mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-05 18:22:41 +00:00
Merge remote-tracking branch 'origin/main' into support_more_data_format
This commit is contained in:
commit
2a992d4f05
10 changed files with 76 additions and 55 deletions
|
@ -7,6 +7,7 @@
|
||||||
import asyncio
|
import asyncio
|
||||||
import inspect
|
import inspect
|
||||||
import json
|
import json
|
||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
import queue
|
import queue
|
||||||
import threading
|
import threading
|
||||||
|
@ -16,7 +17,6 @@ from pathlib import Path
|
||||||
from typing import Any, Generator, get_args, get_origin, Optional, TypeVar
|
from typing import Any, Generator, get_args, get_origin, Optional, TypeVar
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
import yaml
|
import yaml
|
||||||
from llama_stack_client import (
|
from llama_stack_client import (
|
||||||
APIResponse,
|
APIResponse,
|
||||||
|
@ -28,7 +28,6 @@ from llama_stack_client import (
|
||||||
)
|
)
|
||||||
from pydantic import BaseModel, TypeAdapter
|
from pydantic import BaseModel, TypeAdapter
|
||||||
from rich.console import Console
|
from rich.console import Console
|
||||||
|
|
||||||
from termcolor import cprint
|
from termcolor import cprint
|
||||||
|
|
||||||
from llama_stack.distribution.build import print_pip_install_help
|
from llama_stack.distribution.build import print_pip_install_help
|
||||||
|
@ -42,7 +41,6 @@ from llama_stack.distribution.stack import (
|
||||||
redact_sensitive_fields,
|
redact_sensitive_fields,
|
||||||
replace_env_vars,
|
replace_env_vars,
|
||||||
)
|
)
|
||||||
|
|
||||||
from llama_stack.providers.utils.telemetry.tracing import (
|
from llama_stack.providers.utils.telemetry.tracing import (
|
||||||
end_trace,
|
end_trace,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
|
@ -174,6 +172,7 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
config_path_or_template_name: str,
|
config_path_or_template_name: str,
|
||||||
|
skip_logger_removal: bool = False,
|
||||||
custom_provider_registry: Optional[ProviderRegistry] = None,
|
custom_provider_registry: Optional[ProviderRegistry] = None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
@ -181,15 +180,28 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
|
||||||
config_path_or_template_name, custom_provider_registry
|
config_path_or_template_name, custom_provider_registry
|
||||||
)
|
)
|
||||||
self.pool_executor = ThreadPoolExecutor(max_workers=4)
|
self.pool_executor = ThreadPoolExecutor(max_workers=4)
|
||||||
|
self.skip_logger_removal = skip_logger_removal
|
||||||
|
|
||||||
def initialize(self):
|
def initialize(self):
|
||||||
if in_notebook():
|
if in_notebook():
|
||||||
import nest_asyncio
|
import nest_asyncio
|
||||||
|
|
||||||
nest_asyncio.apply()
|
nest_asyncio.apply()
|
||||||
|
if not self.skip_logger_removal:
|
||||||
|
self._remove_root_logger_handlers()
|
||||||
|
|
||||||
return asyncio.run(self.async_client.initialize())
|
return asyncio.run(self.async_client.initialize())
|
||||||
|
|
||||||
|
def _remove_root_logger_handlers(self):
|
||||||
|
"""
|
||||||
|
Remove all handlers from the root logger. Needed to avoid polluting the console with logs.
