMixin,
|
||||
)
|
||||
|
@ -24,12 +24,12 @@ class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="vertex_ai",
|
||||
api_key_from_config=MySecretStr(None), # Vertex AI uses ADC, not API keys
|
||||
api_key_from_config=SecretStr(""), # Vertex AI uses ADC, not API keys
|
||||
provider_data_api_key_field="vertex_project", # Use project for validation
|
||||
)
|
||||
self.config = config
|
||||
|
||||
def get_api_key(self) -> MySecretStr:
|
||||
def get_api_key(self) -> SecretStr:
|
||||
"""
|
||||
Get an access token for Vertex AI using Application Default Credentials.
|
||||
|
||||
|
@ -40,11 +40,11 @@ class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
# Get default credentials - will read from GOOGLE_APPLICATION_CREDENTIALS
|
||||
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
|
||||
credentials.refresh(google.auth.transport.requests.Request())
|
||||
return MySecretStr(credentials.token)
|
||||
return SecretStr(credentials.token)
|
||||
except Exception:
|
||||
# If we can't get credentials, return empty string to let LiteLLM handle it
|
||||
# This allows the LiteLLM mixin to work with ADC directly
|
||||
return MySecretStr("")
|
||||
return SecretStr("")
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
|
@ -4,15 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
|
||||
class VLLMProviderDataValidator(BaseModel):
|
||||
vllm_api_token: MySecretStr = Field(
|
||||
vllm_api_token: SecretStr = Field(
|
||||
description="API token for vLLM models",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field, SecretStr, field_validator
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -22,7 +21,8 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
default=4096,
|
||||
description="Maximum number of tokens to generate.",
|
||||
)
|
||||
api_token: MySecretStr = Field(
|
||||
api_token: SecretStr = Field(
|
||||
default=SecretStr("fake"),
|
||||
description="The API token",
|
||||
)
|
||||
tls_verify: bool | str = Field(
|
||||
|
|
|
@ -7,9 +7,8 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -25,8 +24,8 @@ class WatsonXConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("WATSONX_BASE_URL", "https://us-south.ml.cloud.ibm.com"),
|
||||
description="A base url for accessing the watsonx.ai",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
default_factory=lambda: MySecretStr(os.getenv("WATSONX_API_KEY", "")),
|
||||
api_key: SecretStr = Field(
|
||||
default_factory=lambda: SecretStr(os.getenv("WATSONX_API_KEY", "")),
|
||||
description="The watsonx API key",
|
||||
)
|
||||
project_id: str | None = Field(
|
||||
|
|
|
@ -7,9 +7,7 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
# TODO: add default values for all fields
|
||||
|
||||
|
@ -17,8 +15,8 @@ from llama_stack.core.secret_types import MySecretStr
|
|||
class NvidiaPostTrainingConfig(BaseModel):
|
||||
"""Configuration for NVIDIA Post Training implementation."""
