feat(stores)!: use backend storage references instead of configs (#3697)

**This PR changes configurations in a backward incompatible way.**

Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.

## Key Changes

- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.

## Migration

Before:
```yaml
metadata_store:
  type: sqlite
  db_path: ~/.llama/distributions/foo/registry.db
inference_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
conversations_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
```

After:
```yaml
storage:
  backends:
    kv_default:
      type: kv_sqlite
      db_path: ~/.llama/distributions/foo/kvstore.db
    sql_default:
      type: sql_postgres
      host: ${env.POSTGRES_HOST}
      port: ${env.POSTGRES_PORT}
      db: ${env.POSTGRES_DB}
      user: ${env.POSTGRES_USER}
      password: ${env.POSTGRES_PASSWORD}
  stores:
    metadata:
      backend: kv_default
      namespace: registry
    inference:
      backend: sql_default
      table_name: inference_store
      max_write_queue_size: 10000
      num_writers: 4
    conversations:
      backend: sql_default
      table_name: openai_conversations
```

Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      kvstore:
        type: sqlite
        db_path: ~/.llama/distributions/foo/chroma.db
```

to:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      persistence:
        backend: kv_default
        namespace: vector_io::chroma_remote
```

Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
This commit is contained in:
Ashwin Bharambe 2025-10-20 13:20:09 -07:00 committed by GitHub
parent add64e8e2a
commit 2c43285e22
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
105 changed files with 2290 additions and 1292 deletions

View file

@ -37,9 +37,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -49,32 +49,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -99,15 +102,26 @@ providers:
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -27,9 +27,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -39,32 +39,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -89,15 +92,26 @@ providers:
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}