|
||||||
|
"""
|
||||||
|
root_logger = logging.getLogger()
|
||||||
|
|
||||||
|
for handler in root_logger.handlers[:]:
|
||||||
|
root_logger.removeHandler(handler)
|
||||||
|
print(f"Removed handler {handler.__class__.__name__} from root logger")
|
||||||
|
|
||||||
def _get_path(
|
def _get_path(
|
||||||
self,
|
self,
|
||||||
cast_to: Any,
|
cast_to: Any,
|
||||||
|
|
|
@ -18,8 +18,8 @@ from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
||||||
|
|
||||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||||
ColumnName,
|
ColumnName,
|
||||||
DataSchemaValidatorMixin,
|
|
||||||
get_valid_schemas,
|
get_valid_schemas,
|
||||||
|
validate_dataset_schema,
|
||||||
)
|
)
|
||||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||||
|
|
||||||
|
@ -31,7 +31,10 @@ from .config import MetaReferenceEvalConfig
|
||||||
EVAL_TASKS_PREFIX = "eval_tasks:"
|
EVAL_TASKS_PREFIX = "eval_tasks:"
|
||||||
|
|
||||||
|
|
||||||
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate, DataSchemaValidatorMixin):
|
class MetaReferenceEvalImpl(
|
||||||
|
Eval,
|
||||||
|
EvalTasksProtocolPrivate,
|
||||||
|
):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
config: MetaReferenceEvalConfig,
|
config: MetaReferenceEvalConfig,
|
||||||
|
@ -85,7 +88,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate, DataSchemaValidatorM
|
||||||
candidate = task_config.eval_candidate
|
candidate = task_config.eval_candidate
|
||||||
scoring_functions = task_def.scoring_functions
|
scoring_functions = task_def.scoring_functions
|
||||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||||
self.validate_dataset_schema(
|
validate_dataset_schema(
|
||||||
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
|
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
|
||||||
)
|
)
|
||||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||||
|
|
|
@ -90,16 +90,22 @@ class TorchtuneCheckpointer:
|
||||||
model_file_path.mkdir(parents=True, exist_ok=True)
|
model_file_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
# copy the related files for inference
|
# copy the related files for inference
|
||||||
|
source_path = Path.joinpath(self._checkpoint_dir, "params.json")
|
||||||
|
if source_path.exists():
|
||||||
shutil.copy(
|
shutil.copy(
|
||||||
Path.joinpath(self._checkpoint_dir, "params.json"),
|
source_path,
|
||||||
Path.joinpath(model_file_path, "params.json"),
|
Path.joinpath(model_file_path, "params.json"),
|
||||||
)
|
)
|
||||||
|
source_path = Path.joinpath(self._checkpoint_dir, "tokenizer.model")
|
||||||
|
if source_path.exists():
|
||||||
shutil.copy(
|
shutil.copy(
|
||||||
Path.joinpath(self._checkpoint_dir, "tokenizer.model"),
|
source_path,
|
||||||
Path.joinpath(model_file_path, "tokenizer.model"),
|
Path.joinpath(model_file_path, "tokenizer.model"),
|
||||||
)
|
)
|
||||||
|
source_path = Path.joinpath(self._checkpoint_dir, "orig_params.json")
|
||||||
|
if source_path.exists():
|
||||||
shutil.copy(
|
shutil.copy(
|
||||||
Path.joinpath(self._checkpoint_dir, "orig_params.json"),
|
source_path,
|
||||||
Path.joinpath(model_file_path, "orig_params.json"),
|
Path.joinpath(model_file_path, "orig_params.json"),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -29,8 +29,9 @@ from torchtune.data._messages import (
|
||||||
ShareGPTToMessages,
|
ShareGPTToMessages,
|
||||||
)
|
)
|
||||||
|
|
||||||
from torchtune.models.llama3 import llama3_tokenizer, lora_llama3_8b
|
from torchtune.models.llama3 import llama3_tokenizer
|
||||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||||
|
from torchtune.models.llama3_1 import lora_llama3_1_8b
|
||||||
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
||||||
from torchtune.modules.transforms import Transform
