feat: Enhance Vector Stores config with full configurations (#4397)

# What does this PR do?

Enhances the Vector Stores config with full set of appropriate
configurations
- Add FileIngestionParams, ChunkRetrievalParams, and FileBatchParams
subconfigs
- Update RAG memory, OpenAI vector store mixin, and vector store utils
to use configuration
  - Fix import organization across vector store components
  - Add comprehensive vector stores configuration documentation
  - Update docs navigation to include vector store configuration guide
- Delete `memory/constants.py` and move constant values directly into
Pydantic models

## Test Plan
Tests updated + CI

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-12-17 16:56:46 -05:00 committed by GitHub
parent a7d509aaf9
commit 2d149e3d2d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 3249 additions and 110 deletions

View file

@ -18,15 +18,6 @@ from llama_stack.core.storage.datatypes import (
StorageConfig,
)
from llama_stack.log import LoggingConfig
from llama_stack.providers.utils.memory.constants import (
DEFAULT_ANNOTATION_INSTRUCTION_TEMPLATE,
DEFAULT_CHUNK_ANNOTATION_TEMPLATE,
DEFAULT_CHUNK_WITH_SOURCES_TEMPLATE,
DEFAULT_CONTEXT_TEMPLATE,
DEFAULT_FILE_SEARCH_FOOTER_TEMPLATE,
DEFAULT_FILE_SEARCH_HEADER_TEMPLATE,
DEFAULT_QUERY_REWRITE_PROMPT,
)
from llama_stack_api import (
Api,
Benchmark,
@ -367,7 +358,7 @@ class RewriteQueryParams(BaseModel):
description="LLM model for query rewriting/expansion in vector search.",
)
prompt: str = Field(
default=DEFAULT_QUERY_REWRITE_PROMPT,
default="Expand this query with relevant synonyms and related terms. Return only the improved query, no explanations:\n\n{query}\n\nImproved query:",
description="Prompt template for query rewriting. Use {query} as placeholder for the original query.",
)
max_tokens: int = Field(
@ -407,11 +398,11 @@ class FileSearchParams(BaseModel):
"""Configuration for file search tool output formatting."""
header_template: str = Field(
default=DEFAULT_FILE_SEARCH_HEADER_TEMPLATE,
default="knowledge_search tool found {num_chunks} chunks:\nBEGIN of knowledge_search tool results.\n",
description="Template for the header text shown before search results. Available placeholders: {num_chunks} number of chunks found.",
)
footer_template: str = Field(
default=DEFAULT_FILE_SEARCH_FOOTER_TEMPLATE,
default="END of knowledge_search tool results.\n",
description="Template for the footer text shown after search results.",
)
@ -433,11 +424,11 @@ class ContextPromptParams(BaseModel):
"""Configuration for LLM prompt content and chunk formatting."""
chunk_annotation_template: str = Field(
default=DEFAULT_CHUNK_ANNOTATION_TEMPLATE,
default="Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
description="Template for formatting individual chunks in search results. Available placeholders: {index} 1-based chunk index, {chunk.content} chunk content, {metadata} chunk metadata dict.",
)
context_template: str = Field(
default=DEFAULT_CONTEXT_TEMPLATE,
default='The above results were retrieved to help answer the user\'s query: "{query}". Use them as supporting information only in answering this query. {annotation_instruction}\n',
description="Template for explaining the search results to the model. Available placeholders: {query} user's query, {num_chunks} number of chunks.",
)
@ -470,11 +461,11 @@ class AnnotationPromptParams(BaseModel):
description="Whether to include annotation information in results.",
)
annotation_instruction_template: str = Field(
default=DEFAULT_ANNOTATION_INSTRUCTION_TEMPLATE,
default="Cite sources immediately at the end of sentences before punctuation, using `<|file-id|>` format like 'This is a fact <|file-Cn3MSNn72ENTiiq11Qda4A|>.'. Do not add extra punctuation. Use only the file IDs provided, do not invent new ones.",
