group all server stores under storage.stores

This commit is contained in:
Ashwin Bharambe 2025-10-19 08:06:19 -07:00
parent 636764c2a1
commit 2bba56a0a8
35 changed files with 806 additions and 503 deletions

View file

@ -29,19 +29,20 @@ def test_starter_distribution_config_loads_and_resolves():
assert isinstance(config.storage.backends["kv_default"], SqliteKVStoreConfig)
assert isinstance(config.storage.backends["sql_default"], SqliteSqlStoreConfig)
assert config.metadata_store is not None
assert config.metadata_store.backend == "kv_default"
assert config.metadata_store.namespace == "registry"
stores = config.storage.stores
assert stores.metadata is not None
assert stores.metadata.backend == "kv_default"
assert stores.metadata.namespace == "registry"
assert config.inference_store is not None
assert config.inference_store.backend == "sql_default"
assert config.inference_store.table_name == "inference_store"
assert config.inference_store.max_write_queue_size > 0
assert config.inference_store.num_writers > 0
assert stores.inference is not None
assert stores.inference.backend == "sql_default"
assert stores.inference.table_name == "inference_store"
assert stores.inference.max_write_queue_size > 0
assert stores.inference.num_writers > 0
assert config.conversations_store is not None
assert config.conversations_store.backend == "sql_default"
assert config.conversations_store.table_name == "openai_conversations"
assert stores.conversations is not None
assert stores.conversations.backend == "sql_default"
assert stores.conversations.table_name == "openai_conversations"
def test_postgres_demo_distribution_config_loads():
@ -62,6 +63,9 @@ def test_postgres_demo_distribution_config_loads():
kv_backend = config.storage.backends["kv_default"]
assert isinstance(kv_backend, PostgresKVStoreConfig)
stores = config.storage.stores
# Stores target the Postgres backends explicitly
assert config.metadata_store.backend == "kv_default"
assert config.inference_store.backend == "sql_default"
assert stores.metadata is not None
assert stores.metadata.backend == "kv_default"
assert stores.inference is not None
assert stores.inference.backend == "sql_default"

View file

@ -23,6 +23,27 @@ def config_with_image_name_int():
image_name: 1234
apis_to_serve: []
built_at: {datetime.now().isoformat()}
storage:
backends:
kv_default:
type: kv_sqlite
db_path: /tmp/test_kv.db
sql_default:
type: sql_sqlite
db_path: /tmp/test_sql.db
stores:
metadata:
backend: kv_default
namespace: metadata
inference:
backend: sql_default
table_name: inference
conversations:
backend: sql_default
table_name: conversations
responses:
backend: sql_default
table_name: responses
providers:
inference:
- provider_id: provider1
@ -54,6 +75,27 @@ def up_to_date_config():
image_name: foo
apis_to_serve: []
built_at: {datetime.now().isoformat()}
storage:
backends:
kv_default:
type: kv_sqlite
db_path: /tmp/test_kv.db
sql_default:
type: sql_sqlite
db_path: /tmp/test_sql.db
stores:
metadata:
backend: kv_default
namespace: metadata
inference:
backend: sql_default
table_name: inference
conversations:
backend: sql_default
table_name: conversations
responses:
backend: sql_default
table_name: responses
providers:
inference:
- provider_id: provider1

View file

@ -20,7 +20,14 @@ from llama_stack.core.conversations.conversations import (
ConversationServiceConfig,
ConversationServiceImpl,
)
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
from llama_stack.core.datatypes import StackRunConfig
from llama_stack.core.storage.datatypes import (
ServerStoresConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageConfig,
)
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
@pytest.fixture
@ -28,7 +35,18 @@ async def service():
with tempfile.TemporaryDirectory() as tmpdir:
db_path = Path(tmpdir) / "test_conversations.db"
config = ConversationServiceConfig(conversations_store=SqliteSqlStoreConfig(db_path=str(db_path)), policy=[])
storage = StorageConfig(
backends={
"sql_test": SqliteSqlStoreConfig(db_path=str(db_path)),
},
stores=ServerStoresConfig(
conversations=SqlStoreReference(backend="sql_test", table_name="openai_conversations"),
),
)
register_sqlstore_backends({"sql_test": storage.backends["sql_test"]})
run_config = StackRunConfig(image_name="test", apis=[], providers={}, storage=storage)
config = ConversationServiceConfig(run_config=run_config, policy=[])
service = ConversationServiceImpl(config, {})
await service.initialize()
yield service
@ -121,9 +139,18 @@ async def test_policy_configuration():
AccessRule(forbid=Scope(principal="test_user", actions=[Action.CREATE, Action.READ], resource="*"))
]
config = ConversationServiceConfig(
conversations_store=SqliteSqlStoreConfig(db_path=str(db_path)), policy=restrictive_policy
storage = StorageConfig(
backends={
"sql_test": SqliteSqlStoreConfig(db_path=str(db_path)),
},
stores=ServerStoresConfig(
conversations=SqlStoreReference(backend="sql_test", table_name="openai_conversations"),
),
)
register_sqlstore_backends({"sql_test": storage.backends["sql_test"]})
run_config = StackRunConfig(image_name="test", apis=[], providers={}, storage=storage)
config = ConversationServiceConfig(run_config=run_config, policy=restrictive_policy)
service = ConversationServiceImpl(config, {})
await service.initialize()