|
from torchtune.modules.transforms import Transform
|
||||||
|
|
||||||
|
@ -63,8 +64,8 @@ MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
||||||
tokenizer_type=llama3_tokenizer,
|
tokenizer_type=llama3_tokenizer,
|
||||||
checkpoint_type="LLAMA3_2",
|
checkpoint_type="LLAMA3_2",
|
||||||
),
|
),
|
||||||
"Llama-3-8B-Instruct": ModelConfig(
|
"Llama3.1-8B-Instruct": ModelConfig(
|
||||||
model_definition=lora_llama3_8b,
|
model_definition=lora_llama3_1_8b,
|
||||||
tokenizer_type=llama3_tokenizer,
|
tokenizer_type=llama3_tokenizer,
|
||||||
checkpoint_type="LLAMA3",
|
checkpoint_type="LLAMA3",
|
||||||
),
|
),
|
||||||
|
|
|
@ -18,8 +18,8 @@ from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||||
from llama_stack.distribution.datatypes import Api
|
from llama_stack.distribution.datatypes import Api
|
||||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||||
DataSchemaValidatorMixin,
|
|
||||||
get_valid_schemas,
|
get_valid_schemas,
|
||||||
|
validate_dataset_schema,
|
||||||
)
|
)
|
||||||
from .config import BasicScoringConfig
|
from .config import BasicScoringConfig
|
||||||
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
|
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
|
||||||
|
@ -30,7 +30,8 @@ FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn]
|
||||||
|
|
||||||
|
|
||||||
class BasicScoringImpl(
|
class BasicScoringImpl(
|
||||||
Scoring, ScoringFunctionsProtocolPrivate, DataSchemaValidatorMixin
|
Scoring,
|
||||||
|
ScoringFunctionsProtocolPrivate,
|
||||||
):
|
):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -75,7 +76,7 @@ class BasicScoringImpl(
|
||||||
save_results_dataset: bool = False,
|
save_results_dataset: bool = False,
|
||||||
) -> ScoreBatchResponse:
|
) -> ScoreBatchResponse:
|
||||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||||
self.validate_dataset_schema(
|
validate_dataset_schema(
|
||||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -35,8 +35,9 @@ from llama_stack.distribution.datatypes import Api
|
||||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||||
DataSchemaValidatorMixin,
|
|
||||||
get_valid_schemas,
|
get_valid_schemas,
|
||||||
|
validate_dataset_schema,
|
||||||
|
validate_row_schema,
|
||||||
)
|
)
|
||||||
|
|
||||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
||||||
|
@ -111,7 +112,6 @@ class BraintrustScoringImpl(
|
||||||
Scoring,
|
Scoring,
|
||||||
ScoringFunctionsProtocolPrivate,
|
ScoringFunctionsProtocolPrivate,
|
||||||
NeedsRequestProviderData,
|
NeedsRequestProviderData,
|
||||||
DataSchemaValidatorMixin,
|
|
||||||
):
|
):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -171,7 +171,7 @@ class BraintrustScoringImpl(
|
||||||
await self.set_api_key()
|
await self.set_api_key()
|
||||||
|
|
||||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||||
self.validate_dataset_schema(
|
validate_dataset_schema(
|
||||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -194,7 +194,7 @@ class BraintrustScoringImpl(
|
||||||
async def score_row(
|
async def score_row(
|
||||||
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
|
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
|
||||||
) -> ScoringResultRow:
|
) -> ScoringResultRow:
|
||||||
self.validate_row_schema(input_row, get_valid_schemas(Api.scoring.value))
|
validate_row_schema(input_row, get_valid_schemas(Api.scoring.value))
|
||||||
await self.set_api_key()
|
await self.set_api_key()
|
||||||
assert scoring_fn_identifier is not None, "scoring_fn_identifier cannot be None"
|
assert scoring_fn_identifier is not None, "scoring_fn_identifier cannot be None"
|
||||||
expected_answer = input_row["expected_answer"]
|
expected_answer = input_row["expected_answer"]