description="Instructions for how the model should cite sources. Used when enable_annotations is True.",
)
chunk_annotation_template: str = Field(
default=DEFAULT_CHUNK_WITH_SOURCES_TEMPLATE,
default="[{index}] {metadata_text} cite as <|{file_id}|>\n{chunk_text}\n",
description="Template for chunks with annotation information. Available placeholders: {index} 1-based chunk index, {metadata_text} formatted metadata, {file_id} document identifier, {chunk_text} chunk content.",
)
@ -499,6 +490,61 @@ class AnnotationPromptParams(BaseModel):
return v
class FileIngestionParams(BaseModel):
"""Configuration for file processing during ingestion."""
default_chunk_size_tokens: int = Field(
default=512,
description="Default chunk size for RAG tool operations when not specified",
)
default_chunk_overlap_tokens: int = Field(
default=128,
description="Default overlap in tokens between chunks (original default: 512 // 4 = 128)",
)
class ChunkRetrievalParams(BaseModel):
"""Configuration for chunk retrieval and ranking during search."""
chunk_multiplier: int = Field(
default=5,
description="Multiplier for OpenAI API over-retrieval (affects all providers)",
)
max_tokens_in_context: int = Field(
default=4000,
description="Maximum tokens allowed in RAG context before truncation",
)
default_reranker_strategy: str = Field(
default="rrf",
description="Default reranker when not specified: 'rrf', 'weighted', or 'normalized'",
)
rrf_impact_factor: float = Field(
default=60.0,
description="Impact factor for RRF (Reciprocal Rank Fusion) reranking",
)
weighted_search_alpha: float = Field(
default=0.5,
description="Alpha weight for weighted search reranking (0.0-1.0)",
)
class FileBatchParams(BaseModel):
"""Configuration for file batch processing."""
max_concurrent_files_per_batch: int = Field(
default=3,
description="Maximum files processed concurrently in file batches",
)
file_batch_chunk_size: int = Field(
default=10,
description="Number of files to process in each batch chunk",
)
cleanup_interval_seconds: int = Field(
default=86400, # 24 hours
description="Interval for cleaning up expired file batches (seconds)",
)
class VectorStoresConfig(BaseModel):
"""Configuration for vector stores in the stack."""
@ -527,6 +573,19 @@ class VectorStoresConfig(BaseModel):
description="Configuration for source annotation and attribution features.",
)
file_ingestion_params: FileIngestionParams = Field(
default_factory=FileIngestionParams,
description="Configuration for file processing during ingestion.",
)
chunk_retrieval_params: ChunkRetrievalParams = Field(
default_factory=ChunkRetrievalParams,
description="Configuration for chunk retrieval and ranking during search.",
)
file_batch_params: FileBatchParams = Field(
default_factory=FileBatchParams,
description="Configuration for file batch processing.",
)
class SafetyConfig(BaseModel):
"""Configuration for default moderations model."""

View file

@ -11,6 +11,9 @@ def redact_sensitive_fields(data: dict[str, Any]) -> dict[str, Any]:
"""Redact sensitive information from config before printing."""
sensitive_patterns = ["api_key", "api_token", "password", "secret", "token"]
# Specific configuration field names that should NOT be redacted despite containing "token"
safe_token_fields = ["chunk_size_tokens", "max_tokens", "default_chunk_overlap_tokens"]
def _redact_value(v: Any) -> Any:
if isinstance(v, dict):
return _redact_dict(v)
@ -21,7 +24,10 @@ def redact_sensitive_fields(data: dict[str, Any]) -> dict[str, Any]:
def _redact_dict(d: dict[str, Any]) -> dict[str, Any]:
result = {}
for k, v in d.items():
if any(pattern in k.lower() for pattern in sensitive_patterns):
# Don't redact if it's a safe field
if any(safe_field in k.lower() for safe_field in safe_token_fields):
result[k] = _redact_value(v)
elif any(pattern in k.lower() for pattern in sensitive_patterns):
result[k] = "********"
else:
result[k] = _redact_value(v)