Merge remote-tracking branch 'origin/main' into support_more_data_format

This commit is contained in:
Botao Chen 2025-01-06 14:19:10 -08:00
commit 2a992d4f05
10 changed files with 76 additions and 55 deletions

View file

@ -7,6 +7,7 @@
import asyncio
import inspect
import json
import logging
import os
import queue
import threading
@ -16,7 +17,6 @@ from pathlib import Path
from typing import Any, Generator, get_args, get_origin, Optional, TypeVar
import httpx
import yaml
from llama_stack_client import (
APIResponse,
@ -28,7 +28,6 @@ from llama_stack_client import (
)
from pydantic import BaseModel, TypeAdapter
from rich.console import Console
from termcolor import cprint
from llama_stack.distribution.build import print_pip_install_help
@ -42,7 +41,6 @@ from llama_stack.distribution.stack import (
redact_sensitive_fields,
replace_env_vars,
)
from llama_stack.providers.utils.telemetry.tracing import (
end_trace,
setup_logger,
@ -174,6 +172,7 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
def __init__(
self,
config_path_or_template_name: str,
skip_logger_removal: bool = False,
custom_provider_registry: Optional[ProviderRegistry] = None,
):
super().__init__()
@ -181,15 +180,28 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
config_path_or_template_name, custom_provider_registry
)
self.pool_executor = ThreadPoolExecutor(max_workers=4)
self.skip_logger_removal = skip_logger_removal
def initialize(self):
if in_notebook():
import nest_asyncio
nest_asyncio.apply()
if not self.skip_logger_removal:
self._remove_root_logger_handlers()
return asyncio.run(self.async_client.initialize())
def _remove_root_logger_handlers(self):
"""
Remove all handlers from the root logger. Needed to avoid polluting the console with logs.
"""
root_logger = logging.getLogger()
for handler in root_logger.handlers[:]:
root_logger.removeHandler(handler)
print(f"Removed handler {handler.__class__.__name__} from root logger")
def _get_path(
self,
cast_to: Any,

View file

@ -18,8 +18,8 @@ from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
ColumnName,
DataSchemaValidatorMixin,
get_valid_schemas,
validate_dataset_schema,
)
from llama_stack.providers.utils.kvstore import kvstore_impl
@ -31,7 +31,10 @@ from .config import MetaReferenceEvalConfig
EVAL_TASKS_PREFIX = "eval_tasks:"
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate, DataSchemaValidatorMixin):
class MetaReferenceEvalImpl(
Eval,
EvalTasksProtocolPrivate,
):
def __init__(
self,
config: MetaReferenceEvalConfig,
@ -85,7 +88,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate, DataSchemaValidatorM
candidate = task_config.eval_candidate
scoring_functions = task_def.scoring_functions
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
self.validate_dataset_schema(
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
)
all_rows = await self.datasetio_api.get_rows_paginated(

View file

@ -90,18 +90,24 @@ class TorchtuneCheckpointer:
model_file_path.mkdir(parents=True, exist_ok=True)
# copy the related files for inference
shutil.copy(
Path.joinpath(self._checkpoint_dir, "params.json"),
Path.joinpath(model_file_path, "params.json"),
)
shutil.copy(
Path.joinpath(self._checkpoint_dir, "tokenizer.model"),
Path.joinpath(model_file_path, "tokenizer.model"),
)
shutil.copy(
Path.joinpath(self._checkpoint_dir, "orig_params.json"),
Path.joinpath(model_file_path, "orig_params.json"),
)
source_path = Path.joinpath(self._checkpoint_dir, "params.json")
if source_path.exists():
shutil.copy(
source_path,
Path.joinpath(model_file_path, "params.json"),
)
source_path = Path.joinpath(self._checkpoint_dir, "tokenizer.model")
if source_path.exists():
shutil.copy(
source_path,
Path.joinpath(model_file_path, "tokenizer.model"),
)
source_path = Path.joinpath(self._checkpoint_dir, "orig_params.json")
if source_path.exists():
shutil.copy(
source_path,
Path.joinpath(model_file_path, "orig_params.json"),
)
if not adapter_only:
model_state_dict = state_dict[training.MODEL_KEY]

View file

@ -29,8 +29,9 @@ from torchtune.data._messages import (
ShareGPTToMessages,
)
from torchtune.models.llama3 import llama3_tokenizer, lora_llama3_8b
from torchtune.models.llama3 import llama3_tokenizer
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
from torchtune.models.llama3_1 import lora_llama3_1_8b
from torchtune.models.llama3_2 import lora_llama3_2_3b
from torchtune.modules.transforms import Transform
@ -63,8 +64,8 @@ MODEL_CONFIGS: Dict[str, ModelConfig] = {
tokenizer_type=llama3_tokenizer,
checkpoint_type="LLAMA3_2",
),
"Llama-3-8B-Instruct": ModelConfig(
model_definition=lora_llama3_8b,
"Llama3.1-8B-Instruct": ModelConfig(
model_definition=lora_llama3_1_8b,
tokenizer_type=llama3_tokenizer,
checkpoint_type="LLAMA3",
),

View file

@ -18,8 +18,8 @@ from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
DataSchemaValidatorMixin,
get_valid_schemas,
validate_dataset_schema,
)
from .config import BasicScoringConfig
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
@ -30,7 +30,8 @@ FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn]
class BasicScoringImpl(
Scoring, ScoringFunctionsProtocolPrivate, DataSchemaValidatorMixin
Scoring,
ScoringFunctionsProtocolPrivate,
):
def __init__(
self,
@ -75,7 +76,7 @@ class BasicScoringImpl(
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
self.validate_dataset_schema(
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
)

View file

@ -35,8 +35,9 @@ from llama_stack.distribution.datatypes import Api
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
DataSchemaValidatorMixin,
get_valid_schemas,
validate_dataset_schema,
validate_row_schema,
)
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
@ -111,7 +112,6 @@ class BraintrustScoringImpl(
Scoring,
ScoringFunctionsProtocolPrivate,
NeedsRequestProviderData,
DataSchemaValidatorMixin,
):
def __init__(
self,
@ -171,7 +171,7 @@ class BraintrustScoringImpl(
await self.set_api_key()
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
self.validate_dataset_schema(
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
)
@ -194,7 +194,7 @@ class BraintrustScoringImpl(
async def score_row(
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
) -> ScoringResultRow:
self.validate_row_schema(input_row, get_valid_schemas(Api.scoring.value))
validate_row_schema(input_row, get_valid_schemas(Api.scoring.value))
await self.set_api_key()
assert scoring_fn_identifier is not None, "scoring_fn_identifier cannot be None"
expected_answer = input_row["expected_answer"]

View file

@ -19,8 +19,8 @@ from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.utils.common.data_schema_validator import (
DataSchemaValidatorMixin,
get_valid_schemas,
validate_dataset_schema,
)
from .config import LlmAsJudgeScoringConfig
@ -31,7 +31,8 @@ LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
class LlmAsJudgeScoringImpl(
Scoring, ScoringFunctionsProtocolPrivate, DataSchemaValidatorMixin
Scoring,
ScoringFunctionsProtocolPrivate,
):
def __init__(
self,
@ -79,7 +80,7 @@ class LlmAsJudgeScoringImpl(
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
self.validate_dataset_schema(
validate_dataset_schema(
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
)

View file

@ -140,7 +140,7 @@ class GroqInferenceAdapter(Inference, ModelRegistryHelper, NeedsRequestProviderD
def _get_client(self) -> Groq:
if self._config.api_key is not None:
return Groq(api_key=self.config.api_key)
return Groq(api_key=self._config.api_key)
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.groq_api_key:

View file

@ -193,10 +193,9 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
else:
assert (
not media_present
), "Together does not support media for Completion requests"
), "vLLM does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(
request,
self.register_helper.get_llama_model(request.model),
self.formatter,
)

View file

@ -62,26 +62,24 @@ def get_valid_schemas(api_str: str):
raise ValueError(f"Invalid API string: {api_str}")
class DataSchemaValidatorMixin:
def validate_dataset_schema(
self,
dataset_schema: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
if dataset_schema not in expected_schemas:
raise ValueError(
f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}"
)
def validate_row_schema(
self,
input_row: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
for schema in expected_schemas:
if all(key in input_row for key in schema):
return
def validate_dataset_schema(
dataset_schema: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
if dataset_schema not in expected_schemas:
raise ValueError(
f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}"
f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}"
)
def validate_row_schema(
input_row: Dict[str, Any],
expected_schemas: List[Dict[str, Any]],
):
for schema in expected_schemas:
if all(key in input_row for key in schema):
return
raise ValueError(
f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}"
)