|
||||
|
||||
api_key: MySecretStr = Field(
|
||||
default_factory=lambda: MySecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
||||
api_key: SecretStr = Field(
|
||||
default_factory=lambda: SecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
||||
description="The NVIDIA API key.",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,14 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class SambaNovaProviderDataValidator(BaseModel):
|
||||
sambanova_api_key: MySecretStr = Field(
|
||||
sambanova_api_key: SecretStr = Field(
|
||||
description="Sambanova Cloud API key",
|
||||
)
|
||||
|
||||
|
@ -24,7 +23,7 @@ class SambaNovaSafetyConfig(BaseModel):
|
|||
default="https://api.sambanova.ai/v1",
|
||||
description="The URL for the SambaNova AI server",
|
||||
)
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The SambaNova cloud API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,15 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BingSearchToolConfig(BaseModel):
|
||||
"""Configuration for Bing Search Tool Runtime"""
|
||||
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The Bing API key",
|
||||
)
|
||||
top_k: int = 3
|
||||
|
|
|
@ -6,13 +6,11 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BraveSearchToolConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The Brave Search API Key",
|
||||
)
|
||||
max_results: int = Field(
|
||||
|
|
|
@ -6,13 +6,11 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class TavilySearchToolConfig(BaseModel):
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The Tavily Search API Key",
|
||||
)
|
||||
max_results: int = Field(
|
||||
|
|
|
@ -6,15 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class WolframAlphaToolConfig(BaseModel):
|
||||
"""Configuration for WolframAlpha Tool Runtime"""
|
||||
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The WolframAlpha API Key",
|
||||
)
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
@ -15,7 +15,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
uri: str = Field(description="The URI of the Milvus server")
|
||||
token: str | None = Field(description="The token of the Milvus server")
|
||||
token: SecretStr = Field(description="The token of the Milvus server")
|
||||
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
|
@ -22,7 +21,7 @@ class PGVectorVectorIOConfig(BaseModel):
|
|||
port: int | None = Field(default=5432)
|
||||
db: str | None = Field(default="postgres")
|
||||
user: str | None = Field(default="postgres")
|
||||
password: MySecretStr = Field(default=MySecretStr("mysecretpassword"))
|
||||
password: SecretStr = Field(default=SecretStr("mysecretpassword"))
|
||||
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -6,9 +6,8 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
|
@ -24,7 +23,7 @@ class QdrantVectorIOConfig(BaseModel):
|
|||
grpc_port: int = 6334
|
||||
prefer_grpc: bool = False
|
||||
https: bool | None = None
|
||||
api_key: MySecretStr = Field(
|
||||
api_key: SecretStr = Field(
|
||||
description="The API key for the Qdrant instance",
|
||||
)
|
||||
prefix: str | None = None
|
||||
|
|
|
@ -173,7 +173,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self._qdrant_lock = asyncio.Lock()
|
||||
|
||||
async def initialize(self) -> None:
|
||||
client_config = self.config.model_dump(exclude_none=True, exclude={"kvstore"})
|
||||
client_config = self.config.model_dump(exclude_none=True, exclude={"kvstore"}, mode="json")
|
||||
self.client = AsyncQdrantClient(**client_config)
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
||||
|
|
|
@ -6,9 +6,7 @@
|
|||
|
||||
import os
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BedrockBaseConfig(BaseModel):
|
||||
|
@ -16,12 +14,12 @@ class BedrockBaseConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("AWS_ACCESS_KEY_ID"),
|
||||
description="The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID",
|
||||
)
|
||||
aws_secret_access_key: MySecretStr = Field(
|
||||
default_factory=lambda: MySecretStr(os.getenv("AWS_SECRET_ACCESS_KEY", "")),
|
||||
aws_secret_access_key: SecretStr = Field(
|
||||
default_factory=lambda: SecretStr(os.getenv("AWS_SECRET_ACCESS_KEY", "")),
|
||||
description="The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY",
|
||||
)
|
||||
aws_session_token: MySecretStr = Field(
|
||||
default_factory=lambda: MySecretStr(os.getenv("AWS_SESSION_TOKEN", "")),
|
||||
aws_session_token: SecretStr = Field(
|
||||
default_factory=lambda: SecretStr(os.getenv("AWS_SESSION_TOKEN", "")),
|
||||
description="The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN",
|
||||
)
|
||||
region_name: str | None = Field(
|
||||
|
|
|
@ -8,6 +8,7 @@ from collections.abc import AsyncGenerator, AsyncIterator
|
|||
from typing import Any
|
||||
|
||||
import litellm
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -39,7 +40,6 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, ProviderModelEntry
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
|
@ -69,7 +69,7 @@ class LiteLLMOpenAIMixin(
|
|||
def __init__(
|
||||
self,
|
||||
litellm_provider_name: str,
|
||||
api_key_from_config: MySecretStr,
|
||||
api_key_from_config: SecretStr,
|
||||
provider_data_api_key_field: str,
|
||||
model_entries: list[ProviderModelEntry] | None = None,
|
||||
openai_compat_api_base: str | None = None,
|
||||
|
@ -255,7 +255,7 @@ class LiteLLMOpenAIMixin(
|
|||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
def get_api_key(self) -> MySecretStr:
|
||||
def get_api_key(self) -> SecretStr:
|
||||
provider_data = self.get_request_provider_data()
|
||||
key_field = self.provider_data_api_key_field
|
||||
if provider_data and getattr(provider_data, key_field, None):
|
||||
|
|
|
@ -11,6 +11,7 @@ from collections.abc import AsyncIterator
|
|||
from typing import Any
|
||||
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
Model,
|
||||
|
@ -24,7 +25,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
@ -71,14 +71,14 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
|
|||
allowed_models: list[str] = []
|
||||
|
||||
@abstractmethod
|
||||
def get_api_key(self) -> MySecretStr:
|
||||
def get_api_key(self) -> SecretStr:
|
||||
"""
|
||||
Get the API key.
|
||||
|
||||
This method must be implemented by child classes to provide the API key
|
||||
for authenticating with the OpenAI API or compatible endpoints.
|
||||
|
||||
:return: The API key as a MySecretStr
|
||||
:return: The API key as a SecretStr
|
||||
"""
|
||||
pass
|
||||
|
||||
|
|
|
@ -8,9 +8,8 @@ import re
|
|||
from enum import Enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field, SecretStr, field_validator
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
|
||||
|
||||
|
@ -75,7 +74,7 @@ class PostgresKVStoreConfig(CommonConfig):
|
|||
port: int = 5432
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: MySecretStr = MySecretStr("")
|
||||
password: SecretStr = SecretStr("")
|
||||
ssl_mode: str | None = None
|
||||
ca_cert_path: str | None = None
|
||||
table_name: str = "llamastack_kvstore"
|
||||
|
@ -119,7 +118,7 @@ class MongoDBKVStoreConfig(CommonConfig):
|
|||
port: int = 27017
|
||||
db: str = "llamastack"
|
||||
user: str | None = None
|
||||
password: MySecretStr = MySecretStr("")
|
||||
password: SecretStr = SecretStr("")
|
||||
collection_name: str = "llamastack_kvstore"
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -9,9 +9,8 @@ from enum import StrEnum
|
|||
from pathlib import Path
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
|
||||
from .api import SqlStore
|
||||
|
@ -64,7 +63,7 @@ class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
|
|||
port: int = 5432
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: MySecretStr = MySecretStr("")
|
||||
password: SecretStr = SecretStr("")
|
||||
|
||||
@property
|
||||
def engine_str(self) -> str:
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
import boto3
|
||||
import pytest
|
||||
from moto import mock_aws
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.providers.remote.files.s3 import S3FilesImplConfig, get_adapter_impl
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
|
||||
|
@ -43,6 +44,7 @@ def s3_config(tmp_path):
|
|||
region="not-a-region",
|
||||
auto_create_bucket=True,
|
||||
metadata_store=SqliteSqlStoreConfig(db_path=db_path.as_posix()),
|
||||
aws_secret_access_key=SecretStr("fake"),
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ class TestBedrockBaseConfig:
|
|||
|
||||
# Basic creds should be None
|
||||
assert config.aws_access_key_id is None
|
||||
assert config.aws_secret_access_key is None
|
||||
assert not config.aws_secret_access_key
|
||||
assert config.region_name is None
|
||||
|
||||
# Timeouts get defaults
|
||||
|
@ -39,7 +39,7 @@ class TestBedrockBaseConfig:
|
|||
config = BedrockBaseConfig()
|
||||
|
||||
assert config.aws_access_key_id == "AKIATEST123"
|
||||
assert config.aws_secret_access_key == "secret123"
|
||||
assert config.aws_secret_access_key.get_secret_value() == "secret123"
|
||||
assert config.region_name == "us-west-2"
|
||||
assert config.total_max_attempts == 5
|
||||
assert config.retry_mode == "adaptive"
|
||||
|
|
|
@ -7,6 +7,8 @@
|
|||
import json
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||
from llama_stack.providers.remote.inference.groq.groq import GroqInferenceAdapter
|
||||
|
@ -21,7 +23,7 @@ from llama_stack.providers.remote.inference.together.together import TogetherInf
|
|||
def test_groq_provider_openai_client_caching():
|
||||
"""Ensure the Groq provider does not cache api keys across client requests"""
|
||||
|
||||
config = GroqConfig()
|
||||
config = GroqConfig(api_key=SecretStr(""))
|
||||
inference_adapter = GroqInferenceAdapter(config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
|
@ -33,13 +35,13 @@ def test_groq_provider_openai_client_caching():
|
|||
with request_provider_data_context(
|
||||
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
|
||||
):
|
||||
assert inference_adapter.client.api_key.get_secret_value() == api_key
|
||||
assert inference_adapter.client.api_key == api_key
|
||||
|
||||
|
||||
def test_openai_provider_openai_client_caching():
|
||||
"""Ensure the OpenAI provider does not cache api keys across client requests"""
|
||||
|
||||
config = OpenAIConfig()
|
||||
config = OpenAIConfig(api_key=SecretStr(""))
|
||||
inference_adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
|
@ -52,13 +54,13 @@ def test_openai_provider_openai_client_caching():
|
|||
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
|
||||
):
|
||||
openai_client = inference_adapter.client
|
||||
assert openai_client.api_key.get_secret_value() == api_key
|
||||
assert openai_client.api_key == api_key
|
||||
|
||||
|
||||
def test_together_provider_openai_client_caching():
|
||||
"""Ensure the Together provider does not cache api keys across client requests"""
|
||||
|
||||
config = TogetherImplConfig()
|
||||
config = TogetherImplConfig(api_key=SecretStr(""))
|
||||
inference_adapter = TogetherInferenceAdapter(config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
|
@ -76,7 +78,7 @@ def test_together_provider_openai_client_caching():
|
|||
|
||||
def test_llama_compat_provider_openai_client_caching():
|
||||
"""Ensure the LlamaCompat provider does not cache api keys across client requests"""
|
||||
config = LlamaCompatConfig()
|
||||
config = LlamaCompatConfig(api_key=SecretStr(""))
|
||||
inference_adapter = LlamaCompatInferenceAdapter(config)
|
||||
|
||||
inference_adapter.__provider_spec__ = MagicMock()
|
||||
|
@ -86,4 +88,4 @@ def test_llama_compat_provider_openai_client_caching():
|
|||
|
||||
for api_key in ["test1", "test2"]:
|
||||
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"llama_api_key": api_key})}):
|
||||
assert inference_adapter.client.api_key.get_secret_value() == api_key
|
||||
assert inference_adapter.client.api_key == api_key
|
||||
|
|
|
@ -8,20 +8,19 @@ import json
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
|
||||
# Test fixtures and helper classes
|
||||
class TestConfig(BaseModel):
|
||||
api_key: MySecretStr | None = Field(default=None)
|
||||
api_key: SecretStr | None = Field(default=None)
|
||||
|
||||
|
||||
class TestProviderDataValidator(BaseModel):
|
||||
test_api_key: MySecretStr | None = Field(default=None)
|
||||
test_api_key: SecretStr | None = Field(default=None)
|
||||
|
||||
|
||||
class TestLiteLLMAdapter(LiteLLMOpenAIMixin):
|
||||
|
@ -37,7 +36,7 @@ class TestLiteLLMAdapter(LiteLLMOpenAIMixin):
|
|||
@pytest.fixture
|
||||
def adapter_with_config_key():
|
||||
"""Fixture to create adapter with API key in config"""
|
||||
config = TestConfig(api_key=MySecretStr("config-api-key"))
|
||||
config = TestConfig(api_key=SecretStr("config-api-key"))
|
||||
adapter = TestLiteLLMAdapter(config)
|
||||
adapter.__provider_spec__ = MagicMock()
|
||||
adapter.__provider_spec__.provider_data_validator = (
|
||||
|
|
|
@ -7,14 +7,9 @@
|
|||
import os
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from llama_stack.core.secret_types import MySecretStr
|
||||
|
||||
|
||||
# Wrapper for backward compatibility in tests
|
||||
def replace_env_vars_compat(config, path=""):
|
||||
return replace_env_vars_compat(config, path, None, None)
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.core.stack import replace_env_vars
|
||||
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
||||
from llama_stack.providers.remote.inference.openai.openai import OpenAIInferenceAdapter
|
||||
|
||||
|
@ -42,7 +37,7 @@ class TestOpenAIBaseURLConfig:
|
|||
"""Test that the adapter uses base URL from OPENAI_BASE_URL environment variable."""
|
||||
# Use sample_run_config which has proper environment variable syntax
|
||||
config_data = OpenAIConfig.sample_run_config(api_key="test-key")
|
||||
processed_config = replace_env_vars_compat(config_data)
|
||||
processed_config = replace_env_vars(config_data)
|
||||
config = OpenAIConfig.model_validate(processed_config)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
|
@ -66,14 +61,14 @@ class TestOpenAIBaseURLConfig:
|
|||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
# Mock the get_api_key method since it's delegated to LiteLLMOpenAIMixin
|
||||
adapter.get_api_key = MagicMock(return_value=MySecretStr("test-key"))
|
||||
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
|
||||
|
||||
# Access the client property to trigger AsyncOpenAI initialization
|
||||
_ = adapter.client
|
||||
|
||||
# Verify AsyncOpenAI was called with the correct base_url
|
||||
mock_openai_class.assert_called_once_with(
|
||||
api_key=MySecretStr("test-key"),
|
||||
api_key=SecretStr("test-key").get_secret_value(),
|
||||
base_url=custom_url,
|
||||
)
|
||||
|
||||
|
@ -85,7 +80,7 @@ class TestOpenAIBaseURLConfig:
|
|||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
# Mock the get_api_key method
|
||||
adapter.get_api_key = MagicMock(return_value=MySecretStr("test-key"))
|
||||
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
|
||||
|
||||
# Mock a model object that will be returned by models.list()
|
||||
mock_model = MagicMock()
|
||||
|
@ -108,7 +103,7 @@ class TestOpenAIBaseURLConfig:
|
|||
|
||||
# Verify the client was created with the custom URL
|
||||
mock_openai_class.assert_called_with(
|
||||
api_key=MySecretStr("test-key"),
|
||||
api_key=SecretStr("test-key").get_secret_value(),
|
||||
base_url=custom_url,
|
||||
)
|
||||
|
||||
|
@ -121,12 +116,12 @@ class TestOpenAIBaseURLConfig:
|
|||
"""Test that setting OPENAI_BASE_URL environment variable affects where model availability is checked."""
|
||||
# Use sample_run_config which has proper environment variable syntax
|
||||
config_data = OpenAIConfig.sample_run_config(api_key="test-key")
|
||||
processed_config = replace_env_vars_compat(config_data)
|
||||
processed_config = replace_env_vars(config_data)
|
||||
config = OpenAIConfig.model_validate(processed_config)
|
||||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
# Mock the get_api_key method
|
||||
adapter.get_api_key = MagicMock(return_value=MySecretStr("test-key"))
|
||||
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
|
||||
|
||||
# Mock a model object that will be returned by models.list()
|
||||
mock_model = MagicMock()
|
||||
|
@ -149,6 +144,6 @@ class TestOpenAIBaseURLConfig:
|
|||
|
||||
# Verify the client was created with the environment variable URL
|
||||
mock_openai_class.assert_called_with(
|
||||
api_key=MySecretStr("test-key"),
|
||||
api_key=SecretStr("test-key").get_secret_value(),
|
||||
base_url="https://proxy.openai.com/v1",
|
||||
)
|
||||
|
|
|
@ -26,6 +26,7 @@ from openai.types.chat.chat_completion_chunk import (
|
|||
ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction,
|
||||
)
|
||||
from openai.types.model import Model as OpenAIModel
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
|
@ -688,31 +689,35 @@ async def test_should_refresh_models():
|
|||
"""
|
||||
|
||||
# Test case 1: refresh_models is True, api_token is None
|
||||
config1 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=None, refresh_models=True)
|
||||
config1 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=SecretStr(""), refresh_models=True)
