feat: inference passthrough provider (#1166)

##  What does this PR do?
In this PR, we implement a passthrough inference provider that works for
any endpoints that respect llama stack inference API definition.

## Test Plan
config some endpoint that respect llama stack inference API definition
and got the inference results successfully

<img width="1268" alt="Screenshot 2025-02-19 at 8 52 51 PM"
src="https://github.com/user-attachments/assets/447816e4-ea7a-4365-b90c-386dc7dcf4a1"
/>
This commit is contained in:
Botao Chen 2025-02-19 21:47:00 -08:00 committed by GitHub
parent d39f8de619
commit 2b995c22eb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 364 additions and 0 deletions

View file

@ -215,4 +215,14 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="passthrough",
pip_packages=[],
module="llama_stack.providers.remote.inference.passthrough",
config_class="llama_stack.providers.remote.inference.passthrough.PassthroughImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.passthrough.PassthroughProviderDataValidator",
),
),
]

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from .config import PassthroughImplConfig
class PassthroughProviderDataValidator(BaseModel):
url: str
api_key: str
async def get_adapter_impl(config: PassthroughImplConfig, _deps):
from .passthrough import PassthroughInferenceAdapter
assert isinstance(config, PassthroughImplConfig), f"Unexpected config type: {type(config)}"
impl = PassthroughInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,31 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class PassthroughImplConfig(BaseModel):
url: str = Field(
default=None,
description="The URL for the passthrough endpoint",
)
api_key: Optional[SecretStr] = Field(
default=None,
description="API Key for the passthrouth endpoint",
)
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"url": "${env.PASSTHROUGH_URL}",
"api_key": "${env.PASSTHROUGH_API_KEY}",
}

View file

@ -0,0 +1,148 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional
from llama_stack_client import LlamaStackClient
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from .config import PassthroughImplConfig
class PassthroughInferenceAdapter(Inference):
def __init__(self, config: PassthroughImplConfig) -> None:
ModelRegistryHelper.__init__(self, [])
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: Model) -> Model:
return model
def _get_client(self) -> LlamaStackClient:
passthrough_url = None
passthrough_api_key = None
provider_data = None
if self.config.url is not None:
passthrough_url = self.config.url
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.passthrough_url:
raise ValueError(
'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": <your passthrough url>}'
)
passthrough_url = provider_data.passthrough_url
if self.config.api_key is not None:
passthrough_api_key = self.config.api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.passthrough_api_key:
raise ValueError(
'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": <your api key>}'
)
passthrough_api_key = provider_data.passthrough_api_key
return LlamaStackClient(
base_url=passthrough_url,
api_key=passthrough_api_key,
provider_data=provider_data,
)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
client = self._get_client()
model = await self.model_store.get_model(model_id)
params = {
"model_id": model.provider_resource_id,
"content": content,
"sampling_params": sampling_params,
"response_format": response_format,
"stream": stream,
"logprobs": logprobs,
}
params = {key: value for key, value in params.items() if value is not None}
# only pass through the not None params
return client.inference.completion(**params)
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
client = self._get_client()
model = await self.model_store.get_model(model_id)
params = {
"model_id": model.provider_resource_id,
"messages": messages,
"sampling_params": sampling_params,
"tools": tools,
"tool_choice": tool_choice,
"tool_prompt_format": tool_prompt_format,
"response_format": response_format,
"stream": stream,
"logprobs": logprobs,
}
params = {key: value for key, value in params.items() if value is not None}
# only pass through the not None params
return client.inference.chat_completion(**params)
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
client = self._get_client()
model = await self.model_store.get_model(model_id)
return client.inference.embeddings(
model_id=model.provider_resource_id,
contents=contents,
)

View file

@ -0,0 +1,32 @@
version: '2'
distribution_spec:
description: Use for running LLM inference with the endpoint that compatible with Llama Stack API
providers:
inference:
- remote::passthrough
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::code-interpreter
- inline::rag-runtime
- remote::model-context-protocol
image_type: conda

View file

@ -0,0 +1,120 @@
version: '2'
image_name: passthrough
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: passthrough
provider_type: remote::passthrough
config:
url: ${env.PASSTHROUGH_URL}
api_key: ${env.PASSTHROUGH_API_KEY}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/passthrough}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/passthrough}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/passthrough/trace_store.db}
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config: {}
- provider_id: localfs
provider_type: inline::localfs
config: {}
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:}
max_results: 3
- provider_id: code-interpreter
provider_type: inline::code-interpreter
config: {}
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-llama}/registry.db
models:
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: passthrough
provider_model_id: llama3.1-8b-instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
provider_id: passthrough
provider_model_id: llama3.2-11b-vision-instruct
model_type: llm
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
- toolgroup_id: builtin::code_interpreter
provider_id: code-interpreter
server:
port: 8321