|
||||||
|
|
|
@ -19,8 +19,8 @@ from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
||||||
from llama_stack.distribution.datatypes import Api
|
from llama_stack.distribution.datatypes import Api
|
||||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||||
DataSchemaValidatorMixin,
|
|
||||||
get_valid_schemas,
|
get_valid_schemas,
|
||||||
|
validate_dataset_schema,
|
||||||
)
|
)
|
||||||
|
|
||||||
from .config import LlmAsJudgeScoringConfig
|
from .config import LlmAsJudgeScoringConfig
|
||||||
|
@ -31,7 +31,8 @@ LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
|
||||||
|
|
||||||
|
|
||||||
class LlmAsJudgeScoringImpl(
|
class LlmAsJudgeScoringImpl(
|
||||||
Scoring, ScoringFunctionsProtocolPrivate, DataSchemaValidatorMixin
|
Scoring,
|
||||||
|
ScoringFunctionsProtocolPrivate,
|
||||||
):
|
):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -79,7 +80,7 @@ class LlmAsJudgeScoringImpl(
|
||||||
save_results_dataset: bool = False,
|
save_results_dataset: bool = False,
|
||||||
) -> ScoreBatchResponse:
|
) -> ScoreBatchResponse:
|
||||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||||
self.validate_dataset_schema(
|
validate_dataset_schema(
|
||||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -140,7 +140,7 @@ class GroqInferenceAdapter(Inference, ModelRegistryHelper, NeedsRequestProviderD
|
||||||
|
|
||||||
def _get_client(self) -> Groq:
|
def _get_client(self) -> Groq:
|
||||||
if self._config.api_key is not None:
|
if self._config.api_key is not None:
|
||||||
return Groq(api_key=self.config.api_key)
|
return Groq(api_key=self._config.api_key)
|
||||||
else:
|
else:
|
||||||
provider_data = self.get_request_provider_data()
|
provider_data = self.get_request_provider_data()
|
||||||
if provider_data is None or not provider_data.groq_api_key:
|
if provider_data is None or not provider_data.groq_api_key:
|
||||||
|
|
|
@ -193,10 +193,9 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
else:
|
else:
|
||||||
assert (
|
assert (
|
||||||
not media_present
|
not media_present
|
||||||
), "Together does not support media for Completion requests"
|
), "vLLM does not support media for Completion requests"
|
||||||
input_dict["prompt"] = await completion_request_to_prompt(
|
input_dict["prompt"] = await completion_request_to_prompt(
|
||||||
request,
|
request,
|
||||||
self.register_helper.get_llama_model(request.model),
|
|
||||||
self.formatter,
|
self.formatter,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -62,22 +62,20 @@ def get_valid_schemas(api_str: str):
|
||||||
raise ValueError(f"Invalid API string: {api_str}")
|
raise ValueError(f"Invalid API string: {api_str}")
|
||||||
|
|
||||||
|
|
||||||
class DataSchemaValidatorMixin:
|
def validate_dataset_schema(
|
||||||
def validate_dataset_schema(
|
|
||||||
self,
|
|
||||||
dataset_schema: Dict[str, Any],
|
dataset_schema: Dict[str, Any],
|
||||||
expected_schemas: List[Dict[str, Any]],
|
expected_schemas: List[Dict[str, Any]],
|
||||||
):
|
):
|
||||||
if dataset_schema not in expected_schemas:
|
if dataset_schema not in expected_schemas:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}"
|
f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def validate_row_schema(
|
|
||||||
self,
|
def validate_row_schema(
|
||||||
input_row: Dict[str, Any],
|
input_row: Dict[str, Any],
|
||||||
expected_schemas: List[Dict[str, Any]],
|
expected_schemas: List[Dict[str, Any]],
|
||||||
):
|
):
|
||||||
for schema in expected_schemas:
|
for schema in expected_schemas:
|
||||||
if all(key in input_row for key in schema):
|
if all(key in input_row for key in schema):
|
||||||
return
|
return
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue