feat(stores)!: use backend storage references instead of configs (#3697)

**This PR changes configurations in a backward incompatible way.**

Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.

## Key Changes

- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.

## Migration

Before:
```yaml
metadata_store:
  type: sqlite
  db_path: ~/.llama/distributions/foo/registry.db
inference_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
conversations_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
```

After:
```yaml
storage:
  backends:
    kv_default:
      type: kv_sqlite
      db_path: ~/.llama/distributions/foo/kvstore.db
    sql_default:
      type: sql_postgres
      host: ${env.POSTGRES_HOST}
      port: ${env.POSTGRES_PORT}
      db: ${env.POSTGRES_DB}
      user: ${env.POSTGRES_USER}
      password: ${env.POSTGRES_PASSWORD}
  stores:
    metadata:
      backend: kv_default
      namespace: registry
    inference:
      backend: sql_default
      table_name: inference_store
      max_write_queue_size: 10000
      num_writers: 4
    conversations:
      backend: sql_default
      table_name: openai_conversations
```

Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      kvstore:
        type: sqlite
        db_path: ~/.llama/distributions/foo/chroma.db
```

to:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      persistence:
        backend: kv_default
        namespace: vector_io::chroma_remote
```

Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
This commit is contained in:
Ashwin Bharambe 2025-10-20 13:20:09 -07:00 committed by GitHub
parent add64e8e2a
commit 2c43285e22
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
105 changed files with 2290 additions and 1292 deletions

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from uuid import uuid4
import pytest
from fastapi import FastAPI, Request
from fastapi.testclient import TestClient
@ -11,7 +13,8 @@ from starlette.middleware.base import BaseHTTPMiddleware
from llama_stack.core.datatypes import QuotaConfig, QuotaPeriod
from llama_stack.core.server.quota import QuotaMiddleware
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore import register_kvstore_backends
class InjectClientIDMiddleware(BaseHTTPMiddleware):
@ -29,8 +32,10 @@ class InjectClientIDMiddleware(BaseHTTPMiddleware):
def build_quota_config(db_path) -> QuotaConfig:
backend_name = f"kv_quota_{uuid4().hex}"
register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=str(db_path))})
return QuotaConfig(
kvstore=SqliteKVStoreConfig(db_path=str(db_path)),
kvstore=KVStoreReference(backend=backend_name, namespace="quota"),
anonymous_max_requests=1,
authenticated_max_requests=2,
period=QuotaPeriod.DAY,

View file

@ -12,15 +12,22 @@ from unittest.mock import AsyncMock, MagicMock
from pydantic import BaseModel, Field
from llama_stack.apis.inference import Inference
from llama_stack.core.datatypes import (
Api,
Provider,
StackRunConfig,
)
from llama_stack.core.datatypes import Api, Provider, StackRunConfig
from llama_stack.core.resolver import resolve_impls
from llama_stack.core.routers.inference import InferenceRouter
from llama_stack.core.routing_tables.models import ModelsRoutingTable
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageConfig,
)
from llama_stack.providers.datatypes import InlineProviderSpec, ProviderSpec
from llama_stack.providers.utils.kvstore import register_kvstore_backends
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
def add_protocol_methods(cls: type, protocol: type[Protocol]) -> None:
@ -65,6 +72,35 @@ class SampleImpl:
pass
def make_run_config(**overrides) -> StackRunConfig:
storage = overrides.pop(
"storage",
StorageConfig(
backends={
"kv_default": SqliteKVStoreConfig(db_path=":memory:"),
"sql_default": SqliteSqlStoreConfig(db_path=":memory:"),
},
stores=ServerStoresConfig(
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
conversations=SqlStoreReference(backend="sql_default", table_name="conversations"),
),
),
)
register_kvstore_backends({name: cfg for name, cfg in storage.backends.items() if cfg.type.value.startswith("kv_")})
register_sqlstore_backends(
{name: cfg for name, cfg in storage.backends.items() if cfg.type.value.startswith("sql_")}
)
defaults = dict(
image_name="test_image",
apis=[],
providers={},
storage=storage,
)
defaults.update(overrides)
return StackRunConfig(**defaults)
async def test_resolve_impls_basic():
# Create a real provider spec
provider_spec = InlineProviderSpec(
@ -78,7 +114,7 @@ async def test_resolve_impls_basic():
# Create provider registry with our provider
provider_registry = {Api.inference: {provider_spec.provider_type: provider_spec}}
run_config = StackRunConfig(
run_config = make_run_config(
image_name="test_image",
providers={
"inference": [