View file

@ -16,6 +16,7 @@ from llama_stack.core.datatypes import (
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
@ -24,13 +25,30 @@ from llama_stack.core.storage.datatypes import (
def _base_run_config(**overrides):
metadata_reference = overrides.pop(
"metadata_reference",
KVStoreReference(backend="kv_default", namespace="registry"),
)
inference_reference = overrides.pop(
"inference_reference",
InferenceStoreReference(backend="sql_default", table_name="inference"),
)
conversations_reference = overrides.pop(
"conversations_reference",
SqlStoreReference(backend="sql_default", table_name="conversations"),
)
storage = overrides.pop(
"storage",
StorageConfig(
backends={
"kv_default": SqliteKVStoreConfig(db_path="/tmp/kv.db"),
"sql_default": SqliteSqlStoreConfig(db_path="/tmp/sql.db"),
}
},
stores=ServerStoresConfig(
metadata=metadata_reference,
inference=inference_reference,
conversations=conversations_reference,
),
),
)
return StackRunConfig(
@ -39,39 +57,28 @@ def _base_run_config(**overrides):
apis=[],
providers={},
storage=storage,
metadata_store=overrides.pop(
"metadata_store",
KVStoreReference(backend="kv_default", namespace="registry"),
),
inference_store=overrides.pop(
"inference_store",
InferenceStoreReference(backend="sql_default", table_name="inference"),
),
conversations_store=overrides.pop(
"conversations_store",
SqlStoreReference(backend="sql_default", table_name="conversations"),
),
**overrides,
)
def test_references_require_known_backend():
with pytest.raises(ValidationError, match="unknown backend 'missing'"):
_base_run_config(metadata_store=KVStoreReference(backend="missing", namespace="registry"))
_base_run_config(metadata_reference=KVStoreReference(backend="missing", namespace="registry"))
def test_references_must_match_backend_family():
with pytest.raises(ValidationError, match="kv_.* is required"):
_base_run_config(metadata_store=KVStoreReference(backend="sql_default", namespace="registry"))
_base_run_config(metadata_reference=KVStoreReference(backend="sql_default", namespace="registry"))
with pytest.raises(ValidationError, match="sql_.* is required"):
_base_run_config(
inference_store=InferenceStoreReference(backend="kv_default", table_name="inference"),
inference_reference=InferenceStoreReference(backend="kv_default", table_name="inference"),
)
def test_valid_configuration_passes_validation():
config = _base_run_config()
assert config.metadata_store.backend == "kv_default"
assert config.inference_store.backend == "sql_default"
assert config.conversations_store.backend == "sql_default"
stores = config.storage.stores
assert stores.metadata is not None and stores.metadata.backend == "kv_default"
assert stores.inference is not None and stores.inference.backend == "sql_default"
assert stores.conversations is not None and stores.conversations.backend == "sql_default"

View file

@ -16,6 +16,7 @@ from llama_stack.core.distribution import INTERNAL_APIS, get_provider_registry,
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
@ -42,35 +43,25 @@ def _default_storage() -> StorageConfig:
backends={
"kv_default": SqliteKVStoreConfig(db_path=":memory:"),
"sql_default": SqliteSqlStoreConfig(db_path=":memory:"),
}
},
stores=ServerStoresConfig(
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
conversations=SqlStoreReference(backend="sql_default", table_name="conversations"),
),
)
def make_stack_config(**overrides) -> StackRunConfig:
storage = overrides.pop("storage", _default_storage())
metadata_store = overrides.pop(
"metadata_store",
KVStoreReference(backend="kv_default", namespace="registry"),
)
inference_store = overrides.pop(
"inference_store",
InferenceStoreReference(backend="sql_default", table_name="inference_store"),
)
conversations_store = overrides.pop(
"conversations_store",
SqlStoreReference(backend="sql_default", table_name="conversations"),
)
defaults = dict(
image_name="test_image",
apis=[],
providers={},
storage=storage,
metadata_store=metadata_store,
inference_store=inference_store,
conversations_store=conversations_store,
)
defaults.update(overrides)
return make_stack_config(**defaults)
return StackRunConfig(**defaults)
@pytest.fixture

View file

@ -12,6 +12,7 @@ from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceI
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
@ -32,16 +33,18 @@ async def temp_prompt_store(tmp_path_factory):
backends={
"kv_test": SqliteKVStoreConfig(db_path=db_path),
"sql_test": SqliteSqlStoreConfig(db_path=str(temp_dir / f"{unique_id}_sql.db")),
}
},
stores=ServerStoresConfig(
metadata=KVStoreReference(backend="kv_test", namespace="registry"),
inference=InferenceStoreReference(backend="sql_test", table_name="inference"),
conversations=SqlStoreReference(backend="sql_test", table_name="conversations"),
),
)
mock_run_config = StackRunConfig(
image_name="test-distribution",
apis=[],
providers={},
storage=storage,
metadata_store=KVStoreReference(backend="kv_test", namespace="registry"),
inference_store=InferenceStoreReference(backend="sql_test", table_name="inference"),
conversations_store=SqlStoreReference(backend="sql_test", table_name="conversations"),
)
config = PromptServiceConfig(run_config=mock_run_config)
store = PromptServiceImpl(config, deps={})

View file

@ -26,6 +26,24 @@ from llama_stack.providers.inline.agents.meta_reference.config import MetaRefere
from llama_stack.providers.inline.agents.meta_reference.persistence import AgentInfo
@pytest.fixture(autouse=True)
def setup_backends(tmp_path):
"""Register KV and SQL store backends for testing."""
from llama_stack.core.storage.datatypes import SqliteSqlStoreConfig, SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
kv_path = str(tmp_path / "test_kv.db")
sql_path = str(tmp_path / "test_sql.db")
register_kvstore_backends({
"kv_default": SqliteKVStoreConfig(db_path=kv_path)
})
register_sqlstore_backends({
"sql_default": SqliteSqlStoreConfig(db_path=sql_path)
})
@pytest.fixture
def mock_apis():
return {
@ -40,15 +58,20 @@ def mock_apis():
@pytest.fixture
def config(tmp_path):
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
from llama_stack.providers.inline.agents.meta_reference.config import AgentPersistenceConfig
return MetaReferenceAgentsImplConfig(
persistence_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
responses_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
persistence=AgentPersistenceConfig(
agent_state=KVStoreReference(
backend="kv_default",
namespace="agents",
),
responses=ResponsesStoreReference(
backend="sql_default",
table_name="responses",
),
)
)

View file

@ -19,12 +19,15 @@ from llama_stack.core.routing_tables.models import ModelsRoutingTable
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageConfig,
)
from llama_stack.providers.datatypes import InlineProviderSpec, ProviderSpec
from llama_stack.providers.utils.kvstore import register_kvstore_backends
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
def add_protocol_methods(cls: type, protocol: type[Protocol]) -> None:
@ -76,26 +79,23 @@ def make_run_config(**overrides) -> StackRunConfig:
backends={
"kv_default": SqliteKVStoreConfig(db_path=":memory:"),
"sql_default": SqliteSqlStoreConfig(db_path=":memory:"),
}
},
stores=ServerStoresConfig(
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
conversations=SqlStoreReference(backend="sql_default", table_name="conversations"),
),
),
)
register_kvstore_backends({name: cfg for name, cfg in storage.backends.items() if cfg.type.value.startswith("kv_")})
register_sqlstore_backends(
{name: cfg for name, cfg in storage.backends.items() if cfg.type.value.startswith("sql_")}
)
defaults = dict(
image_name="test_image",
apis=[],
providers={},
storage=storage,
metadata_store=overrides.pop(
"metadata_store",
KVStoreReference(backend="kv_default", namespace="registry"),
),
inference_store=overrides.pop(
"inference_store",
InferenceStoreReference(backend="sql_default", table_name="inference_store"),
),
conversations_store=overrides.pop(
"conversations_store",
SqlStoreReference(backend="sql_default", table_name="conversations"),
),
)
defaults.update(overrides)
return StackRunConfig(**defaults)

View file

@ -16,8 +16,18 @@ from llama_stack.apis.inference import (
OpenAIUserMessageParam,
Order,
)
from llama_stack.core.storage.datatypes import InferenceStoreReference, SqliteSqlStoreConfig
from llama_stack.providers.utils.inference.inference_store import InferenceStore
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
@pytest.fixture(autouse=True)
def setup_backends(tmp_path):
"""Register SQL store backends for testing."""
db_path = str(tmp_path / "test.db")
register_sqlstore_backends({
"sql_default": SqliteSqlStoreConfig(db_path=db_path)
})
def create_test_chat_completion(
@ -44,167 +54,162 @@ def create_test_chat_completion(
async def test_inference_store_pagination_basic():
"""Test basic pagination functionality."""
with TemporaryDirectory() as tmp_dir:
db_path = tmp_dir + "/test.db"
store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[])
await store.initialize()
reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions")
store = InferenceStore(reference, policy=[])
await store.initialize()
# Create test data with different timestamps
base_time = int(time.time())
test_data = [
("zebra-task", base_time + 1),
("apple-job", base_time + 2),
("moon-work", base_time + 3),
("banana-run", base_time + 4),
("car-exec", base_time + 5),
]
# Create test data with different timestamps
base_time = int(time.time())
test_data = [
("zebra-task", base_time + 1),
("apple-job", base_time + 2),
("moon-work", base_time + 3),
("banana-run", base_time + 4),
("car-exec", base_time + 5),
]
# Store test chat completions
for completion_id, timestamp in test_data:
completion = create_test_chat_completion(completion_id, timestamp)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Store test chat completions
for completion_id, timestamp in test_data:
completion = create_test_chat_completion(completion_id, timestamp)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Wait for all queued writes to complete
await store.flush()
# Test 1: First page with limit=2, descending order (default)
result = await store.list_chat_completions(limit=2, order=Order.desc)
assert len(result.data) == 2
assert result.data[0].id == "car-exec" # Most recent first
assert result.data[1].id == "banana-run"
assert result.has_more is True
assert result.last_id == "banana-run"
# Test 1: First page with limit=2, descending order (default)
result = await store.list_chat_completions(limit=2, order=Order.desc)
assert len(result.data) == 2
assert result.data[0].id == "car-exec" # Most recent first
assert result.data[1].id == "banana-run"
assert result.has_more is True
assert result.last_id == "banana-run"
# Test 2: Second page using 'after' parameter
result2 = await store.list_chat_completions(after="banana-run", limit=2, order=Order.desc)
assert len(result2.data) == 2
assert result2.data[0].id == "moon-work"
assert result2.data[1].id == "apple-job"
assert result2.has_more is True
# Test 2: Second page using 'after' parameter
result2 = await store.list_chat_completions(after="banana-run", limit=2, order=Order.desc)
assert len(result2.data) == 2
assert result2.data[0].id == "moon-work"
assert result2.data[1].id == "apple-job"
assert result2.has_more is True
# Test 3: Final page
result3 = await store.list_chat_completions(after="apple-job", limit=2, order=Order.desc)
assert len(result3.data) == 1
assert result3.data[0].id == "zebra-task"
assert result3.has_more is False
# Test 3: Final page
result3 = await store.list_chat_completions(after="apple-job", limit=2, order=Order.desc)
assert len(result3.data) == 1
assert result3.data[0].id == "zebra-task"
assert result3.has_more is False
async def test_inference_store_pagination_ascending():
"""Test pagination with ascending order."""
with TemporaryDirectory() as tmp_dir:
db_path = tmp_dir + "/test.db"
store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[])
await store.initialize()
reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions")
store = InferenceStore(reference, policy=[])
await store.initialize()
# Create test data
base_time = int(time.time())
test_data = [
("delta-item", base_time + 1),
("charlie-task", base_time + 2),
("alpha-work", base_time + 3),
]
# Create test data
base_time = int(time.time())
test_data = [
("delta-item", base_time + 1),
("charlie-task", base_time + 2),
("alpha-work", base_time + 3),
]
# Store test chat completions
for completion_id, timestamp in test_data:
completion = create_test_chat_completion(completion_id, timestamp)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Store test chat completions
for completion_id, timestamp in test_data:
completion = create_test_chat_completion(completion_id, timestamp)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Wait for all queued writes to complete
await store.flush()
# Test ascending order pagination
result = await store.list_chat_completions(limit=1, order=Order.asc)
assert len(result.data) == 1
assert result.data[0].id == "delta-item" # Oldest first
assert result.has_more is True
# Test ascending order pagination
result = await store.list_chat_completions(limit=1, order=Order.asc)
assert len(result.data) == 1
assert result.data[0].id == "delta-item" # Oldest first
assert result.has_more is True
# Second page with ascending order
result2 = await store.list_chat_completions(after="delta-item", limit=1, order=Order.asc)
assert len(result2.data) == 1
assert result2.data[0].id == "charlie-task"
assert result2.has_more is True
# Second page with ascending order
result2 = await store.list_chat_completions(after="delta-item", limit=1, order=Order.asc)
assert len(result2.data) == 1
assert result2.data[0].id == "charlie-task"
assert result2.has_more is True
async def test_inference_store_pagination_with_model_filter():
"""Test pagination combined with model filtering."""
with TemporaryDirectory() as tmp_dir:
db_path = tmp_dir + "/test.db"
store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[])
await store.initialize()
reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions")
store = InferenceStore(reference, policy=[])
await store.initialize()
# Create test data with different models
base_time = int(time.time())
test_data = [
("xyz-task", base_time + 1, "model-a"),
("def-work", base_time + 2, "model-b"),
("pqr-job", base_time + 3, "model-a"),
("abc-run", base_time + 4, "model-b"),
]
# Create test data with different models
base_time = int(time.time())
test_data = [
("xyz-task", base_time + 1, "model-a"),
("def-work", base_time + 2, "model-b"),
("pqr-job", base_time + 3, "model-a"),
("abc-run", base_time + 4, "model-b"),
]
# Store test chat completions
for completion_id, timestamp, model in test_data:
completion = create_test_chat_completion(completion_id, timestamp, model)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Store test chat completions
for completion_id, timestamp, model in test_data:
completion = create_test_chat_completion(completion_id, timestamp, model)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Wait for all queued writes to complete
await store.flush()
# Test pagination with model filter
result = await store.list_chat_completions(limit=1, model="model-a", order=Order.desc)
assert len(result.data) == 1
assert result.data[0].id == "pqr-job" # Most recent model-a
assert result.data[0].model == "model-a"
assert result.has_more is True
# Test pagination with model filter
result = await store.list_chat_completions(limit=1, model="model-a", order=Order.desc)
assert len(result.data) == 1
assert result.data[0].id == "pqr-job" # Most recent model-a
assert result.data[0].model == "model-a"
assert result.has_more is True
# Second page with model filter
result2 = await store.list_chat_completions(after="pqr-job", limit=1, model="model-a", order=Order.desc)
assert len(result2.data) == 1
assert result2.data[0].id == "xyz-task"
assert result2.data[0].model == "model-a"
assert result2.has_more is False
# Second page with model filter
result2 = await store.list_chat_completions(after="pqr-job", limit=1, model="model-a", order=Order.desc)
assert len(result2.data) == 1
assert result2.data[0].id == "xyz-task"
assert result2.data[0].model == "model-a"
assert result2.has_more is False
async def test_inference_store_pagination_invalid_after():
"""Test error handling for invalid 'after' parameter."""
with TemporaryDirectory() as tmp_dir:
db_path = tmp_dir + "/test.db"
store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[])
await store.initialize()
reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions")
store = InferenceStore(reference, policy=[])
await store.initialize()
# Try to paginate with non-existent ID
with pytest.raises(ValueError, match="Record with id='non-existent' not found in table 'chat_completions'"):
await store.list_chat_completions(after="non-existent", limit=2)
# Try to paginate with non-existent ID
with pytest.raises(ValueError, match="Record with id='non-existent' not found in table 'chat_completions'"):
await store.list_chat_completions(after="non-existent", limit=2)
async def test_inference_store_pagination_no_limit():
"""Test pagination behavior when no limit is specified."""
with TemporaryDirectory() as tmp_dir:
db_path = tmp_dir + "/test.db"
store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[])
await store.initialize()
reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions")
store = InferenceStore(reference, policy=[])
await store.initialize()
# Create test data
base_time = int(time.time())
test_data = [
("omega-first", base_time + 1),
("beta-second", base_time + 2),
]
# Create test data
base_time = int(time.time())
test_data = [
("omega-first", base_time + 1),
("beta-second", base_time + 2),
]
# Store test chat completions
for completion_id, timestamp in test_data:
completion = create_test_chat_completion(completion_id, timestamp)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Store test chat completions
for completion_id, timestamp in test_data:
completion = create_test_chat_completion(completion_id, timestamp)
input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")]
await store.store_chat_completion(completion, input_messages)
# Wait for all queued writes to complete
await store.flush()
# Wait for all queued writes to complete
await store.flush()
# Test without limit
result = await store.list_chat_completions(order=Order.desc)
assert len(result.data) == 2
assert result.data[0].id == "beta-second" # Most recent first
assert result.data[1].id == "omega-first"
assert result.has_more is False
# Test without limit
result = await store.list_chat_completions(order=Order.desc)
assert len(result.data) == 2
assert result.data[0].id == "beta-second" # Most recent first
assert result.data[1].id == "omega-first"
assert result.has_more is False