|
||||
adapter1 = VLLMInferenceAdapter(config1)
|
||||
result1 = await adapter1.should_refresh_models()
|
||||
assert result1 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 2: refresh_models is True, api_token is empty string
|
||||
config2 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="", refresh_models=True)
|
||||
config2 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=SecretStr(""), refresh_models=True)
|
||||
adapter2 = VLLMInferenceAdapter(config2)
|
||||
result2 = await adapter2.should_refresh_models()
|
||||
assert result2 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 3: refresh_models is True, api_token is "fake" (default)
|
||||
config3 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="fake", refresh_models=True)
|
||||
config3 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token=SecretStr("fake"), refresh_models=True)
|
||||
adapter3 = VLLMInferenceAdapter(config3)
|
||||
result3 = await adapter3.should_refresh_models()
|
||||
assert result3 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 4: refresh_models is True, api_token is real token
|
||||
config4 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-123", refresh_models=True)
|
||||
config4 = VLLMInferenceAdapterConfig(
|
||||
url="http://test.localhost", api_token=SecretStr("real-token-123"), refresh_models=True
|
||||
)
|
||||
adapter4 = VLLMInferenceAdapter(config4)
|
||||
result4 = await adapter4.should_refresh_models()
|
||||
assert result4 is True, "should_refresh_models should return True when refresh_models is True"
|
||||
|
||||
# Test case 5: refresh_models is False, api_token is real token
|
||||
config5 = VLLMInferenceAdapterConfig(url="http://test.localhost", api_token="real-token-456", refresh_models=False)
|
||||
config5 = VLLMInferenceAdapterConfig(
|
||||
url="http://test.localhost", api_token=SecretStr("real-token-456"), refresh_models=False
|
||||
)
|
||||
adapter5 = VLLMInferenceAdapter(config5)
|
||||
result5 = await adapter5.should_refresh_models()
|
||||
assert result5 is False, "should_refresh_models should return False when refresh_models is False"
|
||||
|
@ -735,7 +740,7 @@ async def test_provider_data_var_context_propagation(vllm_inference_adapter):
|
|||
|
||||
# Mock provider data to return test data
|
||||
mock_provider_data = MagicMock()
|
||||
mock_provider_data.vllm_api_token = "test-token-123"
|
||||
mock_provider_data.vllm_api_token = SecretStr("test-token-123")
|
||||
mock_provider_data.vllm_url = "http://test-server:8000/v1"
|
||||
mock_get_provider_data.return_value = mock_provider_data
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@ import warnings
|
|||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.post_training.post_training import (
|
||||
DataConfig,
|
||||
|
@ -32,7 +33,7 @@ class TestNvidiaParameters:
|
|||
"""Setup and teardown for each test method."""
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
|
||||
|
||||
config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None)
|
||||
config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=SecretStr(""))
|
||||
self.adapter = NvidiaPostTrainingAdapter(config)
|
||||
|
||||
self.make_request_patcher = patch(
|
||||
|
|
|
@ -9,6 +9,7 @@ import warnings
|
|||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.post_training.post_training import (
|
||||
DataConfig,
|
||||
|
@ -34,7 +35,7 @@ def nvidia_post_training_adapter():
|
|||
"""Fixture to create and configure the NVIDIA post training adapter."""
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
|
||||
|
||||
config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None)
|
||||
config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=SecretStr(""))
|
||||
adapter = NvidiaPostTrainingAdapter(config)
|
||||
|
||||
with patch.object(adapter, "_make_request") as mock_make_request:
|
||||
|
|
|
@ -8,10 +8,7 @@ import os
|
|||
|
||||
import pytest
|
||||
|
||||
|
||||
# Wrapper for backward compatibility in tests
|
||||
def replace_env_vars_compat(config, path=""):
|
||||
return replace_env_vars_compat(config, path, None, None)
|
||||
from llama_stack.core.stack import replace_env_vars
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -35,54 +32,52 @@ def setup_env_vars():
|
|||
|
||||
|
||||
def test_simple_replacement(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.TEST_VAR}") == "test_value"
|
||||
assert replace_env_vars("${env.TEST_VAR}") == "test_value"
|
||||
|
||||
|
||||
def test_default_value_when_not_set(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.NOT_SET:=default}") == "default"
|
||||
assert replace_env_vars("${env.NOT_SET:=default}") == "default"
|
||||
|
||||
|
||||
def test_default_value_when_set(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.TEST_VAR:=default}") == "test_value"
|
||||
assert replace_env_vars("${env.TEST_VAR:=default}") == "test_value"
|
||||
|
||||
|
||||
def test_default_value_when_empty(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.EMPTY_VAR:=default}") == "default"
|
||||
assert replace_env_vars("${env.EMPTY_VAR:=default}") == "default"
|
||||
|
||||
|
||||
def test_none_value_when_empty(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.EMPTY_VAR:=}") is None
|
||||
assert replace_env_vars("${env.EMPTY_VAR:=}") is None
|
||||
|
||||
|
||||
def test_value_when_set(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.TEST_VAR:=}") == "test_value"
|
||||
assert replace_env_vars("${env.TEST_VAR:=}") == "test_value"
|
||||
|
||||
|
||||
def test_empty_var_no_default(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.EMPTY_VAR_NO_DEFAULT:+}") is None
|
||||
assert replace_env_vars("${env.EMPTY_VAR_NO_DEFAULT:+}") is None
|
||||
|
||||
|
||||
def test_conditional_value_when_set(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.TEST_VAR:+conditional}") == "conditional"
|
||||
assert replace_env_vars("${env.TEST_VAR:+conditional}") == "conditional"
|
||||
|
||||
|
||||
def test_conditional_value_when_not_set(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.NOT_SET:+conditional}") is None
|
||||
assert replace_env_vars("${env.NOT_SET:+conditional}") is None
|
||||
|
||||
|
||||
def test_conditional_value_when_empty(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.EMPTY_VAR:+conditional}") is None
|
||||
assert replace_env_vars("${env.EMPTY_VAR:+conditional}") is None
|
||||
|
||||
|
||||
def test_conditional_value_with_zero(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.ZERO_VAR:+conditional}") == "conditional"
|
||||
assert replace_env_vars("${env.ZERO_VAR:+conditional}") == "conditional"
|
||||
|
||||
|
||||
def test_mixed_syntax(setup_env_vars):
|
||||
assert replace_env_vars_compat("${env.TEST_VAR:=default} and ${env.NOT_SET:+conditional}") == "test_value and "
|
||||
assert (
|
||||
replace_env_vars_compat("${env.NOT_SET:=default} and ${env.TEST_VAR:+conditional}") == "default and conditional"
|
||||
)
|
||||
assert replace_env_vars("${env.TEST_VAR:=default} and ${env.NOT_SET:+conditional}") == "test_value and "
|
||||
assert replace_env_vars("${env.NOT_SET:=default} and ${env.TEST_VAR:+conditional}") == "default and conditional"
|
||||
|
||||
|
||||
def test_nested_structures(setup_env_vars):
|
||||
|
@ -92,11 +87,11 @@ def test_nested_structures(setup_env_vars):
|
|||
"key3": {"nested": "${env.NOT_SET:+conditional}"},
|
||||
}
|
||||
expected = {"key1": "test_value", "key2": ["default", "conditional"], "key3": {"nested": None}}
|
||||
assert replace_env_vars_compat(data) == expected
|
||||
assert replace_env_vars(data) == expected
|
||||
|
||||
|
||||
def test_explicit_strings_preserved(setup_env_vars):
|
||||
# Explicit strings that look like numbers/booleans should remain strings
|
||||
data = {"port": "8080", "enabled": "true", "count": "123", "ratio": "3.14"}
|
||||
expected = {"port": "8080", "enabled": "true", "count": "123", "ratio": "3.14"}
|
||||
assert replace_env_vars_compat(data) == expected
|
||||
assert replace_env_vars(data) == expected
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue