mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-12 16:16:09 +00:00
feat: small ollama package
This commit is contained in:
commit
2d5d05a2b4
103 changed files with 7262 additions and 7422 deletions
|
@ -149,6 +149,16 @@ class OpenAIResponseObjectStreamResponseCreated(BaseModel):
|
|||
type: Literal["response.created"] = "response.created"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
|
||||
content_index: int
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.output_text.delta"] = "response.output_text.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
|
||||
response: OpenAIResponseObject
|
||||
|
@ -156,7 +166,9 @@ class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
|
|||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
OpenAIResponseObjectStreamResponseCreated | OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated
|
||||
| OpenAIResponseObjectStreamResponseOutputTextDelta
|
||||
| OpenAIResponseObjectStreamResponseCompleted,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")
|
||||
|
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RestAPIMethod(Enum):
|
||||
GET = "GET"
|
||||
POST = "POST"
|
||||
PUT = "PUT"
|
||||
DELETE = "DELETE"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RestAPIExecutionConfig(BaseModel):
|
||||
url: URL
|
||||
method: RestAPIMethod
|
||||
params: dict[str, Any] | None = None
|
||||
headers: dict[str, Any] | None = None
|
||||
body: dict[str, Any] | None = None
|
|
@ -27,18 +27,10 @@ class ToolParameter(BaseModel):
|
|||
default: Any | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolHost(Enum):
|
||||
distribution = "distribution"
|
||||
client = "client"
|
||||
model_context_protocol = "model_context_protocol"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Tool(Resource):
|
||||
type: Literal[ResourceType.tool] = ResourceType.tool
|
||||
toolgroup_id: str
|
||||
tool_host: ToolHost
|
||||
description: str
|
||||
parameters: list[ToolParameter]
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
|
|
@ -267,8 +267,8 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
if args.run:
|
||||
config_dict = yaml.safe_load(run_config.read_text())
|
||||
config = parse_and_maybe_upgrade_config(config_dict)
|
||||
if not os.path.exists(config.external_providers_dir):
|
||||
os.makedirs(config.external_providers_dir, exist_ok=True)
|
||||
if config.external_providers_dir and not config.external_providers_dir.exists():
|
||||
config.external_providers_dir.mkdir(exist_ok=True)
|
||||
run_args = formulate_run_args(args.image_type, args.image_name, config, args.template)
|
||||
run_args.extend([str(os.getenv("LLAMA_STACK_PORT", 8321)), "--config", run_config])
|
||||
run_command(run_args)
|
||||
|
|
|
@ -131,7 +131,7 @@ def build_image(
|
|||
# build arguments
|
||||
if run_config is not None:
|
||||
args.append(run_config)
|
||||
|
||||
|
||||
# Add exit_after_containerfile flag if specified
|
||||
if exit_after_containerfile:
|
||||
args.append("--exit-after-containerfile")
|
||||
|
|
|
@ -125,7 +125,6 @@ RUN apt-get update && apt-get install -y \
|
|||
curl wget telnet git\
|
||||
procps psmisc lsof \
|
||||
traceroute \
|
||||
bubblewrap \
|
||||
gcc \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ from llama_stack.apis.inspect import (
|
|||
VersionInfo,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import StackRunConfig
|
||||
from llama_stack.distribution.server.endpoints import get_all_api_endpoints
|
||||
from llama_stack.distribution.server.routes import get_all_api_routes
|
||||
from llama_stack.providers.datatypes import HealthStatus
|
||||
|
||||
|
||||
|
@ -42,15 +42,15 @@ class DistributionInspectImpl(Inspect):
|
|||
run_config: StackRunConfig = self.config.run_config
|
||||
|
||||
ret = []
|
||||
all_endpoints = get_all_api_endpoints()
|
||||
all_endpoints = get_all_api_routes()
|
||||
for api, endpoints in all_endpoints.items():
|
||||
# Always include provider and inspect APIs, filter others based on run config
|
||||
if api.value in ["providers", "inspect"]:
|
||||
ret.extend(
|
||||
[
|
||||
RouteInfo(
|
||||
route=e.route,
|
||||
method=e.method,
|
||||
route=e.path,
|
||||
method=next(iter([m for m in e.methods if m != "HEAD"])),
|
||||
provider_types=[], # These APIs don't have "real" providers - they're internal to the stack
|
||||
)
|
||||
for e in endpoints
|
||||
|
@ -62,8 +62,8 @@ class DistributionInspectImpl(Inspect):
|
|||
ret.extend(
|
||||
[
|
||||
RouteInfo(
|
||||
route=e.route,
|
||||
method=e.method,
|
||||
route=e.path,
|
||||
method=next(iter([m for m in e.methods if m != "HEAD"])),
|
||||
provider_types=[p.provider_type for p in providers],
|
||||
)
|
||||
for e in endpoints
|
||||
|
|
|
@ -37,10 +37,7 @@ from llama_stack.distribution.request_headers import (
|
|||
request_provider_data_context,
|
||||
)
|
||||
from llama_stack.distribution.resolver import ProviderRegistry
|
||||
from llama_stack.distribution.server.endpoints import (
|
||||
find_matching_endpoint,
|
||||
initialize_endpoint_impls,
|
||||
)
|
||||
from llama_stack.distribution.server.routes import find_matching_route, initialize_route_impls
|
||||
from llama_stack.distribution.stack import (
|
||||
construct_stack,
|
||||
get_stack_run_config_from_template,
|
||||
|
@ -208,7 +205,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
|
||||
async def initialize(self) -> bool:
|
||||
try:
|
||||
self.endpoint_impls = None
|
||||
self.route_impls = None
|
||||
self.impls = await construct_stack(self.config, self.custom_provider_registry)
|
||||
except ModuleNotFoundError as _e:
|
||||
cprint(_e.msg, color="red", file=sys.stderr)
|
||||
|
@ -254,7 +251,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
safe_config = redact_sensitive_fields(self.config.model_dump())
|
||||
console.print(yaml.dump(safe_config, indent=2))
|
||||
|
||||
self.endpoint_impls = initialize_endpoint_impls(self.impls)
|
||||
self.route_impls = initialize_route_impls(self.impls)
|
||||
return True
|
||||
|
||||
async def request(
|
||||
|
@ -265,7 +262,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
stream=False,
|
||||
stream_cls=None,
|
||||
):
|
||||
if not self.endpoint_impls:
|
||||
if not self.route_impls:
|
||||
raise ValueError("Client not initialized")
|
||||
|
||||
# Create headers with provider data if available
|
||||
|
@ -296,11 +293,14 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
cast_to: Any,
|
||||
options: Any,
|
||||
):
|
||||
if self.route_impls is None:
|
||||
raise ValueError("Client not initialized")
|
||||
|
||||
path = options.url
|
||||
body = options.params or {}
|
||||
body |= options.json_data or {}
|
||||
|
||||
matched_func, path_params, route = find_matching_endpoint(options.method, path, self.endpoint_impls)
|
||||
matched_func, path_params, route = find_matching_route(options.method, path, self.route_impls)
|
||||
body |= path_params
|
||||
body = self._convert_body(path, options.method, body)
|
||||
await start_trace(route, {"__location__": "library_client"})
|
||||
|
@ -342,10 +342,13 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
options: Any,
|
||||
stream_cls: Any,
|
||||
):
|
||||
if self.route_impls is None:
|
||||
raise ValueError("Client not initialized")
|
||||
|
||||
path = options.url
|
||||
body = options.params or {}
|
||||
body |= options.json_data or {}
|
||||
func, path_params, route = find_matching_endpoint(options.method, path, self.endpoint_impls)
|
||||
func, path_params, route = find_matching_route(options.method, path, self.route_impls)
|
||||
body |= path_params
|
||||
|
||||
body = self._convert_body(path, options.method, body)
|
||||
|
@ -397,7 +400,10 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
if not body:
|
||||
return {}
|
||||
|
||||
func, _, _ = find_matching_endpoint(method, path, self.endpoint_impls)
|
||||
if self.route_impls is None:
|
||||
raise ValueError("Client not initialized")
|
||||
|
||||
func, _, _ = find_matching_route(method, path, self.route_impls)
|
||||
sig = inspect.signature(func)
|
||||
|
||||
# Strip NOT_GIVENs to use the defaults in signature
|
||||
|
|
|
@ -47,7 +47,7 @@ from llama_stack.providers.datatypes import (
|
|||
RemoteProviderSpec,
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
ShieldsProtocolPrivate,
|
||||
ToolsProtocolPrivate,
|
||||
ToolGroupsProtocolPrivate,
|
||||
VectorDBsProtocolPrivate,
|
||||
)
|
||||
|
||||
|
@ -93,7 +93,7 @@ def api_protocol_map_for_compliance_check() -> dict[Api, Any]:
|
|||
def additional_protocols_map() -> dict[Api, Any]:
|
||||
return {
|
||||
Api.inference: (ModelsProtocolPrivate, Models, Api.models),
|
||||
Api.tool_groups: (ToolsProtocolPrivate, ToolGroups, Api.tool_groups),
|
||||
Api.tool_groups: (ToolGroupsProtocolPrivate, ToolGroups, Api.tool_groups),
|
||||
Api.vector_io: (VectorDBsProtocolPrivate, VectorDBs, Api.vector_dbs),
|
||||
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
|
||||
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
|
||||
|
|
|
@ -11,7 +11,7 @@ from llama_stack.apis.common.content_types import (
|
|||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
ListToolsResponse,
|
||||
RAGDocument,
|
||||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
|
@ -19,7 +19,8 @@ from llama_stack.apis.tools import (
|
|||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import RoutingTable
|
||||
|
||||
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
||||
|
@ -28,7 +29,7 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
class RagToolImpl(RAGToolRuntime):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
routing_table: ToolGroupsRoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
|
||||
self.routing_table = routing_table
|
||||
|
@ -59,7 +60,7 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
routing_table: ToolGroupsRoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing ToolRuntimeRouter")
|
||||
self.routing_table = routing_table
|
||||
|
@ -86,6 +87,6 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
) -> ListToolsResponse:
|
||||
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
|
||||
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)
|
||||
return await self.routing_table.list_tools(tool_group_id)
|
||||
|
|
|
@ -46,7 +46,7 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
|
|||
elif api == Api.eval:
|
||||
return await p.register_benchmark(obj)
|
||||
elif api == Api.tool_runtime:
|
||||
return await p.register_tool(obj)
|
||||
return await p.register_toolgroup(obj)
|
||||
else:
|
||||
raise ValueError(f"Unknown API {api} for registering object with provider")
|
||||
|
||||
|
@ -60,7 +60,7 @@ async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
|
|||
elif api == Api.datasetio:
|
||||
return await p.unregister_dataset(obj.identifier)
|
||||
elif api == Api.tool_runtime:
|
||||
return await p.unregister_tool(obj.identifier)
|
||||
return await p.unregister_toolgroup(obj.identifier)
|
||||
else:
|
||||
raise ValueError(f"Unregister not supported for {api}")
|
||||
|
||||
|
@ -136,7 +136,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
elif isinstance(self, BenchmarksRoutingTable):
|
||||
return ("Eval", "benchmark")
|
||||
elif isinstance(self, ToolGroupsRoutingTable):
|
||||
return ("Tools", "tool")
|
||||
return ("ToolGroups", "tool_group")
|
||||
else:
|
||||
raise ValueError("Unknown routing table type")
|
||||
|
||||
|
|
|
@ -7,11 +7,8 @@
|
|||
from typing import Any
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.tools import ListToolGroupsResponse, ListToolsResponse, Tool, ToolGroup, ToolGroups, ToolHost
|
||||
from llama_stack.distribution.datatypes import (
|
||||
ToolGroupWithACL,
|
||||
ToolWithACL,
|
||||
)
|
||||
from llama_stack.apis.tools import ListToolGroupsResponse, ListToolsResponse, Tool, ToolGroup, ToolGroups
|
||||
from llama_stack.distribution.datatypes import ToolGroupWithACL
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from .common import CommonRoutingTableImpl
|
||||
|
@ -19,12 +16,70 @@ from .common import CommonRoutingTableImpl
|
|||
logger = get_logger(name=__name__, category="core")
|
||||
|
||||
|
||||
def parse_toolgroup_from_toolgroup_name_pair(toolgroup_name_with_maybe_tool_name: str) -> str | None:
|
||||
# handle the funny case like "builtin::rag/knowledge_search"
|
||||
parts = toolgroup_name_with_maybe_tool_name.split("/")
|
||||
if len(parts) == 2:
|
||||
return parts[0]
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
|
||||
async def list_tools(self, toolgroup_id: str | None = None) -> ListToolsResponse:
|
||||
tools = await self.get_all_with_type("tool")
|
||||
toolgroups_to_tools: dict[str, list[Tool]] = {}
|
||||
tool_to_toolgroup: dict[str, str] = {}
|
||||
|
||||
# overridden
|
||||
def get_provider_impl(self, routing_key: str, provider_id: str | None = None) -> Any:
|
||||
# we don't index tools in the registry anymore, but only keep a cache of them by toolgroup_id
|
||||
# TODO: we may want to invalidate the cache (for a given toolgroup_id) every once in a while?
|
||||
|
||||
toolgroup_id = parse_toolgroup_from_toolgroup_name_pair(routing_key)
|
||||
if toolgroup_id:
|
||||
tools = [tool for tool in tools if tool.toolgroup_id == toolgroup_id]
|
||||
return ListToolsResponse(data=tools)
|
||||
routing_key = toolgroup_id
|
||||
|
||||
if routing_key in self.tool_to_toolgroup:
|
||||
routing_key = self.tool_to_toolgroup[routing_key]
|
||||
return super().get_provider_impl(routing_key, provider_id)
|
||||
|
||||
async def list_tools(self, toolgroup_id: str | None = None) -> ListToolsResponse:
|
||||
if toolgroup_id:
|
||||
if group_id := parse_toolgroup_from_toolgroup_name_pair(toolgroup_id):
|
||||
toolgroup_id = group_id
|
||||
toolgroups = [await self.get_tool_group(toolgroup_id)]
|
||||
else:
|
||||
toolgroups = await self.get_all_with_type("tool_group")
|
||||
|
||||
all_tools = []
|
||||
for toolgroup in toolgroups:
|
||||
if toolgroup.identifier not in self.toolgroups_to_tools:
|
||||
await self._index_tools(toolgroup)
|
||||
all_tools.extend(self.toolgroups_to_tools[toolgroup.identifier])
|
||||
|
||||
return ListToolsResponse(data=all_tools)
|
||||
|
||||
async def _index_tools(self, toolgroup: ToolGroup):
|
||||
provider_impl = super().get_provider_impl(toolgroup.identifier, toolgroup.provider_id)
|
||||
tooldefs_response = await provider_impl.list_runtime_tools(toolgroup.identifier, toolgroup.mcp_endpoint)
|
||||
|
||||
# TODO: kill this Tool vs ToolDef distinction
|
||||
tooldefs = tooldefs_response.data
|
||||
tools = []
|
||||
for t in tooldefs:
|
||||
tools.append(
|
||||
Tool(
|
||||
identifier=t.name,
|
||||
toolgroup_id=toolgroup.identifier,
|
||||
description=t.description or "",
|
||||
parameters=t.parameters or [],
|
||||
metadata=t.metadata,
|
||||
provider_id=toolgroup.provider_id,
|
||||
)
|
||||
)
|
||||
|
||||
self.toolgroups_to_tools[toolgroup.identifier] = tools
|
||||
for tool in tools:
|
||||
self.tool_to_toolgroup[tool.identifier] = toolgroup.identifier
|
||||
|
||||
async def list_tool_groups(self) -> ListToolGroupsResponse:
|
||||
return ListToolGroupsResponse(data=await self.get_all_with_type("tool_group"))
|
||||
|
@ -36,7 +91,13 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
|
|||
return tool_group
|
||||
|
||||
async def get_tool(self, tool_name: str) -> Tool:
|
||||
return await self.get_object_by_identifier("tool", tool_name)
|
||||
if tool_name in self.tool_to_toolgroup:
|
||||
toolgroup_id = self.tool_to_toolgroup[tool_name]
|
||||
tools = self.toolgroups_to_tools[toolgroup_id]
|
||||
for tool in tools:
|
||||
if tool.identifier == tool_name:
|
||||
return tool
|
||||
raise ValueError(f"Tool '{tool_name}' not found")
|
||||
|
||||
async def register_tool_group(
|
||||
self,
|
||||
|
@ -45,53 +106,26 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
|
|||
mcp_endpoint: URL | None = None,
|
||||
args: dict[str, Any] | None = None,
|
||||
) -> None:
|
||||
tools = []
|
||||
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)
|
||||
tool_host = ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
|
||||
|
||||
for tool_def in tool_defs.data:
|
||||
tools.append(
|
||||
ToolWithACL(
|
||||
identifier=tool_def.name,
|
||||
toolgroup_id=toolgroup_id,
|
||||
description=tool_def.description or "",
|
||||
parameters=tool_def.parameters or [],
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=tool_def.name,
|
||||
metadata=tool_def.metadata,
|
||||
tool_host=tool_host,
|
||||
)
|
||||
)
|
||||
for tool in tools:
|
||||
existing_tool = await self.get_tool(tool.identifier)
|
||||
# Compare existing and new object if one exists
|
||||
if existing_tool:
|
||||
existing_dict = existing_tool.model_dump()
|
||||
new_dict = tool.model_dump()
|
||||
|
||||
if existing_dict != new_dict:
|
||||
raise ValueError(
|
||||
f"Object {tool.identifier} already exists in registry. Please use a different identifier."
|
||||
)
|
||||
await self.register_object(tool)
|
||||
|
||||
await self.dist_registry.register(
|
||||
ToolGroupWithACL(
|
||||
identifier=toolgroup_id,
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=toolgroup_id,
|
||||
mcp_endpoint=mcp_endpoint,
|
||||
args=args,
|
||||
)
|
||||
toolgroup = ToolGroupWithACL(
|
||||
identifier=toolgroup_id,
|
||||
provider_id=provider_id,
|
||||
provider_resource_id=toolgroup_id,
|
||||
mcp_endpoint=mcp_endpoint,
|
||||
args=args,
|
||||
)
|
||||
await self.register_object(toolgroup)
|
||||
|
||||
# ideally, indexing of the tools should not be necessary because anyone using
|
||||
# the tools should first list the tools and then use them. but there are assumptions
|
||||
# baked in some of the code and tests right now.
|
||||
if not toolgroup.mcp_endpoint:
|
||||
await self._index_tools(toolgroup)
|
||||
return toolgroup
|
||||
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
tool_group = await self.get_tool_group(toolgroup_id)
|
||||
if tool_group is None:
|
||||
raise ValueError(f"Tool group {toolgroup_id} not found")
|
||||
tools = await self.list_tools(toolgroup_id)
|
||||
for tool in getattr(tools, "data", []):
|
||||
await self.unregister_object(tool)
|
||||
await self.unregister_object(tool_group)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
|
|
|
@ -6,20 +6,23 @@
|
|||
|
||||
import inspect
|
||||
import re
|
||||
from collections.abc import Callable
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from aiohttp import hdrs
|
||||
from starlette.routing import Route
|
||||
|
||||
from llama_stack.apis.tools import RAGToolRuntime, SpecialToolGroup
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_VERSION
|
||||
from llama_stack.distribution.resolver import api_protocol_map
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
|
||||
class ApiEndpoint(BaseModel):
|
||||
route: str
|
||||
method: str
|
||||
name: str
|
||||
descriptive_name: str | None = None
|
||||
EndpointFunc = Callable[..., Any]
|
||||
PathParams = dict[str, str]
|
||||
RouteInfo = tuple[EndpointFunc, str]
|
||||
PathImpl = dict[str, RouteInfo]
|
||||
RouteImpls = dict[str, PathImpl]
|
||||
RouteMatch = tuple[EndpointFunc, PathParams, str]
|
||||
|
||||
|
||||
def toolgroup_protocol_map():
|
||||
|
@ -28,13 +31,13 @@ def toolgroup_protocol_map():
|
|||
}
|
||||
|
||||
|
||||
def get_all_api_endpoints() -> dict[Api, list[ApiEndpoint]]:
|
||||
def get_all_api_routes() -> dict[Api, list[Route]]:
|
||||
apis = {}
|
||||
|
||||
protocols = api_protocol_map()
|
||||
toolgroup_protocols = toolgroup_protocol_map()
|
||||
for api, protocol in protocols.items():
|
||||
endpoints = []
|
||||
routes = []
|
||||
protocol_methods = inspect.getmembers(protocol, predicate=inspect.isfunction)
|
||||
|
||||
# HACK ALERT
|
||||
|
@ -51,26 +54,28 @@ def get_all_api_endpoints() -> dict[Api, list[ApiEndpoint]]:
|
|||
if not hasattr(method, "__webmethod__"):
|
||||
continue
|
||||
|
||||
webmethod = method.__webmethod__
|
||||
route = f"/{LLAMA_STACK_API_VERSION}/{webmethod.route.lstrip('/')}"
|
||||
if webmethod.method == "GET":
|
||||
method = "get"
|
||||
elif webmethod.method == "DELETE":
|
||||
method = "delete"
|
||||
# The __webmethod__ attribute is dynamically added by the @webmethod decorator
|
||||
# mypy doesn't know about this dynamic attribute, so we ignore the attr-defined error
|
||||
webmethod = method.__webmethod__ # type: ignore[attr-defined]
|
||||
path = f"/{LLAMA_STACK_API_VERSION}/{webmethod.route.lstrip('/')}"
|
||||
if webmethod.method == hdrs.METH_GET:
|
||||
http_method = hdrs.METH_GET
|
||||
elif webmethod.method == hdrs.METH_DELETE:
|
||||
http_method = hdrs.METH_DELETE
|
||||
else:
|
||||
method = "post"
|
||||
endpoints.append(
|
||||
ApiEndpoint(route=route, method=method, name=name, descriptive_name=webmethod.descriptive_name)
|
||||
)
|
||||
http_method = hdrs.METH_POST
|
||||
routes.append(
|
||||
Route(path=path, methods=[http_method], name=name, endpoint=None)
|
||||
) # setting endpoint to None since don't use a Router object
|
||||
|
||||
apis[api] = endpoints
|
||||
apis[api] = routes
|
||||
|
||||
return apis
|
||||
|
||||
|
||||
def initialize_endpoint_impls(impls):
|
||||
endpoints = get_all_api_endpoints()
|
||||
endpoint_impls = {}
|
||||
def initialize_route_impls(impls: dict[Api, Any]) -> RouteImpls:
|
||||
routes = get_all_api_routes()
|
||||
route_impls: RouteImpls = {}
|
||||
|
||||
def _convert_path_to_regex(path: str) -> str:
|
||||
# Convert {param} to named capture groups
|
||||
|
@ -83,29 +88,34 @@ def initialize_endpoint_impls(impls):
|
|||
|
||||
return f"^{pattern}$"
|
||||
|
||||
for api, api_endpoints in endpoints.items():
|
||||
for api, api_routes in routes.items():
|
||||
if api not in impls:
|
||||
continue
|
||||
for endpoint in api_endpoints:
|
||||
for route in api_routes:
|
||||
impl = impls[api]
|
||||
func = getattr(impl, endpoint.name)
|
||||
if endpoint.method not in endpoint_impls:
|
||||
endpoint_impls[endpoint.method] = {}
|
||||
endpoint_impls[endpoint.method][_convert_path_to_regex(endpoint.route)] = (
|
||||
func = getattr(impl, route.name)
|
||||
# Get the first (and typically only) method from the set, filtering out HEAD
|
||||
available_methods = [m for m in route.methods if m != "HEAD"]
|
||||
if not available_methods:
|
||||
continue # Skip if only HEAD method is available
|
||||
method = available_methods[0].lower()
|
||||
if method not in route_impls:
|
||||
route_impls[method] = {}
|
||||
route_impls[method][_convert_path_to_regex(route.path)] = (
|
||||
func,
|
||||
endpoint.descriptive_name or endpoint.route,
|
||||
route.path,
|
||||
)
|
||||
|
||||
return endpoint_impls
|
||||
return route_impls
|
||||
|
||||
|
||||
def find_matching_endpoint(method, path, endpoint_impls):
|
||||
def find_matching_route(method: str, path: str, route_impls: RouteImpls) -> RouteMatch:
|
||||
"""Find the matching endpoint implementation for a given method and path.
|
||||
|
||||
Args:
|
||||
method: HTTP method (GET, POST, etc.)
|
||||
path: URL path to match against
|
||||
endpoint_impls: A dictionary of endpoint implementations
|
||||
route_impls: A dictionary of endpoint implementations
|
||||
|
||||
Returns:
|
||||
A tuple of (endpoint_function, path_params, descriptive_name)
|
||||
|
@ -113,7 +123,7 @@ def find_matching_endpoint(method, path, endpoint_impls):
|
|||
Raises:
|
||||
ValueError: If no matching endpoint is found
|
||||
"""
|
||||
impls = endpoint_impls.get(method.lower())
|
||||
impls = route_impls.get(method.lower())
|
||||
if not impls:
|
||||
raise ValueError(f"No endpoint found for {path}")
|
||||
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import argparse
|
||||
import asyncio
|
||||
import functools
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
|
@ -13,6 +14,7 @@ import ssl
|
|||
import sys
|
||||
import traceback
|
||||
import warnings
|
||||
from collections.abc import Callable
|
||||
from contextlib import asynccontextmanager
|
||||
from importlib.metadata import version as parse_version
|
||||
from pathlib import Path
|
||||
|
@ -20,6 +22,7 @@ from typing import Annotated, Any
|
|||
|
||||
import rich.pretty
|
||||
import yaml
|
||||
from aiohttp import hdrs
|
||||
from fastapi import Body, FastAPI, HTTPException, Request
|
||||
from fastapi import Path as FastapiPath
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
|
@ -35,9 +38,10 @@ from llama_stack.distribution.request_headers import (
|
|||
request_provider_data_context,
|
||||
)
|
||||
from llama_stack.distribution.resolver import InvalidProviderError
|
||||
from llama_stack.distribution.server.endpoints import (
|
||||
find_matching_endpoint,
|
||||
initialize_endpoint_impls,
|
||||
from llama_stack.distribution.server.routes import (
|
||||
find_matching_route,
|
||||
get_all_api_routes,
|
||||
initialize_route_impls,
|
||||
)
|
||||
from llama_stack.distribution.stack import (
|
||||
construct_stack,
|
||||
|
@ -60,7 +64,6 @@ from llama_stack.providers.utils.telemetry.tracing import (
|
|||
)
|
||||
|
||||
from .auth import AuthenticationMiddleware
|
||||
from .endpoints import get_all_api_endpoints
|
||||
from .quota import QuotaMiddleware
|
||||
|
||||
REPO_ROOT = Path(__file__).parent.parent.parent.parent
|
||||
|
@ -209,8 +212,9 @@ async def log_request_pre_validation(request: Request):
|
|||
logger.warning(f"Could not read or log request body for {request.method} {request.url.path}: {e}")
|
||||
|
||||
|
||||
def create_dynamic_typed_route(func: Any, method: str, route: str):
|
||||
async def endpoint(request: Request, **kwargs):
|
||||
def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
|
||||
@functools.wraps(func)
|
||||
async def route_handler(request: Request, **kwargs):
|
||||
# Get auth attributes from the request scope
|
||||
user_attributes = request.scope.get("user_attributes", {})
|
||||
|
||||
|
@ -250,9 +254,9 @@ def create_dynamic_typed_route(func: Any, method: str, route: str):
|
|||
for param in new_params[1:]
|
||||
]
|
||||
|
||||
endpoint.__signature__ = sig.replace(parameters=new_params)
|
||||
route_handler.__signature__ = sig.replace(parameters=new_params)
|
||||
|
||||
return endpoint
|
||||
return route_handler
|
||||
|
||||
|
||||
class TracingMiddleware:
|
||||
|
@ -274,14 +278,14 @@ class TracingMiddleware:
|
|||
logger.debug(f"Bypassing custom routing for FastAPI built-in path: {path}")
|
||||
return await self.app(scope, receive, send)
|
||||
|
||||
if not hasattr(self, "endpoint_impls"):
|
||||
self.endpoint_impls = initialize_endpoint_impls(self.impls)
|
||||
if not hasattr(self, "route_impls"):
|
||||
self.route_impls = initialize_route_impls(self.impls)
|
||||
|
||||
try:
|
||||
_, _, trace_path = find_matching_endpoint(scope.get("method", "GET"), path, self.endpoint_impls)
|
||||
_, _, trace_path = find_matching_route(scope.get("method", hdrs.METH_GET), path, self.route_impls)
|
||||
except ValueError:
|
||||
# If no matching endpoint is found, pass through to FastAPI
|
||||
logger.debug(f"No matching endpoint found for path: {path}, falling back to FastAPI")
|
||||
logger.debug(f"No matching route found for path: {path}, falling back to FastAPI")
|
||||
return await self.app(scope, receive, send)
|
||||
|
||||
trace_attributes = {"__location__": "server", "raw_path": path}
|
||||
|
@ -423,7 +427,7 @@ def main(args: argparse.Namespace | None = None):
|
|||
|
||||
logger.info("Run configuration:")
|
||||
safe_config = redact_sensitive_fields(config.model_dump())
|
||||
logger.info(yaml.dump(safe_config, indent=2))
|
||||
logger.info(yaml.dump(safe_config, indent=2, default_style=None))
|
||||
|
||||
app = FastAPI(
|
||||
lifespan=lifespan,
|
||||
|
@ -490,7 +494,7 @@ def main(args: argparse.Namespace | None = None):
|
|||
else:
|
||||
setup_logger(TelemetryAdapter(TelemetryConfig(), {}))
|
||||
|
||||
all_endpoints = get_all_api_endpoints()
|
||||
all_routes = get_all_api_routes()
|
||||
|
||||
if config.apis:
|
||||
apis_to_serve = set(config.apis)
|
||||
|
@ -508,24 +512,29 @@ def main(args: argparse.Namespace | None = None):
|
|||
for api_str in apis_to_serve:
|
||||
api = Api(api_str)
|
||||
|
||||
endpoints = all_endpoints[api]
|
||||
routes = all_routes[api]
|
||||
impl = impls[api]
|
||||
|
||||
for endpoint in endpoints:
|
||||
if not hasattr(impl, endpoint.name):
|
||||
for route in routes:
|
||||
if not hasattr(impl, route.name):
|
||||
# ideally this should be a typing violation already
|
||||
raise ValueError(f"Could not find method {endpoint.name} on {impl}!!")
|
||||
raise ValueError(f"Could not find method {route.name} on {impl}!")
|
||||
|
||||
impl_method = getattr(impl, endpoint.name)
|
||||
logger.debug(f"{endpoint.method.upper()} {endpoint.route}")
|
||||
impl_method = getattr(impl, route.name)
|
||||
# Filter out HEAD method since it's automatically handled by FastAPI for GET routes
|
||||
available_methods = [m for m in route.methods if m != "HEAD"]
|
||||
if not available_methods:
|
||||
raise ValueError(f"No methods found for {route.name} on {impl}")
|
||||
method = available_methods[0]
|
||||
logger.debug(f"{method} {route.path}")
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=UserWarning, module="pydantic._internal._fields")
|
||||
getattr(app, endpoint.method)(endpoint.route, response_model=None)(
|
||||
getattr(app, method.lower())(route.path, response_model=None)(
|
||||
create_dynamic_typed_route(
|
||||
impl_method,
|
||||
endpoint.method,
|
||||
endpoint.route,
|
||||
method.lower(),
|
||||
route.path,
|
||||
)
|
||||
)
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ class DistributionRegistry(Protocol):
|
|||
|
||||
|
||||
REGISTER_PREFIX = "distributions:registry"
|
||||
KEY_VERSION = "v8"
|
||||
KEY_VERSION = "v9"
|
||||
KEY_FORMAT = f"{REGISTER_PREFIX}:{KEY_VERSION}::" + "{type}:{identifier}"
|
||||
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ from llama_stack.apis.datatypes import Api
|
|||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.apis.tools import Tool
|
||||
from llama_stack.apis.tools import ToolGroup
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -74,10 +74,10 @@ class BenchmarksProtocolPrivate(Protocol):
|
|||
async def register_benchmark(self, benchmark: Benchmark) -> None: ...
|
||||
|
||||
|
||||
class ToolsProtocolPrivate(Protocol):
|
||||
async def register_tool(self, tool: Tool) -> None: ...
|
||||
class ToolGroupsProtocolPrivate(Protocol):
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None: ...
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None: ...
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None: ...
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any, cast
|
||||
|
@ -29,10 +30,12 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseOutputTextDelta,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessageContent,
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
OpenAIResponseOutputMessageFunctionToolCall,
|
||||
OpenAIResponseOutputMessageMCPListTools,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
|
@ -255,110 +258,14 @@ class OpenAIResponsesImpl:
|
|||
"""
|
||||
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
|
||||
|
||||
async def create_openai_response(
|
||||
async def _process_response_choices(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
):
|
||||
chat_response: OpenAIChatCompletion,
|
||||
ctx: ChatCompletionContext,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> list[OpenAIResponseOutput]:
|
||||
"""Handle tool execution and response message creation."""
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
stream = False if stream is None else stream
|
||||
|
||||
# Huge TODO: we need to run this in a loop, until morale improves
|
||||
|
||||
# Create context to run "chat completion"
|
||||
input = await self._prepend_previous_response(input, previous_response_id)
|
||||
messages = await _convert_response_input_to_chat_messages(input)
|
||||
await self._prepend_instructions(messages, instructions)
|
||||
chat_tools, mcp_tool_to_server, mcp_list_message = (
|
||||
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
|
||||
)
|
||||
if mcp_list_message:
|
||||
output_messages.append(mcp_list_message)
|
||||
|
||||
ctx = ChatCompletionContext(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
mcp_tool_to_server=mcp_tool_to_server,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
# Run inference
|
||||
chat_response = await self.inference_api.openai_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
# Collect output
|
||||
if stream:
|
||||
# TODO: refactor this into a separate method that handles streaming
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
# TODO: these chunk_ fields are hacky and only take the last chunk into account
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
async for chunk in chat_response:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# TODO: this only works for text content
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks, using their index as the aggregation key
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
response_tool_call.function.arguments += tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
# Ensure we don't have any empty type field in the tool call dict.
|
||||
# The OpenAI client used by providers often returns a type=None here.
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert the dict of tool calls by index to a list of tool calls to pass back in our response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
chat_response = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
else:
|
||||
# dump and reload to map to our pydantic types
|
||||
chat_response = OpenAIChatCompletion(**chat_response.model_dump())
|
||||
|
||||
# Execute tool calls if any
|
||||
for choice in chat_response.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
|
@ -380,7 +287,127 @@ class OpenAIResponsesImpl:
|
|||
else:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
|
||||
# Create response object
|
||||
return output_messages
|
||||
|
||||
async def _store_response(
|
||||
self,
|
||||
response: OpenAIResponseObject,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
) -> None:
|
||||
new_input_id = f"msg_{uuid.uuid4()}"
|
||||
if isinstance(input, str):
|
||||
# synthesize a message from the input string
|
||||
input_content = OpenAIResponseInputMessageContentText(text=input)
|
||||
input_content_item = OpenAIResponseMessage(
|
||||
role="user",
|
||||
content=[input_content],
|
||||
id=new_input_id,
|
||||
)
|
||||
input_items_data = [input_content_item]
|
||||
else:
|
||||
# we already have a list of messages
|
||||
input_items_data = []
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseMessage):
|
||||
# These may or may not already have an id, so dump to dict, check for id, and add if missing
|
||||
input_item_dict = input_item.model_dump()
|
||||
if "id" not in input_item_dict:
|
||||
input_item_dict["id"] = new_input_id
|
||||
input_items_data.append(OpenAIResponseMessage(**input_item_dict))
|
||||
else:
|
||||
input_items_data.append(input_item)
|
||||
|
||||
await self.responses_store.store_response_object(
|
||||
response_object=response,
|
||||
input=input_items_data,
|
||||
)
|
||||
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
):
|
||||
stream = False if stream is None else stream
|
||||
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
# Input preprocessing
|
||||
input = await self._prepend_previous_response(input, previous_response_id)
|
||||
messages = await _convert_response_input_to_chat_messages(input)
|
||||
await self._prepend_instructions(messages, instructions)
|
||||
|
||||
# Tool setup
|
||||
chat_tools, mcp_tool_to_server, mcp_list_message = (
|
||||
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
|
||||
)
|
||||
if mcp_list_message:
|
||||
output_messages.append(mcp_list_message)
|
||||
|
||||
ctx = ChatCompletionContext(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
mcp_tool_to_server=mcp_tool_to_server,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
inference_result = await self.inference_api.openai_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._create_streaming_response(
|
||||
inference_result=inference_result,
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
tools=tools,
|
||||
)
|
||||
else:
|
||||
return await self._create_non_streaming_response(
|
||||
inference_result=inference_result,
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
async def _create_non_streaming_response(
|
||||
self,
|
||||
inference_result: Any,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> OpenAIResponseObject:
|
||||
chat_response = OpenAIChatCompletion(**inference_result.model_dump())
|
||||
|
||||
# Process response choices (tool execution and message creation)
|
||||
output_messages.extend(
|
||||
await self._process_response_choices(
|
||||
chat_response=chat_response,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
)
|
||||
)
|
||||
|
||||
response = OpenAIResponseObject(
|
||||
created_at=chat_response.created,
|
||||
id=f"resp-{uuid.uuid4()}",
|
||||
|
@ -393,45 +420,135 @@ class OpenAIResponsesImpl:
|
|||
|
||||
# Store response if requested
|
||||
if store:
|
||||
new_input_id = f"msg_{uuid.uuid4()}"
|
||||
if isinstance(input, str):
|
||||
# synthesize a message from the input string
|
||||
input_content = OpenAIResponseInputMessageContentText(text=input)
|
||||
input_content_item = OpenAIResponseMessage(
|
||||
role="user",
|
||||
content=[input_content],
|
||||
id=new_input_id,
|
||||
)
|
||||
input_items_data = [input_content_item]
|
||||
else:
|
||||
# we already have a list of messages
|
||||
input_items_data = []
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseMessage):
|
||||
# These may or may not already have an id, so dump to dict, check for id, and add if missing
|
||||
input_item_dict = input_item.model_dump()
|
||||
if "id" not in input_item_dict:
|
||||
input_item_dict["id"] = new_input_id
|
||||
input_items_data.append(OpenAIResponseMessage(**input_item_dict))
|
||||
else:
|
||||
input_items_data.append(input_item)
|
||||
|
||||
await self.responses_store.store_response_object(
|
||||
response_object=response,
|
||||
input=input_items_data,
|
||||
await self._store_response(
|
||||
response=response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
if stream:
|
||||
|
||||
async def async_response() -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# TODO: response created should actually get emitted much earlier in the process
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=response)
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=response)
|
||||
|
||||
return async_response()
|
||||
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
inference_result: Any,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# Create initial response and emit response.created immediately
|
||||
response_id = f"resp-{uuid.uuid4()}"
|
||||
created_at = int(time.time())
|
||||
|
||||
initial_response = OpenAIResponseObject(
|
||||
created_at=created_at,
|
||||
id=response_id,
|
||||
model=model,
|
||||
object="response",
|
||||
status="in_progress",
|
||||
output=output_messages.copy(),
|
||||
)
|
||||
|
||||
# Emit response.created immediately
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
|
||||
|
||||
# For streaming, inference_result is an async iterator of chunks
|
||||
# Stream chunks and emit delta events as they arrive
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
sequence_number = 0
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in inference_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks, using their index as the aggregation key
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
response_tool_call.function.arguments += tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
chat_response_obj = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
|
||||
# Process response choices (tool execution and message creation)
|
||||
output_messages.extend(
|
||||
await self._process_response_choices(
|
||||
chat_response=chat_response_obj,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
)
|
||||
)
|
||||
|
||||
# Create final response
|
||||
final_response = OpenAIResponseObject(
|
||||
created_at=created_at,
|
||||
id=response_id,
|
||||
model=model,
|
||||
object="response",
|
||||
status="completed",
|
||||
output=output_messages,
|
||||
)
|
||||
|
||||
if store:
|
||||
await self._store_response(
|
||||
response=final_response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
async def _convert_response_tools_to_chat_tools(
|
||||
self, tools: list[OpenAIResponseInputTool]
|
||||
) -> tuple[
|
||||
|
@ -441,7 +558,6 @@ class OpenAIResponsesImpl:
|
|||
]:
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
MCPListToolsTool,
|
||||
OpenAIResponseOutputMessageMCPListTools,
|
||||
)
|
||||
from llama_stack.apis.tools.tools import Tool
|
||||
|
||||
|
|
|
@ -75,7 +75,9 @@ class PromptGuardShield:
|
|||
self.temperature = temperature
|
||||
self.threshold = threshold
|
||||
|
||||
self.device = "cuda"
|
||||
self.device = "cpu"
|
||||
if torch.cuda.is_available():
|
||||
self.device = "cuda"
|
||||
|
||||
# load model and tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
|
|
|
@ -25,14 +25,14 @@ from llama_stack.apis.tools import (
|
|||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.apis.vector_io import QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
content_from_doc,
|
||||
|
@ -49,7 +49,7 @@ def make_random_string(length: int = 8):
|
|||
return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length))
|
||||
|
||||
|
||||
class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
||||
class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
||||
def __init__(
|
||||
self,
|
||||
config: RagToolRuntimeConfig,
|
||||
|
@ -66,10 +66,10 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
async def shutdown(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
async def insert(
|
||||
|
|
|
@ -19,10 +19,10 @@ def available_providers() -> list[ProviderSpec]:
|
|||
api=Api.agents,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=[
|
||||
"matplotlib",
|
||||
"pillow",
|
||||
"pandas",
|
||||
"scikit-learn",
|
||||
# "matplotlib",
|
||||
# "pillow",
|
||||
# "pandas",
|
||||
# "scikit-learn",
|
||||
]
|
||||
+ kvstore_dependencies(),
|
||||
module="llama_stack.providers.inline.agents.meta_reference",
|
||||
|
|
|
@ -13,7 +13,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
InlineProviderSpec(
|
||||
api=Api.eval,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=["tree_sitter", "pythainlp", "langdetect", "emoji", "nltk"],
|
||||
# pip_packages=["tree_sitter", "pythainlp", "langdetect", "emoji", "nltk"],
|
||||
module="llama_stack.providers.inline.eval.meta_reference",
|
||||
config_class="llama_stack.providers.inline.eval.meta_reference.MetaReferenceEvalConfig",
|
||||
api_dependencies=[
|
||||
|
|
|
@ -20,16 +20,16 @@ def available_providers() -> list[ProviderSpec]:
|
|||
api=Api.tool_runtime,
|
||||
provider_type="inline::rag-runtime",
|
||||
pip_packages=[
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"pypdf",
|
||||
"tqdm",
|
||||
"numpy",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"nltk",
|
||||
"sentencepiece",
|
||||
"transformers",
|
||||
# "blobfile",
|
||||
# "chardet",
|
||||
# "pypdf",
|
||||
# "tqdm",
|
||||
# "numpy",
|
||||
# "scikit-learn",
|
||||
# "scipy",
|
||||
# "nltk",
|
||||
# "sentencepiece",
|
||||
# "transformers",
|
||||
],
|
||||
module="llama_stack.providers.inline.tool_runtime.rag",
|
||||
config_class="llama_stack.providers.inline.tool_runtime.rag.config.RagToolRuntimeConfig",
|
||||
|
|
|
@ -4,8 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -24,11 +25,27 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
default="fake",
|
||||
description="The API token",
|
||||
)
|
||||
tls_verify: bool = Field(
|
||||
tls_verify: bool | str = Field(
|
||||
default=True,
|
||||
description="Whether to verify TLS certificates",
|
||||
description="Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file.",
|
||||
)
|
||||
|
||||
@field_validator("tls_verify")
|
||||
@classmethod
|
||||
def validate_tls_verify(cls, v):
|
||||
if isinstance(v, str):
|
||||
# Check if it's a boolean string
|
||||
if v.lower() in ("true", "false"):
|
||||
return v.lower() == "true"
|
||||
# Otherwise, treat it as a cert path
|
||||
cert_path = Path(v).expanduser().resolve()
|
||||
if not cert_path.exists():
|
||||
raise ValueError(f"TLS certificate file does not exist: {v}")
|
||||
if not cert_path.is_file():
|
||||
raise ValueError(f"TLS certificate path is not a file: {v}")
|
||||
return v
|
||||
return v
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
|
|
|
@ -313,7 +313,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
return AsyncOpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self.config.api_token,
|
||||
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
|
||||
http_client=httpx.AsyncClient(verify=self.config.tls_verify),
|
||||
)
|
||||
|
||||
async def completion(
|
||||
|
|
|
@ -12,19 +12,19 @@ import httpx
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
|
||||
from .config import BingSearchToolConfig
|
||||
|
||||
|
||||
class BingSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
class BingSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
def __init__(self, config: BingSearchToolConfig):
|
||||
self.config = config
|
||||
self.url = "https://api.bing.microsoft.com/v7.0/search"
|
||||
|
@ -32,10 +32,10 @@ class BingSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestP
|
|||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
|
|
|
@ -11,30 +11,30 @@ import httpx
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
|
||||
from .config import BraveSearchToolConfig
|
||||
|
||||
|
||||
class BraveSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
class BraveSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
def __init__(self, config: BraveSearchToolConfig):
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
|
|
|
@ -10,8 +10,8 @@ from pydantic import BaseModel
|
|||
|
||||
|
||||
class MCPProviderDataValidator(BaseModel):
|
||||
# mcp_endpoint => list of headers to send
|
||||
mcp_headers: dict[str, list[str]] | None = None
|
||||
# mcp_endpoint => dict of headers to send
|
||||
mcp_headers: dict[str, dict[str, str]] | None = None
|
||||
|
||||
|
||||
class MCPProviderConfig(BaseModel):
|
||||
|
|
|
@ -11,26 +11,33 @@ from llama_stack.apis.common.content_types import URL
|
|||
from llama_stack.apis.datatypes import Api
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.utils.tools.mcp import convert_header_list_to_dict, invoke_mcp_tool, list_mcp_tools
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
from llama_stack.providers.utils.tools.mcp import invoke_mcp_tool, list_mcp_tools
|
||||
|
||||
from .config import MCPProviderConfig
|
||||
|
||||
logger = get_logger(__name__, category="tools")
|
||||
|
||||
|
||||
class ModelContextProtocolToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
class ModelContextProtocolToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
def __init__(self, config: MCPProviderConfig, _deps: dict[Api, Any]):
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
|
@ -62,5 +69,5 @@ class ModelContextProtocolToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, Nee
|
|||
for uri, values in provider_data.mcp_headers.items():
|
||||
if canonicalize_uri(uri) != canonicalize_uri(mcp_endpoint_uri):
|
||||
continue
|
||||
headers.update(convert_header_list_to_dict(values))
|
||||
headers.update(values)
|
||||
return headers
|
||||
|
|
|
@ -12,29 +12,29 @@ import httpx
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
|
||||
from .config import TavilySearchToolConfig
|
||||
|
||||
|
||||
class TavilySearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
class TavilySearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
def __init__(self, config: TavilySearchToolConfig):
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
|
|
|
@ -12,19 +12,19 @@ import httpx
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
Tool,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
|
||||
from .config import WolframAlphaToolConfig
|
||||
|
||||
|
||||
class WolframAlphaToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
class WolframAlphaToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRequestProviderData):
|
||||
def __init__(self, config: WolframAlphaToolConfig):
|
||||
self.config = config
|
||||
self.url = "https://api.wolframalpha.com/v2/query"
|
||||
|
@ -32,10 +32,10 @@ class WolframAlphaToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
|
|||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
|
|
|
@ -1402,9 +1402,8 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
outstanding_responses: list[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]],
|
||||
):
|
||||
id = f"chatcmpl-{uuid.uuid4()}"
|
||||
for outstanding_response in outstanding_responses:
|
||||
for i, outstanding_response in enumerate(outstanding_responses):
|
||||
response = await outstanding_response
|
||||
i = 0
|
||||
async for chunk in response:
|
||||
event = chunk.event
|
||||
finish_reason = _convert_stop_reason_to_openai_finish_reason(event.stop_reason)
|
||||
|
@ -1459,7 +1458,6 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
model=model,
|
||||
object="chat.completion.chunk",
|
||||
)
|
||||
i = i + 1
|
||||
|
||||
async def _process_non_stream_response(
|
||||
self, model: str, outstanding_responses: list[Awaitable[ChatCompletionResponse]]
|
||||
|
|
|
@ -51,16 +51,6 @@ async def sse_client_wrapper(endpoint: str, headers: dict[str, str]):
|
|||
raise
|
||||
|
||||
|
||||
def convert_header_list_to_dict(header_list: list[str]) -> dict[str, str]:
|
||||
headers = {}
|
||||
for header in header_list:
|
||||
parts = header.split(":")
|
||||
if len(parts) == 2:
|
||||
k, v = parts
|
||||
headers[k.strip()] = v.strip()
|
||||
return headers
|
||||
|
||||
|
||||
async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefsResponse:
|
||||
tools = []
|
||||
async with sse_client_wrapper(endpoint, headers) as session:
|
||||
|
|
|
@ -1,855 +0,0 @@
|
|||
{
|
||||
"bedrock": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"boto3",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"cerebras": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"cerebras_cloud_sdk",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"ci-tests": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"dell": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"fireworks": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"groq": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"hf-endpoint": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"hf-serverless": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"llama_api": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"meta-reference-gpu": [
|
||||
"accelerate",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fairscale",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fbgemm-gpu-genai==1.1.2",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"lm-format-enforcer",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentence-transformers",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"torch",
|
||||
"torchao==0.8.0",
|
||||
"torchvision",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"zmq"
|
||||
],
|
||||
"nvidia": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn"
|
||||
],
|
||||
"ollama": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"ollama",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"peft",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"requests",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"tree_sitter",
|
||||
"trl",
|
||||
"uvicorn"
|
||||
],
|
||||
"open-benchmark": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"passthrough": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"sambanova": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"starter": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"tgi": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"together": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"verification": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"watsonx": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"ibm_watson_machine_learning",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
]
|
||||
}
|
|
@ -25,23 +25,7 @@ distribution_spec:
|
|||
- inline::rag-runtime
|
||||
- remote::model-context-protocol
|
||||
- remote::wolfram-alpha
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: remote::ollama
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: remote::ollama
|
||||
provider_model_id: all-minilm:latest
|
||||
model_type: embedding
|
||||
image_type: container
|
||||
image_type: conda
|
||||
additional_pip_packages:
|
||||
- sqlalchemy[asyncio]
|
||||
- blobfile
|
||||
|
|
|
@ -13,8 +13,8 @@ from llama_stack.distribution.datatypes import (
|
|||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
#from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
|
||||
#from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
@ -32,7 +32,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"inline::rag-runtime",
|
||||
"remote::model-context-protocol",
|
||||
"remote::wolfram-alpha",
|
||||
],
|
||||
|
@ -43,11 +42,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="remote::ollama",
|
||||
config=OllamaImplConfig.sample_run_config(),
|
||||
)
|
||||
vector_io_provider_faiss = Provider(
|
||||
provider_id="faiss",
|
||||
provider_type="inline::faiss",
|
||||
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
#vector_io_provider_faiss = Provider(
|
||||
# provider_id="faiss",
|
||||
# provider_type="inline::faiss",
|
||||
# config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
#)
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="ollama",
|
||||
|
@ -70,10 +69,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::wolfram_alpha",
|
||||
provider_id="wolfram-alpha",
|
||||
|
|
|
@ -24,6 +24,10 @@ providers:
|
|||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/faiss_store.db
|
||||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:http://host.docker.internal:8000}
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
|
@ -2,9 +2,9 @@
|
|||
|
||||
import { useEffect, useState } from "react";
|
||||
import { useParams } from "next/navigation";
|
||||
import LlamaStackClient from "llama-stack-client";
|
||||
import { ChatCompletion } from "@/lib/types";
|
||||
import { ChatCompletionDetailView } from "@/components/chat-completions/chat-completion-detail";
|
||||
import { client } from "@/lib/client";
|
||||
|
||||
export default function ChatCompletionDetailPage() {
|
||||
const params = useParams();
|
||||
|
@ -22,10 +22,6 @@ export default function ChatCompletionDetailPage() {
|
|||
return;
|
||||
}
|
||||
|
||||
const client = new LlamaStackClient({
|
||||
baseURL: process.env.NEXT_PUBLIC_LLAMA_STACK_BASE_URL,
|
||||
});
|
||||
|
||||
const fetchCompletionDetail = async () => {
|
||||
setIsLoading(true);
|
||||
setError(null);
|
||||
|
|
|
@ -1,45 +1,19 @@
|
|||
"use client";
|
||||
|
||||
import React from "react";
|
||||
import { usePathname, useParams } from "next/navigation";
|
||||
import {
|
||||
PageBreadcrumb,
|
||||
BreadcrumbSegment,
|
||||
} from "@/components/layout/page-breadcrumb";
|
||||
import { truncateText } from "@/lib/truncate-text";
|
||||
import LogsLayout from "@/components/layout/logs-layout";
|
||||
|
||||
export default function ChatCompletionsLayout({
|
||||
children,
|
||||
}: {
|
||||
children: React.ReactNode;
|
||||
}) {
|
||||
const pathname = usePathname();
|
||||
const params = useParams();
|
||||
|
||||
let segments: BreadcrumbSegment[] = [];
|
||||
|
||||
// Default for /logs/chat-completions
|
||||
if (pathname === "/logs/chat-completions") {
|
||||
segments = [{ label: "Chat Completions" }];
|
||||
}
|
||||
|
||||
// For /logs/chat-completions/[id]
|
||||
const idParam = params?.id;
|
||||
if (idParam && typeof idParam === "string") {
|
||||
segments = [
|
||||
{ label: "Chat Completions", href: "/logs/chat-completions" },
|
||||
{ label: `Details (${truncateText(idParam, 20)})` },
|
||||
];
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="container mx-auto p-4">
|
||||
<>
|
||||
{segments.length > 0 && (
|
||||
<PageBreadcrumb segments={segments} className="mb-4" />
|
||||
)}
|
||||
{children}
|
||||
</>
|
||||
</div>
|
||||
<LogsLayout
|
||||
sectionLabel="Chat Completions"
|
||||
basePath="/logs/chat-completions"
|
||||
>
|
||||
{children}
|
||||
</LogsLayout>
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
"use client";
|
||||
|
||||
import { useEffect, useState } from "react";
|
||||
import LlamaStackClient from "llama-stack-client";
|
||||
import { ChatCompletion } from "@/lib/types";
|
||||
import { ChatCompletionsTable } from "@/components/chat-completions/chat-completion-table";
|
||||
import { ChatCompletionsTable } from "@/components/chat-completions/chat-completions-table";
|
||||
import { client } from "@/lib/client";
|
||||
|
||||
export default function ChatCompletionsPage() {
|
||||
const [completions, setCompletions] = useState<ChatCompletion[]>([]);
|
||||
|
@ -11,9 +11,6 @@ export default function ChatCompletionsPage() {
|
|||
const [error, setError] = useState<Error | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
const client = new LlamaStackClient({
|
||||
baseURL: process.env.NEXT_PUBLIC_LLAMA_STACK_BASE_URL,
|
||||
});
|
||||
const fetchCompletions = async () => {
|
||||
setIsLoading(true);
|
||||
setError(null);
|
||||
|
@ -21,7 +18,7 @@ export default function ChatCompletionsPage() {
|
|||
const response = await client.chat.completions.list();
|
||||
const data = Array.isArray(response)
|
||||
? response
|
||||
: (response as any).data;
|
||||
: (response as { data: ChatCompletion[] }).data;
|
||||
|
||||
if (Array.isArray(data)) {
|
||||
setCompletions(data);
|
||||
|
@ -46,7 +43,7 @@ export default function ChatCompletionsPage() {
|
|||
|
||||
return (
|
||||
<ChatCompletionsTable
|
||||
completions={completions}
|
||||
data={completions}
|
||||
isLoading={isLoading}
|
||||
error={error}
|
||||
/>
|
||||
|
|
125
llama_stack/ui/app/logs/responses/[id]/page.tsx
Normal file
125
llama_stack/ui/app/logs/responses/[id]/page.tsx
Normal file
|
@ -0,0 +1,125 @@
|
|||
"use client";
|
||||
|
||||
import { useEffect, useState } from "react";
|
||||
import { useParams } from "next/navigation";
|
||||
import type { ResponseObject } from "llama-stack-client/resources/responses/responses";
|
||||
import { OpenAIResponse, InputItemListResponse } from "@/lib/types";
|
||||
import { ResponseDetailView } from "@/components/responses/responses-detail";
|
||||
import { client } from "@/lib/client";
|
||||
|
||||
export default function ResponseDetailPage() {
|
||||
const params = useParams();
|
||||
const id = params.id as string;
|
||||
|
||||
const [responseDetail, setResponseDetail] = useState<OpenAIResponse | null>(
|
||||
null,
|
||||
);
|
||||
const [inputItems, setInputItems] = useState<InputItemListResponse | null>(
|
||||
null,
|
||||
);
|
||||
const [isLoading, setIsLoading] = useState<boolean>(true);
|
||||
const [isLoadingInputItems, setIsLoadingInputItems] = useState<boolean>(true);
|
||||
const [error, setError] = useState<Error | null>(null);
|
||||
const [inputItemsError, setInputItemsError] = useState<Error | null>(null);
|
||||
|
||||
// Helper function to convert ResponseObject to OpenAIResponse
|
||||
const convertResponseObject = (
|
||||
responseData: ResponseObject,
|
||||
): OpenAIResponse => {
|
||||
return {
|
||||
id: responseData.id,
|
||||
created_at: responseData.created_at,
|
||||
model: responseData.model,
|
||||
object: responseData.object,
|
||||
status: responseData.status,
|
||||
output: responseData.output as OpenAIResponse["output"],
|
||||
input: [], // ResponseObject doesn't include input; component uses inputItems prop instead
|
||||
error: responseData.error,
|
||||
parallel_tool_calls: responseData.parallel_tool_calls,
|
||||
previous_response_id: responseData.previous_response_id,
|
||||
temperature: responseData.temperature,
|
||||
top_p: responseData.top_p,
|
||||
truncation: responseData.truncation,
|
||||
user: responseData.user,
|
||||
};
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (!id) {
|
||||
setError(new Error("Response ID is missing."));
|
||||
setIsLoading(false);
|
||||
return;
|
||||
}
|
||||
|
||||
const fetchResponseDetail = async () => {
|
||||
setIsLoading(true);
|
||||
setIsLoadingInputItems(true);
|
||||
setError(null);
|
||||
setInputItemsError(null);
|
||||
setResponseDetail(null);
|
||||
setInputItems(null);
|
||||
|
||||
try {
|
||||
const [responseResult, inputItemsResult] = await Promise.allSettled([
|
||||
client.responses.retrieve(id),
|
||||
client.responses.inputItems.list(id, { order: "asc" }),
|
||||
]);
|
||||
|
||||
// Handle response detail result
|
||||
if (responseResult.status === "fulfilled") {
|
||||
const convertedResponse = convertResponseObject(responseResult.value);
|
||||
setResponseDetail(convertedResponse);
|
||||
} else {
|
||||
console.error(
|
||||
`Error fetching response detail for ID ${id}:`,
|
||||
responseResult.reason,
|
||||
);
|
||||
setError(
|
||||
responseResult.reason instanceof Error
|
||||
? responseResult.reason
|
||||
: new Error("Failed to fetch response detail"),
|
||||
);
|
||||
}
|
||||
|
||||
// Handle input items result
|
||||
if (inputItemsResult.status === "fulfilled") {
|
||||
const inputItemsData =
|
||||
inputItemsResult.value as unknown as InputItemListResponse;
|
||||
setInputItems(inputItemsData);
|
||||
} else {
|
||||
console.error(
|
||||
`Error fetching input items for response ID ${id}:`,
|
||||
inputItemsResult.reason,
|
||||
);
|
||||
setInputItemsError(
|
||||
inputItemsResult.reason instanceof Error
|
||||
? inputItemsResult.reason
|
||||
: new Error("Failed to fetch input items"),
|
||||
);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error(`Unexpected error fetching data for ID ${id}:`, err);
|
||||
setError(
|
||||
err instanceof Error ? err : new Error("Unexpected error occurred"),
|
||||
);
|
||||
} finally {
|
||||
setIsLoading(false);
|
||||
setIsLoadingInputItems(false);
|
||||
}
|
||||
};
|
||||
|
||||
fetchResponseDetail();
|
||||
}, [id]);
|
||||
|
||||
return (
|
||||
<ResponseDetailView
|
||||
response={responseDetail}
|
||||
inputItems={inputItems}
|
||||
isLoading={isLoading}
|
||||
isLoadingInputItems={isLoadingInputItems}
|
||||
error={error}
|
||||
inputItemsError={inputItemsError}
|
||||
id={id}
|
||||
/>
|
||||
);
|
||||
}
|
16
llama_stack/ui/app/logs/responses/layout.tsx
Normal file
16
llama_stack/ui/app/logs/responses/layout.tsx
Normal file
|
@ -0,0 +1,16 @@
|
|||
"use client";
|
||||
|
||||
import React from "react";
|
||||
import LogsLayout from "@/components/layout/logs-layout";
|
||||
|
||||
export default function ResponsesLayout({
|
||||
children,
|
||||
}: {
|
||||
children: React.ReactNode;
|
||||
}) {
|
||||
return (
|
||||
<LogsLayout sectionLabel="Responses" basePath="/logs/responses">
|
||||
{children}
|
||||
</LogsLayout>
|
||||
);
|
||||
}
|
|
@ -1,7 +1,66 @@
|
|||
export default function Responses() {
|
||||
"use client";
|
||||
|
||||
import { useEffect, useState } from "react";
|
||||
import type { ResponseListResponse } from "llama-stack-client/resources/responses/responses";
|
||||
import { OpenAIResponse } from "@/lib/types";
|
||||
import { ResponsesTable } from "@/components/responses/responses-table";
|
||||
import { client } from "@/lib/client";
|
||||
|
||||
export default function ResponsesPage() {
|
||||
const [responses, setResponses] = useState<OpenAIResponse[]>([]);
|
||||
const [isLoading, setIsLoading] = useState<boolean>(true);
|
||||
const [error, setError] = useState<Error | null>(null);
|
||||
|
||||
// Helper function to convert ResponseListResponse.Data to OpenAIResponse
|
||||
const convertResponseListData = (
|
||||
responseData: ResponseListResponse.Data,
|
||||
): OpenAIResponse => {
|
||||
return {
|
||||
id: responseData.id,
|
||||
created_at: responseData.created_at,
|
||||
model: responseData.model,
|
||||
object: responseData.object,
|
||||
status: responseData.status,
|
||||
output: responseData.output as OpenAIResponse["output"],
|
||||
input: responseData.input as OpenAIResponse["input"],
|
||||
error: responseData.error,
|
||||
parallel_tool_calls: responseData.parallel_tool_calls,
|
||||
previous_response_id: responseData.previous_response_id,
|
||||
temperature: responseData.temperature,
|
||||
top_p: responseData.top_p,
|
||||
truncation: responseData.truncation,
|
||||
user: responseData.user,
|
||||
};
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
const fetchResponses = async () => {
|
||||
setIsLoading(true);
|
||||
setError(null);
|
||||
try {
|
||||
const response = await client.responses.list();
|
||||
const responseListData = response as ResponseListResponse;
|
||||
|
||||
const convertedResponses: OpenAIResponse[] = responseListData.data.map(
|
||||
convertResponseListData,
|
||||
);
|
||||
|
||||
setResponses(convertedResponses);
|
||||
} catch (err) {
|
||||
console.error("Error fetching responses:", err);
|
||||
setError(
|
||||
err instanceof Error ? err : new Error("Failed to fetch responses"),
|
||||
);
|
||||
setResponses([]);
|
||||
} finally {
|
||||
setIsLoading(false);
|
||||
}
|
||||
};
|
||||
|
||||
fetchResponses();
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<div>
|
||||
<h1>Under Construction</h1>
|
||||
</div>
|
||||
<ResponsesTable data={responses} isLoading={isLoading} error={error} />
|
||||
);
|
||||
}
|
||||
|
|
|
@ -75,7 +75,7 @@ describe("ChatCompletionDetailView", () => {
|
|||
/>,
|
||||
);
|
||||
expect(
|
||||
screen.getByText("No details found for completion ID: notfound-id."),
|
||||
screen.getByText("No details found for ID: notfound-id."),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
|
|
@ -3,45 +3,14 @@
|
|||
import { ChatMessage, ChatCompletion } from "@/lib/types";
|
||||
import { ChatMessageItem } from "@/components/chat-completions/chat-messasge-item";
|
||||
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
|
||||
function ChatCompletionDetailLoadingView() {
|
||||
return (
|
||||
<>
|
||||
<Skeleton className="h-8 w-3/4 mb-6" /> {/* Title Skeleton */}
|
||||
<div className="flex flex-col md:flex-row gap-6">
|
||||
<div className="flex-grow md:w-2/3 space-y-6">
|
||||
{[...Array(2)].map((_, i) => (
|
||||
<Card key={`main-skeleton-card-${i}`}>
|
||||
<CardHeader>
|
||||
<CardTitle>
|
||||
<Skeleton className="h-6 w-1/2" />
|
||||
</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent className="space-y-2">
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-3/4" />
|
||||
</CardContent>
|
||||
</Card>
|
||||
))}
|
||||
</div>
|
||||
<div className="md:w-1/3">
|
||||
<div className="p-4 border rounded-lg shadow-sm bg-white space-y-3">
|
||||
<Skeleton className="h-6 w-1/3 mb-3" />{" "}
|
||||
{/* Properties Title Skeleton */}
|
||||
{[...Array(5)].map((_, i) => (
|
||||
<div key={`prop-skeleton-${i}`} className="space-y-1">
|
||||
<Skeleton className="h-4 w-1/4" />
|
||||
<Skeleton className="h-4 w-1/2" />
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
||||
import {
|
||||
DetailLoadingView,
|
||||
DetailErrorView,
|
||||
DetailNotFoundView,
|
||||
DetailLayout,
|
||||
PropertiesCard,
|
||||
PropertyItem,
|
||||
} from "@/components/layout/detail-layout";
|
||||
|
||||
interface ChatCompletionDetailViewProps {
|
||||
completion: ChatCompletion | null;
|
||||
|
@ -56,143 +25,121 @@ export function ChatCompletionDetailView({
|
|||
error,
|
||||
id,
|
||||
}: ChatCompletionDetailViewProps) {
|
||||
const title = "Chat Completion Details";
|
||||
|
||||
if (error) {
|
||||
return (
|
||||
<>
|
||||
{/* We still want a title for consistency on error pages */}
|
||||
<h1 className="text-2xl font-bold mb-6">Chat Completion Details</h1>
|
||||
<p>
|
||||
Error loading details for ID {id}: {error.message}
|
||||
</p>
|
||||
</>
|
||||
);
|
||||
return <DetailErrorView title={title} id={id} error={error} />;
|
||||
}
|
||||
|
||||
if (isLoading) {
|
||||
return <ChatCompletionDetailLoadingView />;
|
||||
return <DetailLoadingView title={title} />;
|
||||
}
|
||||
|
||||
if (!completion) {
|
||||
// This state means: not loading, no error, but no completion data
|
||||
return (
|
||||
<>
|
||||
{/* We still want a title for consistency on not-found pages */}
|
||||
<h1 className="text-2xl font-bold mb-6">Chat Completion Details</h1>
|
||||
<p>No details found for completion ID: {id}.</p>
|
||||
</>
|
||||
);
|
||||
return <DetailNotFoundView title={title} id={id} />;
|
||||
}
|
||||
|
||||
// If no error, not loading, and completion exists, render the details:
|
||||
return (
|
||||
// Main content cards
|
||||
const mainContent = (
|
||||
<>
|
||||
<h1 className="text-2xl font-bold mb-6">Chat Completion Details</h1>
|
||||
<div className="flex flex-col md:flex-row gap-6">
|
||||
<div className="flex-grow md:w-2/3 space-y-6">
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Input</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{completion.input_messages?.map((msg, index) => (
|
||||
<ChatMessageItem key={`input-msg-${index}`} message={msg} />
|
||||
))}
|
||||
{completion.choices?.[0]?.message?.tool_calls &&
|
||||
!completion.input_messages?.some(
|
||||
(im) =>
|
||||
im.role === "assistant" &&
|
||||
im.tool_calls &&
|
||||
im.tool_calls.length > 0,
|
||||
) &&
|
||||
completion.choices[0].message.tool_calls.map(
|
||||
(toolCall: any, index: number) => {
|
||||
const assistantToolCallMessage: ChatMessage = {
|
||||
role: "assistant",
|
||||
tool_calls: [toolCall],
|
||||
content: "", // Ensure content is defined, even if empty
|
||||
};
|
||||
return (
|
||||
<ChatMessageItem
|
||||
key={`choice-tool-call-${index}`}
|
||||
message={assistantToolCallMessage}
|
||||
/>
|
||||
);
|
||||
},
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Input</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{completion.input_messages?.map((msg, index) => (
|
||||
<ChatMessageItem key={`input-msg-${index}`} message={msg} />
|
||||
))}
|
||||
{completion.choices?.[0]?.message?.tool_calls &&
|
||||
Array.isArray(completion.choices[0].message.tool_calls) &&
|
||||
!completion.input_messages?.some(
|
||||
(im) =>
|
||||
im.role === "assistant" &&
|
||||
im.tool_calls &&
|
||||
Array.isArray(im.tool_calls) &&
|
||||
im.tool_calls.length > 0,
|
||||
)
|
||||
? completion.choices[0].message.tool_calls.map(
|
||||
(toolCall: any, index: number) => {
|
||||
const assistantToolCallMessage: ChatMessage = {
|
||||
role: "assistant",
|
||||
tool_calls: [toolCall],
|
||||
content: "", // Ensure content is defined, even if empty
|
||||
};
|
||||
return (
|
||||
<ChatMessageItem
|
||||
key={`choice-tool-call-${index}`}
|
||||
message={assistantToolCallMessage}
|
||||
/>
|
||||
);
|
||||
},
|
||||
)
|
||||
: null}
|
||||
</CardContent>
|
||||
</Card>
|
||||
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Output</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{completion.choices?.[0]?.message ? (
|
||||
<ChatMessageItem
|
||||
message={completion.choices[0].message as ChatMessage}
|
||||
/>
|
||||
) : (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
No message found in assistant's choice.
|
||||
</p>
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
</div>
|
||||
|
||||
<div className="md:w-1/3">
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Properties</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<ul className="space-y-2 text-sm text-gray-600">
|
||||
<li>
|
||||
<strong>Created:</strong>{" "}
|
||||
<span className="text-gray-900 font-medium">
|
||||
{new Date(completion.created * 1000).toLocaleString()}
|
||||
</span>
|
||||
</li>
|
||||
<li>
|
||||
<strong>ID:</strong>{" "}
|
||||
<span className="text-gray-900 font-medium">
|
||||
{completion.id}
|
||||
</span>
|
||||
</li>
|
||||
<li>
|
||||
<strong>Model:</strong>{" "}
|
||||
<span className="text-gray-900 font-medium">
|
||||
{completion.model}
|
||||
</span>
|
||||
</li>
|
||||
<li className="pt-1 mt-1 border-t border-gray-200">
|
||||
<strong>Finish Reason:</strong>{" "}
|
||||
<span className="text-gray-900 font-medium">
|
||||
{completion.choices?.[0]?.finish_reason || "N/A"}
|
||||
</span>
|
||||
</li>
|
||||
{completion.choices?.[0]?.message?.tool_calls &&
|
||||
completion.choices[0].message.tool_calls.length > 0 && (
|
||||
<li className="pt-1 mt-1 border-t border-gray-200">
|
||||
<strong>Functions/Tools Called:</strong>
|
||||
<ul className="list-disc list-inside pl-4 mt-1">
|
||||
{completion.choices[0].message.tool_calls.map(
|
||||
(toolCall: any, index: number) => (
|
||||
<li key={index}>
|
||||
<span className="text-gray-900 font-medium">
|
||||
{toolCall.function?.name || "N/A"}
|
||||
</span>
|
||||
</li>
|
||||
),
|
||||
)}
|
||||
</ul>
|
||||
</li>
|
||||
)}
|
||||
</ul>
|
||||
</CardContent>
|
||||
</Card>
|
||||
</div>
|
||||
</div>
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Output</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{completion.choices?.[0]?.message ? (
|
||||
<ChatMessageItem
|
||||
message={completion.choices[0].message as ChatMessage}
|
||||
/>
|
||||
) : (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
No message found in assistant's choice.
|
||||
</p>
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
</>
|
||||
);
|
||||
|
||||
// Properties sidebar
|
||||
const sidebar = (
|
||||
<PropertiesCard>
|
||||
<PropertyItem
|
||||
label="Created"
|
||||
value={new Date(completion.created * 1000).toLocaleString()}
|
||||
/>
|
||||
<PropertyItem label="ID" value={completion.id} />
|
||||
<PropertyItem label="Model" value={completion.model} />
|
||||
<PropertyItem
|
||||
label="Finish Reason"
|
||||
value={completion.choices?.[0]?.finish_reason || "N/A"}
|
||||
hasBorder
|
||||
/>
|
||||
{(() => {
|
||||
const toolCalls = completion.choices?.[0]?.message?.tool_calls;
|
||||
if (toolCalls && Array.isArray(toolCalls) && toolCalls.length > 0) {
|
||||
return (
|
||||
<PropertyItem
|
||||
label="Functions/Tools Called"
|
||||
value={
|
||||
<div>
|
||||
<ul className="list-disc list-inside pl-4 mt-1">
|
||||
{toolCalls.map((toolCall: any, index: number) => (
|
||||
<li key={index}>
|
||||
<span className="text-gray-900 font-medium">
|
||||
{toolCall.function?.name || "N/A"}
|
||||
</span>
|
||||
</li>
|
||||
))}
|
||||
</ul>
|
||||
</div>
|
||||
}
|
||||
hasBorder
|
||||
/>
|
||||
);
|
||||
}
|
||||
return null;
|
||||
})()}
|
||||
</PropertiesCard>
|
||||
);
|
||||
|
||||
return (
|
||||
<DetailLayout title={title} mainContent={mainContent} sidebar={sidebar} />
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import React from "react";
|
||||
import { render, screen, fireEvent } from "@testing-library/react";
|
||||
import "@testing-library/jest-dom";
|
||||
import { ChatCompletionsTable } from "./chat-completion-table";
|
||||
import { ChatCompletion } from "@/lib/types"; // Assuming this path is correct
|
||||
import { ChatCompletionsTable } from "./chat-completions-table";
|
||||
import { ChatCompletion } from "@/lib/types";
|
||||
|
||||
// Mock next/navigation
|
||||
const mockPush = jest.fn();
|
||||
|
@ -13,21 +13,25 @@ jest.mock("next/navigation", () => ({
|
|||
}));
|
||||
|
||||
// Mock helper functions
|
||||
// These are hoisted, so their mocks are available throughout the file
|
||||
jest.mock("@/lib/truncate-text");
|
||||
jest.mock("@/lib/format-tool-call");
|
||||
jest.mock("@/lib/format-message-content");
|
||||
|
||||
// Import the mocked functions to set up default or specific implementations
|
||||
import { truncateText as originalTruncateText } from "@/lib/truncate-text";
|
||||
import { formatToolCallToString as originalFormatToolCallToString } from "@/lib/format-tool-call";
|
||||
import {
|
||||
extractTextFromContentPart as originalExtractTextFromContentPart,
|
||||
extractDisplayableText as originalExtractDisplayableText,
|
||||
} from "@/lib/format-message-content";
|
||||
|
||||
// Cast to jest.Mock for typings
|
||||
const truncateText = originalTruncateText as jest.Mock;
|
||||
const formatToolCallToString = originalFormatToolCallToString as jest.Mock;
|
||||
const extractTextFromContentPart =
|
||||
originalExtractTextFromContentPart as jest.Mock;
|
||||
const extractDisplayableText = originalExtractDisplayableText as jest.Mock;
|
||||
|
||||
describe("ChatCompletionsTable", () => {
|
||||
const defaultProps = {
|
||||
completions: [] as ChatCompletion[],
|
||||
data: [] as ChatCompletion[],
|
||||
isLoading: false,
|
||||
error: null,
|
||||
};
|
||||
|
@ -36,28 +40,26 @@ describe("ChatCompletionsTable", () => {
|
|||
// Reset all mocks before each test
|
||||
mockPush.mockClear();
|
||||
truncateText.mockClear();
|
||||
formatToolCallToString.mockClear();
|
||||
extractTextFromContentPart.mockClear();
|
||||
extractDisplayableText.mockClear();
|
||||
|
||||
// Default pass-through implementation for tests not focusing on truncation/formatting
|
||||
// Default pass-through implementations
|
||||
truncateText.mockImplementation((text: string | undefined) => text);
|
||||
formatToolCallToString.mockImplementation((toolCall: any) =>
|
||||
toolCall && typeof toolCall === "object" && toolCall.name
|
||||
? `[DefaultToolCall:${toolCall.name}]`
|
||||
: "[InvalidToolCall]",
|
||||
extractTextFromContentPart.mockImplementation((content: unknown) =>
|
||||
typeof content === "string" ? content : "extracted text",
|
||||
);
|
||||
extractDisplayableText.mockImplementation(
|
||||
(message: unknown) =>
|
||||
(message as { content?: string })?.content || "extracted output",
|
||||
);
|
||||
});
|
||||
|
||||
test("renders without crashing with default props", () => {
|
||||
render(<ChatCompletionsTable {...defaultProps} />);
|
||||
// Check for a unique element that should be present in the non-empty, non-loading, non-error state
|
||||
// For now, as per Task 1, we will test the empty state message
|
||||
expect(screen.getByText("No chat completions found.")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("click on a row navigates to the correct URL", () => {
|
||||
const { rerender } = render(<ChatCompletionsTable {...defaultProps} />);
|
||||
|
||||
// Simulate a scenario where a completion exists and is clicked
|
||||
const mockCompletion: ChatCompletion = {
|
||||
id: "comp_123",
|
||||
object: "chat.completion",
|
||||
|
@ -73,9 +75,12 @@ describe("ChatCompletionsTable", () => {
|
|||
input_messages: [{ role: "user", content: "Test input" }],
|
||||
};
|
||||
|
||||
rerender(
|
||||
<ChatCompletionsTable {...defaultProps} completions={[mockCompletion]} />,
|
||||
);
|
||||
// Set up mocks to return expected values
|
||||
extractTextFromContentPart.mockReturnValue("Test input");
|
||||
extractDisplayableText.mockReturnValue("Test output");
|
||||
|
||||
render(<ChatCompletionsTable {...defaultProps} data={[mockCompletion]} />);
|
||||
|
||||
const row = screen.getByText("Test input").closest("tr");
|
||||
if (row) {
|
||||
fireEvent.click(row);
|
||||
|
@ -91,14 +96,13 @@ describe("ChatCompletionsTable", () => {
|
|||
<ChatCompletionsTable {...defaultProps} isLoading={true} />,
|
||||
);
|
||||
|
||||
// The Skeleton component uses data-slot="skeleton"
|
||||
const skeletonSelector = '[data-slot="skeleton"]';
|
||||
|
||||
// Check for skeleton in the table caption
|
||||
const tableCaption = container.querySelector("caption");
|
||||
expect(tableCaption).toBeInTheDocument();
|
||||
if (tableCaption) {
|
||||
const captionSkeleton = tableCaption.querySelector(skeletonSelector);
|
||||
const captionSkeleton = tableCaption.querySelector(
|
||||
'[data-slot="skeleton"]',
|
||||
);
|
||||
expect(captionSkeleton).toBeInTheDocument();
|
||||
}
|
||||
|
||||
|
@ -107,16 +111,10 @@ describe("ChatCompletionsTable", () => {
|
|||
expect(tableBody).toBeInTheDocument();
|
||||
if (tableBody) {
|
||||
const bodySkeletons = tableBody.querySelectorAll(
|
||||
`td ${skeletonSelector}`,
|
||||
'[data-slot="skeleton"]',
|
||||
);
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0); // Ensure at least one skeleton cell exists
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0);
|
||||
}
|
||||
|
||||
// General check: ensure multiple skeleton elements are present in the table overall
|
||||
const allSkeletonsInTable = container.querySelectorAll(
|
||||
`table ${skeletonSelector}`,
|
||||
);
|
||||
expect(allSkeletonsInTable.length).toBeGreaterThan(3); // e.g., caption + at least one row of 3 cells, or just a few
|
||||
});
|
||||
});
|
||||
|
||||
|
@ -140,14 +138,14 @@ describe("ChatCompletionsTable", () => {
|
|||
{...defaultProps}
|
||||
error={{ name: "Error", message: "" }}
|
||||
/>,
|
||||
); // Error with empty message
|
||||
);
|
||||
expect(
|
||||
screen.getByText("Error fetching data: An unknown error occurred"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error prop is an object without message", () => {
|
||||
render(<ChatCompletionsTable {...defaultProps} error={{} as Error} />); // Empty error object
|
||||
render(<ChatCompletionsTable {...defaultProps} error={{} as Error} />);
|
||||
expect(
|
||||
screen.getByText("Error fetching data: An unknown error occurred"),
|
||||
).toBeInTheDocument();
|
||||
|
@ -155,14 +153,8 @@ describe("ChatCompletionsTable", () => {
|
|||
});
|
||||
|
||||
describe("Empty State", () => {
|
||||
test('renders "No chat completions found." and no table when completions array is empty', () => {
|
||||
render(
|
||||
<ChatCompletionsTable
|
||||
completions={[]}
|
||||
isLoading={false}
|
||||
error={null}
|
||||
/>,
|
||||
);
|
||||
test('renders "No chat completions found." and no table when data array is empty', () => {
|
||||
render(<ChatCompletionsTable data={[]} isLoading={false} error={null} />);
|
||||
expect(
|
||||
screen.getByText("No chat completions found."),
|
||||
).toBeInTheDocument();
|
||||
|
@ -179,7 +171,7 @@ describe("ChatCompletionsTable", () => {
|
|||
{
|
||||
id: "comp_1",
|
||||
object: "chat.completion",
|
||||
created: 1710000000, // Fixed timestamp for test
|
||||
created: 1710000000,
|
||||
model: "llama-test-model",
|
||||
choices: [
|
||||
{
|
||||
|
@ -206,9 +198,22 @@ describe("ChatCompletionsTable", () => {
|
|||
},
|
||||
];
|
||||
|
||||
// Set up mocks to return expected values
|
||||
extractTextFromContentPart.mockImplementation((content: unknown) => {
|
||||
if (content === "Test input") return "Test input";
|
||||
if (content === "Another input") return "Another input";
|
||||
return "extracted text";
|
||||
});
|
||||
extractDisplayableText.mockImplementation((message: unknown) => {
|
||||
const msg = message as { content?: string };
|
||||
if (msg?.content === "Test output") return "Test output";
|
||||
if (msg?.content === "Another output") return "Another output";
|
||||
return "extracted output";
|
||||
});
|
||||
|
||||
render(
|
||||
<ChatCompletionsTable
|
||||
completions={mockCompletions}
|
||||
data={mockCompletions}
|
||||
isLoading={false}
|
||||
error={null}
|
||||
/>,
|
||||
|
@ -242,7 +247,7 @@ describe("ChatCompletionsTable", () => {
|
|||
});
|
||||
});
|
||||
|
||||
describe("Text Truncation and Tool Call Formatting", () => {
|
||||
describe("Text Truncation and Content Extraction", () => {
|
||||
test("truncates long input and output text", () => {
|
||||
// Specific mock implementation for this test
|
||||
truncateText.mockImplementation(
|
||||
|
@ -259,6 +264,10 @@ describe("ChatCompletionsTable", () => {
|
|||
"This is a very long input message that should be truncated.";
|
||||
const longOutput =
|
||||
"This is a very long output message that should also be truncated.";
|
||||
|
||||
extractTextFromContentPart.mockReturnValue(longInput);
|
||||
extractDisplayableText.mockReturnValue(longOutput);
|
||||
|
||||
const mockCompletions = [
|
||||
{
|
||||
id: "comp_trunc",
|
||||
|
@ -278,7 +287,7 @@ describe("ChatCompletionsTable", () => {
|
|||
|
||||
render(
|
||||
<ChatCompletionsTable
|
||||
completions={mockCompletions}
|
||||
data={mockCompletions}
|
||||
isLoading={false}
|
||||
error={null}
|
||||
/>,
|
||||
|
@ -289,52 +298,50 @@ describe("ChatCompletionsTable", () => {
|
|||
longInput.slice(0, 10) + "...",
|
||||
);
|
||||
expect(truncatedTexts.length).toBe(2); // one for input, one for output
|
||||
// Optionally, verify each one is in the document if getAllByText doesn't throw on not found
|
||||
truncatedTexts.forEach((textElement) =>
|
||||
expect(textElement).toBeInTheDocument(),
|
||||
);
|
||||
});
|
||||
|
||||
test("formats tool call output using formatToolCallToString", () => {
|
||||
// Specific mock implementation for this test
|
||||
formatToolCallToString.mockImplementation(
|
||||
(toolCall: any) => `[TOOL:${toolCall.name}]`,
|
||||
);
|
||||
// Ensure no truncation interferes for this specific test for clarity of tool call format
|
||||
truncateText.mockImplementation((text: string | undefined) => text);
|
||||
test("uses content extraction functions correctly", () => {
|
||||
const mockCompletion = {
|
||||
id: "comp_extract",
|
||||
object: "chat.completion",
|
||||
created: 1710003000,
|
||||
model: "llama-extract-model",
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: { role: "assistant", content: "Extracted output" },
|
||||
finish_reason: "stop",
|
||||
},
|
||||
],
|
||||
input_messages: [{ role: "user", content: "Extracted input" }],
|
||||
};
|
||||
|
||||
const toolCall = { name: "search", args: { query: "llama" } };
|
||||
const mockCompletions = [
|
||||
{
|
||||
id: "comp_tool",
|
||||
object: "chat.completion",
|
||||
created: 1710003000,
|
||||
model: "llama-tool-model",
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: {
|
||||
role: "assistant",
|
||||
content: "Tool output", // Content that will be prepended
|
||||
tool_calls: [toolCall],
|
||||
},
|
||||
finish_reason: "stop",
|
||||
},
|
||||
],
|
||||
input_messages: [{ role: "user", content: "Tool input" }],
|
||||
},
|
||||
];
|
||||
extractTextFromContentPart.mockReturnValue("Extracted input");
|
||||
extractDisplayableText.mockReturnValue("Extracted output");
|
||||
|
||||
render(
|
||||
<ChatCompletionsTable
|
||||
completions={mockCompletions}
|
||||
data={[mockCompletion]}
|
||||
isLoading={false}
|
||||
error={null}
|
||||
/>,
|
||||
);
|
||||
|
||||
// The component concatenates message.content and the formatted tool call
|
||||
expect(screen.getByText("Tool output [TOOL:search]")).toBeInTheDocument();
|
||||
// Verify the extraction functions were called
|
||||
expect(extractTextFromContentPart).toHaveBeenCalledWith(
|
||||
"Extracted input",
|
||||
);
|
||||
expect(extractDisplayableText).toHaveBeenCalledWith({
|
||||
role: "assistant",
|
||||
content: "Extracted output",
|
||||
});
|
||||
|
||||
// Verify the extracted content is displayed
|
||||
expect(screen.getByText("Extracted input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Extracted output")).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
});
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
"use client";
|
||||
|
||||
import { ChatCompletion } from "@/lib/types";
|
||||
import { LogsTable, LogTableRow } from "@/components/logs/logs-table";
|
||||
import {
|
||||
extractTextFromContentPart,
|
||||
extractDisplayableText,
|
||||
} from "@/lib/format-message-content";
|
||||
|
||||
interface ChatCompletionsTableProps {
|
||||
data: ChatCompletion[];
|
||||
isLoading: boolean;
|
||||
error: Error | null;
|
||||
}
|
||||
|
||||
function formatChatCompletionToRow(completion: ChatCompletion): LogTableRow {
|
||||
return {
|
||||
id: completion.id,
|
||||
input: extractTextFromContentPart(completion.input_messages?.[0]?.content),
|
||||
output: extractDisplayableText(completion.choices?.[0]?.message),
|
||||
model: completion.model,
|
||||
createdTime: new Date(completion.created * 1000).toLocaleString(),
|
||||
detailPath: `/logs/chat-completions/${completion.id}`,
|
||||
};
|
||||
}
|
||||
|
||||
export function ChatCompletionsTable({
|
||||
data,
|
||||
isLoading,
|
||||
error,
|
||||
}: ChatCompletionsTableProps) {
|
||||
const formattedData = data.map(formatChatCompletionToRow);
|
||||
|
||||
return (
|
||||
<LogsTable
|
||||
data={formattedData}
|
||||
isLoading={isLoading}
|
||||
error={error}
|
||||
caption="A list of your recent chat completions."
|
||||
emptyMessage="No chat completions found."
|
||||
/>
|
||||
);
|
||||
}
|
|
@ -4,45 +4,10 @@ import { ChatMessage } from "@/lib/types";
|
|||
import React from "react";
|
||||
import { formatToolCallToString } from "@/lib/format-tool-call";
|
||||
import { extractTextFromContentPart } from "@/lib/format-message-content";
|
||||
|
||||
// Sub-component or helper for the common label + content structure
|
||||
const MessageBlock: React.FC<{
|
||||
label: string;
|
||||
labelDetail?: string;
|
||||
content: React.ReactNode;
|
||||
}> = ({ label, labelDetail, content }) => {
|
||||
return (
|
||||
<div>
|
||||
<p className="py-1 font-semibold text-gray-800 mb-1">
|
||||
{label}
|
||||
{labelDetail && (
|
||||
<span className="text-xs text-gray-500 font-normal ml-1">
|
||||
{labelDetail}
|
||||
</span>
|
||||
)}
|
||||
</p>
|
||||
<div className="py-1">{content}</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
interface ToolCallBlockProps {
|
||||
children: React.ReactNode;
|
||||
className?: string;
|
||||
}
|
||||
|
||||
const ToolCallBlock = ({ children, className }: ToolCallBlockProps) => {
|
||||
// Common styling for both function call arguments and tool output blocks
|
||||
// Let's use slate-50 background as it's good for code-like content.
|
||||
const baseClassName =
|
||||
"p-3 bg-slate-50 border border-slate-200 rounded-md text-sm";
|
||||
|
||||
return (
|
||||
<div className={`${baseClassName} ${className || ""}`}>
|
||||
<pre className="whitespace-pre-wrap text-xs">{children}</pre>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
import {
|
||||
MessageBlock,
|
||||
ToolCallBlock,
|
||||
} from "@/components/ui/message-components";
|
||||
|
||||
interface ChatMessageItemProps {
|
||||
message: ChatMessage;
|
||||
|
@ -65,7 +30,11 @@ export function ChatMessageItem({ message }: ChatMessageItemProps) {
|
|||
);
|
||||
|
||||
case "assistant":
|
||||
if (message.tool_calls && message.tool_calls.length > 0) {
|
||||
if (
|
||||
message.tool_calls &&
|
||||
Array.isArray(message.tool_calls) &&
|
||||
message.tool_calls.length > 0
|
||||
) {
|
||||
return (
|
||||
<>
|
||||
{message.tool_calls.map((toolCall: any, index: number) => {
|
||||
|
|
141
llama_stack/ui/components/layout/detail-layout.tsx
Normal file
141
llama_stack/ui/components/layout/detail-layout.tsx
Normal file
|
@ -0,0 +1,141 @@
|
|||
import React from "react";
|
||||
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
|
||||
export function DetailLoadingView({ title }: { title: string }) {
|
||||
return (
|
||||
<>
|
||||
<Skeleton className="h-8 w-3/4 mb-6" /> {/* Title Skeleton */}
|
||||
<div className="flex flex-col md:flex-row gap-6">
|
||||
<div className="flex-grow md:w-2/3 space-y-6">
|
||||
{[...Array(2)].map((_, i) => (
|
||||
<Card key={`main-skeleton-card-${i}`}>
|
||||
<CardHeader>
|
||||
<CardTitle>
|
||||
<Skeleton className="h-6 w-1/2" />
|
||||
</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent className="space-y-2">
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-3/4" />
|
||||
</CardContent>
|
||||
</Card>
|
||||
))}
|
||||
</div>
|
||||
<div className="md:w-1/3">
|
||||
<div className="p-4 border rounded-lg shadow-sm bg-white space-y-3">
|
||||
<Skeleton className="h-6 w-1/3 mb-3" />{" "}
|
||||
{/* Properties Title Skeleton */}
|
||||
{[...Array(5)].map((_, i) => (
|
||||
<div key={`prop-skeleton-${i}`} className="space-y-1">
|
||||
<Skeleton className="h-4 w-1/4" />
|
||||
<Skeleton className="h-4 w-1/2" />
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
export function DetailErrorView({
|
||||
title,
|
||||
id,
|
||||
error,
|
||||
}: {
|
||||
title: string;
|
||||
id: string;
|
||||
error: Error;
|
||||
}) {
|
||||
return (
|
||||
<>
|
||||
<h1 className="text-2xl font-bold mb-6">{title}</h1>
|
||||
<p>
|
||||
Error loading details for ID {id}: {error.message}
|
||||
</p>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
export function DetailNotFoundView({
|
||||
title,
|
||||
id,
|
||||
}: {
|
||||
title: string;
|
||||
id: string;
|
||||
}) {
|
||||
return (
|
||||
<>
|
||||
<h1 className="text-2xl font-bold mb-6">{title}</h1>
|
||||
<p>No details found for ID: {id}.</p>
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
export interface PropertyItemProps {
|
||||
label: string;
|
||||
value: React.ReactNode;
|
||||
className?: string;
|
||||
hasBorder?: boolean;
|
||||
}
|
||||
|
||||
export function PropertyItem({
|
||||
label,
|
||||
value,
|
||||
className = "",
|
||||
hasBorder = false,
|
||||
}: PropertyItemProps) {
|
||||
return (
|
||||
<li
|
||||
className={`${hasBorder ? "pt-1 mt-1 border-t border-gray-200" : ""} ${className}`}
|
||||
>
|
||||
<strong>{label}:</strong>{" "}
|
||||
{typeof value === "string" || typeof value === "number" ? (
|
||||
<span className="text-gray-900 font-medium">{value}</span>
|
||||
) : (
|
||||
value
|
||||
)}
|
||||
</li>
|
||||
);
|
||||
}
|
||||
|
||||
export interface PropertiesCardProps {
|
||||
children: React.ReactNode;
|
||||
}
|
||||
|
||||
export function PropertiesCard({ children }: PropertiesCardProps) {
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Properties</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<ul className="space-y-2 text-sm text-gray-600">{children}</ul>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
|
||||
export interface DetailLayoutProps {
|
||||
title: string;
|
||||
mainContent: React.ReactNode;
|
||||
sidebar: React.ReactNode;
|
||||
}
|
||||
|
||||
export function DetailLayout({
|
||||
title,
|
||||
mainContent,
|
||||
sidebar,
|
||||
}: DetailLayoutProps) {
|
||||
return (
|
||||
<>
|
||||
<h1 className="text-2xl font-bold mb-6">{title}</h1>
|
||||
<div className="flex flex-col md:flex-row gap-6">
|
||||
<div className="flex-grow md:w-2/3 space-y-6">{mainContent}</div>
|
||||
<div className="md:w-1/3">{sidebar}</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
49
llama_stack/ui/components/layout/logs-layout.tsx
Normal file
49
llama_stack/ui/components/layout/logs-layout.tsx
Normal file
|
@ -0,0 +1,49 @@
|
|||
"use client";
|
||||
|
||||
import React from "react";
|
||||
import { usePathname, useParams } from "next/navigation";
|
||||
import {
|
||||
PageBreadcrumb,
|
||||
BreadcrumbSegment,
|
||||
} from "@/components/layout/page-breadcrumb";
|
||||
import { truncateText } from "@/lib/truncate-text";
|
||||
|
||||
interface LogsLayoutProps {
|
||||
children: React.ReactNode;
|
||||
sectionLabel: string;
|
||||
basePath: string;
|
||||
}
|
||||
|
||||
export default function LogsLayout({
|
||||
children,
|
||||
sectionLabel,
|
||||
basePath,
|
||||
}: LogsLayoutProps) {
|
||||
const pathname = usePathname();
|
||||
const params = useParams();
|
||||
|
||||
let segments: BreadcrumbSegment[] = [];
|
||||
|
||||
if (pathname === basePath) {
|
||||
segments = [{ label: sectionLabel }];
|
||||
}
|
||||
|
||||
const idParam = params?.id;
|
||||
if (idParam && typeof idParam === "string") {
|
||||
segments = [
|
||||
{ label: sectionLabel, href: basePath },
|
||||
{ label: `Details (${truncateText(idParam, 20)})` },
|
||||
];
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="container mx-auto p-4">
|
||||
<>
|
||||
{segments.length > 0 && (
|
||||
<PageBreadcrumb segments={segments} className="mb-4" />
|
||||
)}
|
||||
{children}
|
||||
</>
|
||||
</div>
|
||||
);
|
||||
}
|
350
llama_stack/ui/components/logs/logs-table.test.tsx
Normal file
350
llama_stack/ui/components/logs/logs-table.test.tsx
Normal file
|
@ -0,0 +1,350 @@
|
|||
import React from "react";
|
||||
import { render, screen, fireEvent } from "@testing-library/react";
|
||||
import "@testing-library/jest-dom";
|
||||
import { LogsTable, LogTableRow } from "./logs-table";
|
||||
|
||||
// Mock next/navigation
|
||||
const mockPush = jest.fn();
|
||||
jest.mock("next/navigation", () => ({
|
||||
useRouter: () => ({
|
||||
push: mockPush,
|
||||
}),
|
||||
}));
|
||||
|
||||
// Mock helper functions
|
||||
jest.mock("@/lib/truncate-text");
|
||||
|
||||
// Import the mocked functions
|
||||
import { truncateText as originalTruncateText } from "@/lib/truncate-text";
|
||||
|
||||
// Cast to jest.Mock for typings
|
||||
const truncateText = originalTruncateText as jest.Mock;
|
||||
|
||||
describe("LogsTable", () => {
|
||||
const defaultProps = {
|
||||
data: [] as LogTableRow[],
|
||||
isLoading: false,
|
||||
error: null,
|
||||
caption: "Test table caption",
|
||||
emptyMessage: "No data found",
|
||||
};
|
||||
|
||||
beforeEach(() => {
|
||||
// Reset all mocks before each test
|
||||
mockPush.mockClear();
|
||||
truncateText.mockClear();
|
||||
|
||||
// Default pass-through implementation
|
||||
truncateText.mockImplementation((text: string | undefined) => text);
|
||||
});
|
||||
|
||||
test("renders without crashing with default props", () => {
|
||||
render(<LogsTable {...defaultProps} />);
|
||||
expect(screen.getByText("No data found")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("click on a row navigates to the correct URL", () => {
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_123",
|
||||
input: "Test input",
|
||||
output: "Test output",
|
||||
model: "test-model",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/test/path/row_123",
|
||||
},
|
||||
];
|
||||
|
||||
render(<LogsTable {...defaultProps} data={mockData} />);
|
||||
|
||||
const row = screen.getByText("Test input").closest("tr");
|
||||
if (row) {
|
||||
fireEvent.click(row);
|
||||
expect(mockPush).toHaveBeenCalledWith("/test/path/row_123");
|
||||
} else {
|
||||
throw new Error('Row with "Test input" not found for router mock test.');
|
||||
}
|
||||
});
|
||||
|
||||
describe("Loading State", () => {
|
||||
test("renders skeleton UI when isLoading is true", () => {
|
||||
const { container } = render(
|
||||
<LogsTable {...defaultProps} isLoading={true} />,
|
||||
);
|
||||
|
||||
// Check for skeleton in the table caption
|
||||
const tableCaption = container.querySelector("caption");
|
||||
expect(tableCaption).toBeInTheDocument();
|
||||
if (tableCaption) {
|
||||
const captionSkeleton = tableCaption.querySelector(
|
||||
'[data-slot="skeleton"]',
|
||||
);
|
||||
expect(captionSkeleton).toBeInTheDocument();
|
||||
}
|
||||
|
||||
// Check for skeletons in the table body cells
|
||||
const tableBody = container.querySelector("tbody");
|
||||
expect(tableBody).toBeInTheDocument();
|
||||
if (tableBody) {
|
||||
const bodySkeletons = tableBody.querySelectorAll(
|
||||
'[data-slot="skeleton"]',
|
||||
);
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0);
|
||||
}
|
||||
|
||||
// Check that table headers are still rendered
|
||||
expect(screen.getByText("Input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Output")).toBeInTheDocument();
|
||||
expect(screen.getByText("Model")).toBeInTheDocument();
|
||||
expect(screen.getByText("Created")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders correct number of skeleton rows", () => {
|
||||
const { container } = render(
|
||||
<LogsTable {...defaultProps} isLoading={true} />,
|
||||
);
|
||||
|
||||
const skeletonRows = container.querySelectorAll("tbody tr");
|
||||
expect(skeletonRows.length).toBe(3); // Should render 3 skeleton rows
|
||||
});
|
||||
});
|
||||
|
||||
describe("Error State", () => {
|
||||
test("renders error message when error prop is provided", () => {
|
||||
const errorMessage = "Network Error";
|
||||
render(
|
||||
<LogsTable
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: errorMessage }}
|
||||
/>,
|
||||
);
|
||||
expect(
|
||||
screen.getByText(`Error fetching data: ${errorMessage}`),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error.message is not available", () => {
|
||||
render(
|
||||
<LogsTable {...defaultProps} error={{ name: "Error", message: "" }} />,
|
||||
);
|
||||
expect(
|
||||
screen.getByText("Error fetching data: An unknown error occurred"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error prop is an object without message", () => {
|
||||
render(<LogsTable {...defaultProps} error={{} as Error} />);
|
||||
expect(
|
||||
screen.getByText("Error fetching data: An unknown error occurred"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("does not render table when in error state", () => {
|
||||
render(
|
||||
<LogsTable
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: "Test error" }}
|
||||
/>,
|
||||
);
|
||||
const table = screen.queryByRole("table");
|
||||
expect(table).not.toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Empty State", () => {
|
||||
test("renders custom empty message when data array is empty", () => {
|
||||
render(
|
||||
<LogsTable
|
||||
{...defaultProps}
|
||||
data={[]}
|
||||
emptyMessage="Custom empty message"
|
||||
/>,
|
||||
);
|
||||
expect(screen.getByText("Custom empty message")).toBeInTheDocument();
|
||||
|
||||
// Ensure that the table structure is NOT rendered in the empty state
|
||||
const table = screen.queryByRole("table");
|
||||
expect(table).not.toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Data Rendering", () => {
|
||||
test("renders table caption, headers, and data correctly", () => {
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_1",
|
||||
input: "First input",
|
||||
output: "First output",
|
||||
model: "model-1",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/path/1",
|
||||
},
|
||||
{
|
||||
id: "row_2",
|
||||
input: "Second input",
|
||||
output: "Second output",
|
||||
model: "model-2",
|
||||
createdTime: "2024-01-02 13:00:00",
|
||||
detailPath: "/path/2",
|
||||
},
|
||||
];
|
||||
|
||||
render(
|
||||
<LogsTable
|
||||
{...defaultProps}
|
||||
data={mockData}
|
||||
caption="Custom table caption"
|
||||
/>,
|
||||
);
|
||||
|
||||
// Table caption
|
||||
expect(screen.getByText("Custom table caption")).toBeInTheDocument();
|
||||
|
||||
// Table headers
|
||||
expect(screen.getByText("Input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Output")).toBeInTheDocument();
|
||||
expect(screen.getByText("Model")).toBeInTheDocument();
|
||||
expect(screen.getByText("Created")).toBeInTheDocument();
|
||||
|
||||
// Data rows
|
||||
expect(screen.getByText("First input")).toBeInTheDocument();
|
||||
expect(screen.getByText("First output")).toBeInTheDocument();
|
||||
expect(screen.getByText("model-1")).toBeInTheDocument();
|
||||
expect(screen.getByText("2024-01-01 12:00:00")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText("Second input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Second output")).toBeInTheDocument();
|
||||
expect(screen.getByText("model-2")).toBeInTheDocument();
|
||||
expect(screen.getByText("2024-01-02 13:00:00")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("applies correct CSS classes to table rows", () => {
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_1",
|
||||
input: "Test input",
|
||||
output: "Test output",
|
||||
model: "test-model",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/test/path",
|
||||
},
|
||||
];
|
||||
|
||||
render(<LogsTable {...defaultProps} data={mockData} />);
|
||||
|
||||
const row = screen.getByText("Test input").closest("tr");
|
||||
expect(row).toHaveClass("cursor-pointer");
|
||||
expect(row).toHaveClass("hover:bg-muted/50");
|
||||
});
|
||||
|
||||
test("applies correct alignment to Created column", () => {
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_1",
|
||||
input: "Test input",
|
||||
output: "Test output",
|
||||
model: "test-model",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/test/path",
|
||||
},
|
||||
];
|
||||
|
||||
render(<LogsTable {...defaultProps} data={mockData} />);
|
||||
|
||||
const createdCell = screen.getByText("2024-01-01 12:00:00").closest("td");
|
||||
expect(createdCell).toHaveClass("text-right");
|
||||
});
|
||||
});
|
||||
|
||||
describe("Text Truncation", () => {
|
||||
test("truncates input and output text using truncateText function", () => {
|
||||
// Mock truncateText to return truncated versions
|
||||
truncateText.mockImplementation((text: string | undefined) => {
|
||||
if (typeof text === "string" && text.length > 10) {
|
||||
return text.slice(0, 10) + "...";
|
||||
}
|
||||
return text;
|
||||
});
|
||||
|
||||
const longInput =
|
||||
"This is a very long input text that should be truncated";
|
||||
const longOutput =
|
||||
"This is a very long output text that should be truncated";
|
||||
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_1",
|
||||
input: longInput,
|
||||
output: longOutput,
|
||||
model: "test-model",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/test/path",
|
||||
},
|
||||
];
|
||||
|
||||
render(<LogsTable {...defaultProps} data={mockData} />);
|
||||
|
||||
// Verify truncateText was called
|
||||
expect(truncateText).toHaveBeenCalledWith(longInput);
|
||||
expect(truncateText).toHaveBeenCalledWith(longOutput);
|
||||
|
||||
// Verify truncated text is displayed
|
||||
const truncatedTexts = screen.getAllByText("This is a ...");
|
||||
expect(truncatedTexts).toHaveLength(2); // one for input, one for output
|
||||
truncatedTexts.forEach((textElement) =>
|
||||
expect(textElement).toBeInTheDocument(),
|
||||
);
|
||||
});
|
||||
|
||||
test("does not truncate model names", () => {
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_1",
|
||||
input: "Test input",
|
||||
output: "Test output",
|
||||
model: "very-long-model-name-that-should-not-be-truncated",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/test/path",
|
||||
},
|
||||
];
|
||||
|
||||
render(<LogsTable {...defaultProps} data={mockData} />);
|
||||
|
||||
// Model name should not be passed to truncateText
|
||||
expect(truncateText).not.toHaveBeenCalledWith(
|
||||
"very-long-model-name-that-should-not-be-truncated",
|
||||
);
|
||||
|
||||
// Full model name should be displayed
|
||||
expect(
|
||||
screen.getByText("very-long-model-name-that-should-not-be-truncated"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Accessibility", () => {
|
||||
test("table has proper role and structure", () => {
|
||||
const mockData: LogTableRow[] = [
|
||||
{
|
||||
id: "row_1",
|
||||
input: "Test input",
|
||||
output: "Test output",
|
||||
model: "test-model",
|
||||
createdTime: "2024-01-01 12:00:00",
|
||||
detailPath: "/test/path",
|
||||
},
|
||||
];
|
||||
|
||||
render(<LogsTable {...defaultProps} data={mockData} />);
|
||||
|
||||
const table = screen.getByRole("table");
|
||||
expect(table).toBeInTheDocument();
|
||||
|
||||
const columnHeaders = screen.getAllByRole("columnheader");
|
||||
expect(columnHeaders).toHaveLength(4);
|
||||
|
||||
const rows = screen.getAllByRole("row");
|
||||
expect(rows).toHaveLength(2); // 1 header row + 1 data row
|
||||
});
|
||||
});
|
||||
});
|
|
@ -1,12 +1,7 @@
|
|||
"use client";
|
||||
|
||||
import { useRouter } from "next/navigation";
|
||||
import { ChatCompletion } from "@/lib/types";
|
||||
import { truncateText } from "@/lib/truncate-text";
|
||||
import {
|
||||
extractTextFromContentPart,
|
||||
extractDisplayableText,
|
||||
} from "@/lib/format-message-content";
|
||||
import {
|
||||
Table,
|
||||
TableBody,
|
||||
|
@ -18,17 +13,31 @@ import {
|
|||
} from "@/components/ui/table";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
|
||||
interface ChatCompletionsTableProps {
|
||||
completions: ChatCompletion[];
|
||||
isLoading: boolean;
|
||||
error: Error | null;
|
||||
// Generic table row data interface
|
||||
export interface LogTableRow {
|
||||
id: string;
|
||||
input: string;
|
||||
output: string;
|
||||
model: string;
|
||||
createdTime: string;
|
||||
detailPath: string;
|
||||
}
|
||||
|
||||
export function ChatCompletionsTable({
|
||||
completions,
|
||||
interface LogsTableProps {
|
||||
data: LogTableRow[];
|
||||
isLoading: boolean;
|
||||
error: Error | null;
|
||||
caption: string;
|
||||
emptyMessage: string;
|
||||
}
|
||||
|
||||
export function LogsTable({
|
||||
data,
|
||||
isLoading,
|
||||
error,
|
||||
}: ChatCompletionsTableProps) {
|
||||
caption,
|
||||
emptyMessage,
|
||||
}: LogsTableProps) {
|
||||
const router = useRouter();
|
||||
|
||||
const tableHeader = (
|
||||
|
@ -77,41 +86,25 @@ export function ChatCompletionsTable({
|
|||
);
|
||||
}
|
||||
|
||||
if (completions.length === 0) {
|
||||
return <p>No chat completions found.</p>;
|
||||
if (data.length === 0) {
|
||||
return <p>{emptyMessage}</p>;
|
||||
}
|
||||
|
||||
return (
|
||||
<Table>
|
||||
<TableCaption>A list of your recent chat completions.</TableCaption>
|
||||
<TableCaption>{caption}</TableCaption>
|
||||
{tableHeader}
|
||||
<TableBody>
|
||||
{completions.map((completion) => (
|
||||
{data.map((row) => (
|
||||
<TableRow
|
||||
key={completion.id}
|
||||
onClick={() =>
|
||||
router.push(`/logs/chat-completions/${completion.id}`)
|
||||
}
|
||||
key={row.id}
|
||||
onClick={() => router.push(row.detailPath)}
|
||||
className="cursor-pointer hover:bg-muted/50"
|
||||
>
|
||||
<TableCell>
|
||||
{truncateText(
|
||||
extractTextFromContentPart(
|
||||
completion.input_messages?.[0]?.content,
|
||||
),
|
||||
)}
|
||||
</TableCell>
|
||||
<TableCell>
|
||||
{(() => {
|
||||
const message = completion.choices?.[0]?.message;
|
||||
const outputText = extractDisplayableText(message);
|
||||
return truncateText(outputText);
|
||||
})()}
|
||||
</TableCell>
|
||||
<TableCell>{completion.model}</TableCell>
|
||||
<TableCell className="text-right">
|
||||
{new Date(completion.created * 1000).toLocaleString()}
|
||||
</TableCell>
|
||||
<TableCell>{truncateText(row.input)}</TableCell>
|
||||
<TableCell>{truncateText(row.output)}</TableCell>
|
||||
<TableCell>{row.model}</TableCell>
|
||||
<TableCell className="text-right">{row.createdTime}</TableCell>
|
||||
</TableRow>
|
||||
))}
|
||||
</TableBody>
|
|
@ -0,0 +1,56 @@
|
|||
import { useFunctionCallGrouping } from "../hooks/function-call-grouping";
|
||||
import { ItemRenderer } from "../items/item-renderer";
|
||||
import { GroupedFunctionCallItemComponent } from "../items/grouped-function-call-item";
|
||||
import {
|
||||
isFunctionCallItem,
|
||||
isFunctionCallOutputItem,
|
||||
AnyResponseItem,
|
||||
} from "../utils/item-types";
|
||||
|
||||
interface GroupedItemsDisplayProps {
|
||||
items: AnyResponseItem[];
|
||||
keyPrefix: string;
|
||||
defaultRole?: string;
|
||||
}
|
||||
|
||||
export function GroupedItemsDisplay({
|
||||
items,
|
||||
keyPrefix,
|
||||
defaultRole = "unknown",
|
||||
}: GroupedItemsDisplayProps) {
|
||||
const groupedItems = useFunctionCallGrouping(items);
|
||||
|
||||
return (
|
||||
<>
|
||||
{groupedItems.map((groupedItem) => {
|
||||
// If this is a function call with an output, render the grouped component
|
||||
if (
|
||||
groupedItem.outputItem &&
|
||||
isFunctionCallItem(groupedItem.item) &&
|
||||
isFunctionCallOutputItem(groupedItem.outputItem)
|
||||
) {
|
||||
return (
|
||||
<GroupedFunctionCallItemComponent
|
||||
key={`${keyPrefix}-${groupedItem.index}`}
|
||||
functionCall={groupedItem.item}
|
||||
output={groupedItem.outputItem}
|
||||
index={groupedItem.index}
|
||||
keyPrefix={keyPrefix}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
// Otherwise, render the individual item
|
||||
return (
|
||||
<ItemRenderer
|
||||
key={`${keyPrefix}-${groupedItem.index}`}
|
||||
item={groupedItem.item}
|
||||
index={groupedItem.index}
|
||||
keyPrefix={keyPrefix}
|
||||
defaultRole={defaultRole}
|
||||
/>
|
||||
);
|
||||
})}
|
||||
</>
|
||||
);
|
||||
}
|
|
@ -0,0 +1,92 @@
|
|||
import { useMemo } from "react";
|
||||
import {
|
||||
isFunctionCallOutputItem,
|
||||
AnyResponseItem,
|
||||
FunctionCallOutputItem,
|
||||
} from "../utils/item-types";
|
||||
|
||||
export interface GroupedItem {
|
||||
item: AnyResponseItem;
|
||||
index: number;
|
||||
outputItem?: AnyResponseItem;
|
||||
outputIndex?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Hook to group function calls with their corresponding outputs
|
||||
* @param items Array of items to group
|
||||
* @returns Array of grouped items with their outputs
|
||||
*/
|
||||
export function useFunctionCallGrouping(
|
||||
items: AnyResponseItem[],
|
||||
): GroupedItem[] {
|
||||
return useMemo(() => {
|
||||
const groupedItems: GroupedItem[] = [];
|
||||
const processedIndices = new Set<number>();
|
||||
|
||||
// Build a map of call_id to indices for function_call_output items
|
||||
const callIdToIndices = new Map<string, number[]>();
|
||||
|
||||
for (let i = 0; i < items.length; i++) {
|
||||
const item = items[i];
|
||||
if (isFunctionCallOutputItem(item)) {
|
||||
if (!callIdToIndices.has(item.call_id)) {
|
||||
callIdToIndices.set(item.call_id, []);
|
||||
}
|
||||
callIdToIndices.get(item.call_id)!.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Process items and group function calls with their outputs
|
||||
for (let i = 0; i < items.length; i++) {
|
||||
if (processedIndices.has(i)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const currentItem = items[i];
|
||||
|
||||
if (
|
||||
currentItem.type === "function_call" &&
|
||||
"name" in currentItem &&
|
||||
"call_id" in currentItem
|
||||
) {
|
||||
const functionCallId = currentItem.call_id as string;
|
||||
let outputIndex = -1;
|
||||
let outputItem: FunctionCallOutputItem | null = null;
|
||||
|
||||
const relatedIndices = callIdToIndices.get(functionCallId) || [];
|
||||
for (const idx of relatedIndices) {
|
||||
const potentialOutput = items[idx];
|
||||
outputIndex = idx;
|
||||
outputItem = potentialOutput as FunctionCallOutputItem;
|
||||
break;
|
||||
}
|
||||
|
||||
if (outputItem && outputIndex !== -1) {
|
||||
// Group function call with its function_call_output
|
||||
groupedItems.push({
|
||||
item: currentItem,
|
||||
index: i,
|
||||
outputItem,
|
||||
outputIndex,
|
||||
});
|
||||
|
||||
// Mark both items as processed
|
||||
processedIndices.add(i);
|
||||
processedIndices.add(outputIndex);
|
||||
|
||||
// Matching function call and output found, skip to next item
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// render normally
|
||||
groupedItems.push({
|
||||
item: currentItem,
|
||||
index: i,
|
||||
});
|
||||
processedIndices.add(i);
|
||||
}
|
||||
|
||||
return groupedItems;
|
||||
}, [items]);
|
||||
}
|
|
@ -0,0 +1,29 @@
|
|||
import {
|
||||
MessageBlock,
|
||||
ToolCallBlock,
|
||||
} from "@/components/ui/message-components";
|
||||
import { FunctionCallItem } from "../utils/item-types";
|
||||
|
||||
interface FunctionCallItemProps {
|
||||
item: FunctionCallItem;
|
||||
index: number;
|
||||
keyPrefix: string;
|
||||
}
|
||||
|
||||
export function FunctionCallItemComponent({
|
||||
item,
|
||||
index,
|
||||
keyPrefix,
|
||||
}: FunctionCallItemProps) {
|
||||
const name = item.name || "unknown";
|
||||
const args = item.arguments || "{}";
|
||||
const formattedFunctionCall = `${name}(${args})`;
|
||||
|
||||
return (
|
||||
<MessageBlock
|
||||
key={`${keyPrefix}-${index}`}
|
||||
label="Function Call"
|
||||
content={<ToolCallBlock>{formattedFunctionCall}</ToolCallBlock>}
|
||||
/>
|
||||
);
|
||||
}
|
37
llama_stack/ui/components/responses/items/generic-item.tsx
Normal file
37
llama_stack/ui/components/responses/items/generic-item.tsx
Normal file
|
@ -0,0 +1,37 @@
|
|||
import {
|
||||
MessageBlock,
|
||||
ToolCallBlock,
|
||||
} from "@/components/ui/message-components";
|
||||
import { BaseItem } from "../utils/item-types";
|
||||
|
||||
interface GenericItemProps {
|
||||
item: BaseItem;
|
||||
index: number;
|
||||
keyPrefix: string;
|
||||
}
|
||||
|
||||
export function GenericItemComponent({
|
||||
item,
|
||||
index,
|
||||
keyPrefix,
|
||||
}: GenericItemProps) {
|
||||
// Handle other types like function calls, tool outputs, etc.
|
||||
const itemData = item as Record<string, unknown>;
|
||||
|
||||
const content = itemData.content
|
||||
? typeof itemData.content === "string"
|
||||
? itemData.content
|
||||
: JSON.stringify(itemData.content, null, 2)
|
||||
: JSON.stringify(itemData, null, 2);
|
||||
|
||||
const label = keyPrefix === "input" ? "Input" : "Output";
|
||||
|
||||
return (
|
||||
<MessageBlock
|
||||
key={`${keyPrefix}-${index}`}
|
||||
label={label}
|
||||
labelDetail={`(${itemData.type})`}
|
||||
content={<ToolCallBlock>{content}</ToolCallBlock>}
|
||||
/>
|
||||
);
|
||||
}
|
|
@ -0,0 +1,54 @@
|
|||
import {
|
||||
MessageBlock,
|
||||
ToolCallBlock,
|
||||
} from "@/components/ui/message-components";
|
||||
import { FunctionCallItem, FunctionCallOutputItem } from "../utils/item-types";
|
||||
|
||||
interface GroupedFunctionCallItemProps {
|
||||
functionCall: FunctionCallItem;
|
||||
output: FunctionCallOutputItem;
|
||||
index: number;
|
||||
keyPrefix: string;
|
||||
}
|
||||
|
||||
export function GroupedFunctionCallItemComponent({
|
||||
functionCall,
|
||||
output,
|
||||
index,
|
||||
keyPrefix,
|
||||
}: GroupedFunctionCallItemProps) {
|
||||
const name = functionCall.name || "unknown";
|
||||
const args = functionCall.arguments || "{}";
|
||||
|
||||
// Extract the output content from function_call_output
|
||||
let outputContent = "";
|
||||
if (output.output) {
|
||||
outputContent =
|
||||
typeof output.output === "string"
|
||||
? output.output
|
||||
: JSON.stringify(output.output);
|
||||
} else {
|
||||
outputContent = JSON.stringify(output, null, 2);
|
||||
}
|
||||
|
||||
const functionCallContent = (
|
||||
<div>
|
||||
<div className="mb-2">
|
||||
<span className="text-sm text-gray-600">Arguments</span>
|
||||
<ToolCallBlock>{`${name}(${args})`}</ToolCallBlock>
|
||||
</div>
|
||||
<div>
|
||||
<span className="text-sm text-gray-600">Output</span>
|
||||
<ToolCallBlock>{outputContent}</ToolCallBlock>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
|
||||
return (
|
||||
<MessageBlock
|
||||
key={`${keyPrefix}-${index}`}
|
||||
label="Function Call"
|
||||
content={functionCallContent}
|
||||
/>
|
||||
);
|
||||
}
|
6
llama_stack/ui/components/responses/items/index.ts
Normal file
6
llama_stack/ui/components/responses/items/index.ts
Normal file
|
@ -0,0 +1,6 @@
|
|||
export { MessageItemComponent } from "./message-item";
|
||||
export { FunctionCallItemComponent } from "./function-call-item";
|
||||
export { WebSearchItemComponent } from "./web-search-item";
|
||||
export { GenericItemComponent } from "./generic-item";
|
||||
export { GroupedFunctionCallItemComponent } from "./grouped-function-call-item";
|
||||
export { ItemRenderer } from "./item-renderer";
|
60
llama_stack/ui/components/responses/items/item-renderer.tsx
Normal file
60
llama_stack/ui/components/responses/items/item-renderer.tsx
Normal file
|
@ -0,0 +1,60 @@
|
|||
import {
|
||||
isMessageItem,
|
||||
isFunctionCallItem,
|
||||
isWebSearchCallItem,
|
||||
AnyResponseItem,
|
||||
} from "../utils/item-types";
|
||||
import { MessageItemComponent } from "./message-item";
|
||||
import { FunctionCallItemComponent } from "./function-call-item";
|
||||
import { WebSearchItemComponent } from "./web-search-item";
|
||||
import { GenericItemComponent } from "./generic-item";
|
||||
|
||||
interface ItemRendererProps {
|
||||
item: AnyResponseItem;
|
||||
index: number;
|
||||
keyPrefix: string;
|
||||
defaultRole?: string;
|
||||
}
|
||||
|
||||
export function ItemRenderer({
|
||||
item,
|
||||
index,
|
||||
keyPrefix,
|
||||
defaultRole = "unknown",
|
||||
}: ItemRendererProps) {
|
||||
if (isMessageItem(item)) {
|
||||
return (
|
||||
<MessageItemComponent
|
||||
item={item}
|
||||
index={index}
|
||||
keyPrefix={keyPrefix}
|
||||
defaultRole={defaultRole}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isFunctionCallItem(item)) {
|
||||
return (
|
||||
<FunctionCallItemComponent
|
||||
item={item}
|
||||
index={index}
|
||||
keyPrefix={keyPrefix}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isWebSearchCallItem(item)) {
|
||||
return (
|
||||
<WebSearchItemComponent item={item} index={index} keyPrefix={keyPrefix} />
|
||||
);
|
||||
}
|
||||
|
||||
// Fallback to generic item for unknown types
|
||||
return (
|
||||
<GenericItemComponent
|
||||
item={item as any}
|
||||
index={index}
|
||||
keyPrefix={keyPrefix}
|
||||
/>
|
||||
);
|
||||
}
|
41
llama_stack/ui/components/responses/items/message-item.tsx
Normal file
41
llama_stack/ui/components/responses/items/message-item.tsx
Normal file
|
@ -0,0 +1,41 @@
|
|||
import { MessageBlock } from "@/components/ui/message-components";
|
||||
import { MessageItem } from "../utils/item-types";
|
||||
|
||||
interface MessageItemProps {
|
||||
item: MessageItem;
|
||||
index: number;
|
||||
keyPrefix: string;
|
||||
defaultRole?: string;
|
||||
}
|
||||
|
||||
export function MessageItemComponent({
|
||||
item,
|
||||
index,
|
||||
keyPrefix,
|
||||
defaultRole = "unknown",
|
||||
}: MessageItemProps) {
|
||||
let content = "";
|
||||
|
||||
if (typeof item.content === "string") {
|
||||
content = item.content;
|
||||
} else if (Array.isArray(item.content)) {
|
||||
content = item.content
|
||||
.map((c) => {
|
||||
return c.type === "input_text" || c.type === "output_text"
|
||||
? c.text
|
||||
: JSON.stringify(c);
|
||||
})
|
||||
.join(" ");
|
||||
}
|
||||
|
||||
const role = item.role || defaultRole;
|
||||
const label = role.charAt(0).toUpperCase() + role.slice(1);
|
||||
|
||||
return (
|
||||
<MessageBlock
|
||||
key={`${keyPrefix}-${index}`}
|
||||
label={label}
|
||||
content={content}
|
||||
/>
|
||||
);
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
import {
|
||||
MessageBlock,
|
||||
ToolCallBlock,
|
||||
} from "@/components/ui/message-components";
|
||||
import { WebSearchCallItem } from "../utils/item-types";
|
||||
|
||||
interface WebSearchItemProps {
|
||||
item: WebSearchCallItem;
|
||||
index: number;
|
||||
keyPrefix: string;
|
||||
}
|
||||
|
||||
export function WebSearchItemComponent({
|
||||
item,
|
||||
index,
|
||||
keyPrefix,
|
||||
}: WebSearchItemProps) {
|
||||
const formattedWebSearch = `web_search_call(status: ${item.status})`;
|
||||
|
||||
return (
|
||||
<MessageBlock
|
||||
key={`${keyPrefix}-${index}`}
|
||||
label="Function Call"
|
||||
labelDetail="(Web Search)"
|
||||
content={<ToolCallBlock>{formattedWebSearch}</ToolCallBlock>}
|
||||
/>
|
||||
);
|
||||
}
|
777
llama_stack/ui/components/responses/responses-detail.test.tsx
Normal file
777
llama_stack/ui/components/responses/responses-detail.test.tsx
Normal file
|
@ -0,0 +1,777 @@
|
|||
import React from "react";
|
||||
import { render, screen } from "@testing-library/react";
|
||||
import "@testing-library/jest-dom";
|
||||
import { ResponseDetailView } from "./responses-detail";
|
||||
import { OpenAIResponse, InputItemListResponse } from "@/lib/types";
|
||||
|
||||
describe("ResponseDetailView", () => {
|
||||
const defaultProps = {
|
||||
response: null,
|
||||
inputItems: null,
|
||||
isLoading: false,
|
||||
isLoadingInputItems: false,
|
||||
error: null,
|
||||
inputItemsError: null,
|
||||
id: "test_id",
|
||||
};
|
||||
|
||||
describe("Loading State", () => {
|
||||
test("renders loading skeleton when isLoading is true", () => {
|
||||
const { container } = render(
|
||||
<ResponseDetailView {...defaultProps} isLoading={true} />,
|
||||
);
|
||||
|
||||
// Check for skeleton elements
|
||||
const skeletons = container.querySelectorAll('[data-slot="skeleton"]');
|
||||
expect(skeletons.length).toBeGreaterThan(0);
|
||||
|
||||
// The title is replaced by a skeleton when loading, so we shouldn't expect the text
|
||||
});
|
||||
});
|
||||
|
||||
describe("Error State", () => {
|
||||
test("renders error message when error prop is provided", () => {
|
||||
const errorMessage = "Network Error";
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: errorMessage }}
|
||||
/>,
|
||||
);
|
||||
|
||||
expect(screen.getByText("Responses Details")).toBeInTheDocument();
|
||||
// The error message is split across elements, so we check for parts
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID/),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(/test_id/)).toBeInTheDocument();
|
||||
expect(screen.getByText(/Network Error/)).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error.message is not available", () => {
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: "" }}
|
||||
/>,
|
||||
);
|
||||
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID/),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(/test_id/)).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Not Found State", () => {
|
||||
test("renders not found message when response is null and not loading/error", () => {
|
||||
render(<ResponseDetailView {...defaultProps} response={null} />);
|
||||
|
||||
expect(screen.getByText("Responses Details")).toBeInTheDocument();
|
||||
// The message is split across elements
|
||||
expect(screen.getByText(/No details found for ID:/)).toBeInTheDocument();
|
||||
expect(screen.getByText(/test_id/)).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Response Data Rendering", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "llama-test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: "Test response output",
|
||||
},
|
||||
],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "Test input message",
|
||||
},
|
||||
],
|
||||
temperature: 0.7,
|
||||
top_p: 0.9,
|
||||
parallel_tool_calls: true,
|
||||
previous_response_id: "prev_resp_456",
|
||||
};
|
||||
|
||||
test("renders response data with input and output sections", () => {
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// Check main sections
|
||||
expect(screen.getByText("Responses Details")).toBeInTheDocument();
|
||||
expect(screen.getByText("Input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Output")).toBeInTheDocument();
|
||||
|
||||
// Check input content
|
||||
expect(screen.getByText("Test input message")).toBeInTheDocument();
|
||||
expect(screen.getByText("User")).toBeInTheDocument();
|
||||
|
||||
// Check output content
|
||||
expect(screen.getByText("Test response output")).toBeInTheDocument();
|
||||
expect(screen.getByText("Assistant")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders properties sidebar with all response metadata", () => {
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// Check properties - use regex to handle text split across elements
|
||||
expect(screen.getByText(/Created/)).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Check for the specific ID label (not Previous Response ID)
|
||||
expect(
|
||||
screen.getByText((content, element) => {
|
||||
return element?.tagName === "STRONG" && content === "ID:";
|
||||
}),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("resp_123")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText(/Model/)).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-test-model")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText(/Status/)).toBeInTheDocument();
|
||||
expect(screen.getByText("completed")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText(/Temperature/)).toBeInTheDocument();
|
||||
expect(screen.getByText("0.7")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText(/Top P/)).toBeInTheDocument();
|
||||
expect(screen.getByText("0.9")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText(/Parallel Tool Calls/)).toBeInTheDocument();
|
||||
expect(screen.getByText("Yes")).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText(/Previous Response ID/)).toBeInTheDocument();
|
||||
expect(screen.getByText("prev_resp_456")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("handles optional properties correctly", () => {
|
||||
const minimalResponse: OpenAIResponse = {
|
||||
id: "resp_minimal",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponseDetailView {...defaultProps} response={minimalResponse} />,
|
||||
);
|
||||
|
||||
// Should show required properties
|
||||
expect(screen.getByText("resp_minimal")).toBeInTheDocument();
|
||||
expect(screen.getByText("test-model")).toBeInTheDocument();
|
||||
expect(screen.getByText("completed")).toBeInTheDocument();
|
||||
|
||||
// Should not show optional properties
|
||||
expect(screen.queryByText("Temperature")).not.toBeInTheDocument();
|
||||
expect(screen.queryByText("Top P")).not.toBeInTheDocument();
|
||||
expect(screen.queryByText("Parallel Tool Calls")).not.toBeInTheDocument();
|
||||
expect(
|
||||
screen.queryByText("Previous Response ID"),
|
||||
).not.toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders error information when response has error", () => {
|
||||
const errorResponse: OpenAIResponse = {
|
||||
...mockResponse,
|
||||
error: {
|
||||
code: "invalid_request",
|
||||
message: "The request was invalid",
|
||||
},
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={errorResponse} />);
|
||||
|
||||
// The error is shown in the properties sidebar, not as a separate "Error" label
|
||||
expect(
|
||||
screen.getByText("invalid_request: The request was invalid"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Input Items Handling", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [{ type: "message", role: "assistant", content: "output" }],
|
||||
input: [{ type: "message", role: "user", content: "fallback input" }],
|
||||
};
|
||||
|
||||
test("shows loading state for input items", () => {
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
isLoadingInputItems={true}
|
||||
/>,
|
||||
);
|
||||
|
||||
// Check for skeleton loading in input items section
|
||||
const { container } = render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
isLoadingInputItems={true}
|
||||
/>,
|
||||
);
|
||||
|
||||
const skeletons = container.querySelectorAll('[data-slot="skeleton"]');
|
||||
expect(skeletons.length).toBeGreaterThan(0);
|
||||
});
|
||||
|
||||
test("shows error message for input items with fallback", () => {
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
inputItemsError={{
|
||||
name: "Error",
|
||||
message: "Failed to load input items",
|
||||
}}
|
||||
/>,
|
||||
);
|
||||
|
||||
expect(
|
||||
screen.getByText(
|
||||
"Error loading input items: Failed to load input items",
|
||||
),
|
||||
).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText("Falling back to response input data."),
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Should still show fallback input data
|
||||
expect(screen.getByText("fallback input")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("uses input items data when available", () => {
|
||||
const mockInputItems: InputItemListResponse = {
|
||||
object: "list",
|
||||
data: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "input from items API",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
inputItems={mockInputItems}
|
||||
/>,
|
||||
);
|
||||
|
||||
// Should show input items data, not response.input
|
||||
expect(screen.getByText("input from items API")).toBeInTheDocument();
|
||||
expect(screen.queryByText("fallback input")).not.toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("falls back to response.input when input items is empty", () => {
|
||||
const emptyInputItems: InputItemListResponse = {
|
||||
object: "list",
|
||||
data: [],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
inputItems={emptyInputItems}
|
||||
/>,
|
||||
);
|
||||
|
||||
// Should show fallback input data
|
||||
expect(screen.getByText("fallback input")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("shows no input message when no data available", () => {
|
||||
const responseWithoutInput: OpenAIResponse = {
|
||||
...mockResponse,
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
response={responseWithoutInput}
|
||||
inputItems={null}
|
||||
/>,
|
||||
);
|
||||
|
||||
expect(screen.getByText("No input data available.")).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Input Display Components", () => {
|
||||
test("renders string content input correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "Simple string input",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("Simple string input")).toBeInTheDocument();
|
||||
expect(screen.getByText("User")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders array content input correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: [
|
||||
{ type: "input_text", text: "First part" },
|
||||
{ type: "output_text", text: "Second part" },
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("First part Second part")).toBeInTheDocument();
|
||||
expect(screen.getByText("User")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders non-message input types correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "function_call",
|
||||
content: "function call content",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("function call content")).toBeInTheDocument();
|
||||
// Use getAllByText to find the specific "Input" with the type detail
|
||||
const inputElements = screen.getAllByText("Input");
|
||||
expect(inputElements.length).toBeGreaterThan(0);
|
||||
expect(screen.getByText("(function_call)")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("handles input with object content", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "custom_type",
|
||||
content: JSON.stringify({ key: "value", nested: { data: "test" } }),
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// Should show JSON stringified content (without quotes around keys in the rendered output)
|
||||
expect(screen.getByText(/key.*value/)).toBeInTheDocument();
|
||||
// Use getAllByText to find the specific "Input" with the type detail
|
||||
const inputElements = screen.getAllByText("Input");
|
||||
expect(inputElements.length).toBeGreaterThan(0);
|
||||
expect(screen.getByText("(custom_type)")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders function call input correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_456",
|
||||
status: "completed",
|
||||
name: "input_function",
|
||||
arguments: '{"param": "value"}',
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText('input_function({"param": "value"})'),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders web search call input correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "web_search_call",
|
||||
id: "search_789",
|
||||
status: "completed",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText("web_search_call(status: completed)"),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
expect(screen.getByText("(Web Search)")).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Output Display Components", () => {
|
||||
test("renders message output with string content", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: "Simple string output",
|
||||
},
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("Simple string output")).toBeInTheDocument();
|
||||
expect(screen.getByText("Assistant")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders message output with array content", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: [
|
||||
{ type: "output_text", text: "First output" },
|
||||
{ type: "input_text", text: "Second output" },
|
||||
],
|
||||
},
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText("First output Second output"),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Assistant")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders function call output correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_123",
|
||||
status: "completed",
|
||||
name: "search_function",
|
||||
arguments: '{"query": "test"}',
|
||||
},
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText('search_function({"query": "test"})'),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders function call output without arguments", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_123",
|
||||
status: "completed",
|
||||
name: "simple_function",
|
||||
},
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("simple_function({})")).toBeInTheDocument();
|
||||
expect(screen.getByText(/Function Call/)).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders web search call output correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "web_search_call",
|
||||
id: "search_123",
|
||||
status: "completed",
|
||||
},
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText("web_search_call(status: completed)"),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(/Function Call/)).toBeInTheDocument();
|
||||
expect(screen.getByText("(Web Search)")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders unknown output types with JSON fallback", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "unknown_type",
|
||||
custom_field: "custom_value",
|
||||
data: { nested: "object" },
|
||||
} as any,
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// Should show JSON stringified content
|
||||
expect(
|
||||
screen.getByText(/custom_field.*custom_value/),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("(unknown_type)")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("shows no output message when output array is empty", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("No output data available.")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("groups function call with its output correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_123",
|
||||
status: "completed",
|
||||
name: "get_weather",
|
||||
arguments: '{"city": "Tokyo"}',
|
||||
},
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
call_id: "call_123",
|
||||
content: "sunny and warm",
|
||||
} as any, // Using any to bypass the type restriction for this test
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// Should show the function call and message as separate items (not grouped)
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText('get_weather({"city": "Tokyo"})'),
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Assistant")).toBeInTheDocument();
|
||||
expect(screen.getByText("sunny and warm")).toBeInTheDocument();
|
||||
|
||||
// Should NOT have the grouped "Arguments" and "Output" labels
|
||||
expect(screen.queryByText("Arguments")).not.toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("groups function call with function_call_output correctly", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
call_id: "call_123",
|
||||
status: "completed",
|
||||
name: "get_weather",
|
||||
arguments: '{"city": "Tokyo"}',
|
||||
},
|
||||
{
|
||||
type: "function_call_output",
|
||||
id: "fc_68364957013081...",
|
||||
status: "completed",
|
||||
call_id: "call_123",
|
||||
output: "sunny and warm",
|
||||
} as any, // Using any to bypass the type restriction for this test
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// Should show the function call grouped with its clean output
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
expect(screen.getByText("Arguments")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText('get_weather({"city": "Tokyo"})'),
|
||||
).toBeInTheDocument();
|
||||
// Use getAllByText since there are multiple "Output" elements (card title and output label)
|
||||
const outputElements = screen.getAllByText("Output");
|
||||
expect(outputElements.length).toBeGreaterThan(0);
|
||||
expect(screen.getByText("sunny and warm")).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Edge Cases and Error Handling", () => {
|
||||
test("handles missing role in message input", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
content: "Message without role",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(screen.getByText("Message without role")).toBeInTheDocument();
|
||||
expect(screen.getByText("Unknown")).toBeInTheDocument(); // Default role
|
||||
});
|
||||
|
||||
test("handles missing name in function call output", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_123",
|
||||
status: "completed",
|
||||
},
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
||||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
// When name is missing, it falls back to JSON.stringify of the entire output
|
||||
const functionCallElements = screen.getAllByText(/function_call/);
|
||||
expect(functionCallElements.length).toBeGreaterThan(0);
|
||||
expect(screen.getByText(/call_123/)).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
});
|
171
llama_stack/ui/components/responses/responses-detail.tsx
Normal file
171
llama_stack/ui/components/responses/responses-detail.tsx
Normal file
|
@ -0,0 +1,171 @@
|
|||
"use client";
|
||||
|
||||
import { OpenAIResponse, InputItemListResponse } from "@/lib/types";
|
||||
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
import {
|
||||
DetailLoadingView,
|
||||
DetailErrorView,
|
||||
DetailNotFoundView,
|
||||
DetailLayout,
|
||||
PropertiesCard,
|
||||
PropertyItem,
|
||||
} from "@/components/layout/detail-layout";
|
||||
import { GroupedItemsDisplay } from "./grouping/grouped-items-display";
|
||||
|
||||
interface ResponseDetailViewProps {
|
||||
response: OpenAIResponse | null;
|
||||
inputItems: InputItemListResponse | null;
|
||||
isLoading: boolean;
|
||||
isLoadingInputItems: boolean;
|
||||
error: Error | null;
|
||||
inputItemsError: Error | null;
|
||||
id: string;
|
||||
}
|
||||
|
||||
export function ResponseDetailView({
|
||||
response,
|
||||
inputItems,
|
||||
isLoading,
|
||||
isLoadingInputItems,
|
||||
error,
|
||||
inputItemsError,
|
||||
id,
|
||||
}: ResponseDetailViewProps) {
|
||||
const title = "Responses Details";
|
||||
|
||||
if (error) {
|
||||
return <DetailErrorView title={title} id={id} error={error} />;
|
||||
}
|
||||
|
||||
if (isLoading) {
|
||||
return <DetailLoadingView title={title} />;
|
||||
}
|
||||
|
||||
if (!response) {
|
||||
return <DetailNotFoundView title={title} id={id} />;
|
||||
}
|
||||
|
||||
// Main content cards
|
||||
const mainContent = (
|
||||
<>
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Input</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{/* Show loading state for input items */}
|
||||
{isLoadingInputItems ? (
|
||||
<div className="space-y-2">
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-3/4" />
|
||||
<Skeleton className="h-4 w-1/2" />
|
||||
</div>
|
||||
) : inputItemsError ? (
|
||||
<div className="text-red-500 text-sm">
|
||||
Error loading input items: {inputItemsError.message}
|
||||
<br />
|
||||
<span className="text-gray-500 text-xs">
|
||||
Falling back to response input data.
|
||||
</span>
|
||||
</div>
|
||||
) : null}
|
||||
|
||||
{/* Display input items if available, otherwise fall back to response.input */}
|
||||
{(() => {
|
||||
const dataToDisplay =
|
||||
inputItems?.data && inputItems.data.length > 0
|
||||
? inputItems.data
|
||||
: response.input;
|
||||
|
||||
if (dataToDisplay && dataToDisplay.length > 0) {
|
||||
return (
|
||||
<GroupedItemsDisplay
|
||||
items={dataToDisplay}
|
||||
keyPrefix="input"
|
||||
defaultRole="unknown"
|
||||
/>
|
||||
);
|
||||
} else {
|
||||
return (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
No input data available.
|
||||
</p>
|
||||
);
|
||||
}
|
||||
})()}
|
||||
</CardContent>
|
||||
</Card>
|
||||
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Output</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{response.output?.length > 0 ? (
|
||||
<GroupedItemsDisplay
|
||||
items={response.output}
|
||||
keyPrefix="output"
|
||||
defaultRole="assistant"
|
||||
/>
|
||||
) : (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
No output data available.
|
||||
</p>
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
</>
|
||||
);
|
||||
|
||||
// Properties sidebar
|
||||
const sidebar = (
|
||||
<PropertiesCard>
|
||||
<PropertyItem
|
||||
label="Created"
|
||||
value={new Date(response.created_at * 1000).toLocaleString()}
|
||||
/>
|
||||
<PropertyItem label="ID" value={response.id} />
|
||||
<PropertyItem label="Model" value={response.model} />
|
||||
<PropertyItem label="Status" value={response.status} hasBorder />
|
||||
{response.temperature && (
|
||||
<PropertyItem
|
||||
label="Temperature"
|
||||
value={response.temperature}
|
||||
hasBorder
|
||||
/>
|
||||
)}
|
||||
{response.top_p && <PropertyItem label="Top P" value={response.top_p} />}
|
||||
{response.parallel_tool_calls && (
|
||||
<PropertyItem
|
||||
label="Parallel Tool Calls"
|
||||
value={response.parallel_tool_calls ? "Yes" : "No"}
|
||||
/>
|
||||
)}
|
||||
{response.previous_response_id && (
|
||||
<PropertyItem
|
||||
label="Previous Response ID"
|
||||
value={
|
||||
<span className="text-xs">{response.previous_response_id}</span>
|
||||
}
|
||||
hasBorder
|
||||
/>
|
||||
)}
|
||||
{response.error && (
|
||||
<PropertyItem
|
||||
label="Error"
|
||||
value={
|
||||
<span className="text-red-900 font-medium">
|
||||
{response.error.code}: {response.error.message}
|
||||
</span>
|
||||
}
|
||||
className="pt-1 mt-1 border-t border-red-200"
|
||||
/>
|
||||
)}
|
||||
</PropertiesCard>
|
||||
);
|
||||
|
||||
return (
|
||||
<DetailLayout title={title} mainContent={mainContent} sidebar={sidebar} />
|
||||
);
|
||||
}
|
537
llama_stack/ui/components/responses/responses-table.test.tsx
Normal file
537
llama_stack/ui/components/responses/responses-table.test.tsx
Normal file
|
@ -0,0 +1,537 @@
|
|||
import React from "react";
|
||||
import { render, screen, fireEvent } from "@testing-library/react";
|
||||
import "@testing-library/jest-dom";
|
||||
import { ResponsesTable } from "./responses-table";
|
||||
import { OpenAIResponse } from "@/lib/types";
|
||||
|
||||
// Mock next/navigation
|
||||
const mockPush = jest.fn();
|
||||
jest.mock("next/navigation", () => ({
|
||||
useRouter: () => ({
|
||||
push: mockPush,
|
||||
}),
|
||||
}));
|
||||
|
||||
// Mock helper functions
|
||||
jest.mock("@/lib/truncate-text");
|
||||
|
||||
// Import the mocked functions
|
||||
import { truncateText as originalTruncateText } from "@/lib/truncate-text";
|
||||
|
||||
// Cast to jest.Mock for typings
|
||||
const truncateText = originalTruncateText as jest.Mock;
|
||||
|
||||
describe("ResponsesTable", () => {
|
||||
const defaultProps = {
|
||||
data: [] as OpenAIResponse[],
|
||||
isLoading: false,
|
||||
error: null,
|
||||
};
|
||||
|
||||
beforeEach(() => {
|
||||
// Reset all mocks before each test
|
||||
mockPush.mockClear();
|
||||
truncateText.mockClear();
|
||||
|
||||
// Default pass-through implementation
|
||||
truncateText.mockImplementation((text: string | undefined) => text);
|
||||
});
|
||||
|
||||
test("renders without crashing with default props", () => {
|
||||
render(<ResponsesTable {...defaultProps} />);
|
||||
expect(screen.getByText("No responses found.")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("click on a row navigates to the correct URL", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_123",
|
||||
object: "response",
|
||||
created_at: Math.floor(Date.now() / 1000),
|
||||
model: "llama-test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: "Test output",
|
||||
},
|
||||
],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "Test input",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(<ResponsesTable {...defaultProps} data={[mockResponse]} />);
|
||||
|
||||
const row = screen.getByText("Test input").closest("tr");
|
||||
if (row) {
|
||||
fireEvent.click(row);
|
||||
expect(mockPush).toHaveBeenCalledWith("/logs/responses/resp_123");
|
||||
} else {
|
||||
throw new Error('Row with "Test input" not found for router mock test.');
|
||||
}
|
||||
});
|
||||
|
||||
describe("Loading State", () => {
|
||||
test("renders skeleton UI when isLoading is true", () => {
|
||||
const { container } = render(
|
||||
<ResponsesTable {...defaultProps} isLoading={true} />,
|
||||
);
|
||||
|
||||
// Check for skeleton in the table caption
|
||||
const tableCaption = container.querySelector("caption");
|
||||
expect(tableCaption).toBeInTheDocument();
|
||||
if (tableCaption) {
|
||||
const captionSkeleton = tableCaption.querySelector(
|
||||
'[data-slot="skeleton"]',
|
||||
);
|
||||
expect(captionSkeleton).toBeInTheDocument();
|
||||
}
|
||||
|
||||
// Check for skeletons in the table body cells
|
||||
const tableBody = container.querySelector("tbody");
|
||||
expect(tableBody).toBeInTheDocument();
|
||||
if (tableBody) {
|
||||
const bodySkeletons = tableBody.querySelectorAll(
|
||||
'[data-slot="skeleton"]',
|
||||
);
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0);
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
describe("Error State", () => {
|
||||
test("renders error message when error prop is provided", () => {
|
||||
const errorMessage = "Network Error";
|
||||
render(
|
||||
<ResponsesTable
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: errorMessage }}
|
||||
/>,
|
||||
);
|
||||
expect(
|
||||
screen.getByText(`Error fetching data: ${errorMessage}`),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error.message is not available", () => {
|
||||
render(
|
||||
<ResponsesTable
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: "" }}
|
||||
/>,
|
||||
);
|
||||
expect(
|
||||
screen.getByText("Error fetching data: An unknown error occurred"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error prop is an object without message", () => {
|
||||
render(<ResponsesTable {...defaultProps} error={{} as Error} />);
|
||||
expect(
|
||||
screen.getByText("Error fetching data: An unknown error occurred"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Empty State", () => {
|
||||
test('renders "No responses found." and no table when data array is empty', () => {
|
||||
render(<ResponsesTable data={[]} isLoading={false} error={null} />);
|
||||
expect(screen.getByText("No responses found.")).toBeInTheDocument();
|
||||
|
||||
// Ensure that the table structure is NOT rendered in the empty state
|
||||
const table = screen.queryByRole("table");
|
||||
expect(table).not.toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Data Rendering", () => {
|
||||
test("renders table caption, headers, and response data correctly", () => {
|
||||
const mockResponses = [
|
||||
{
|
||||
id: "resp_1",
|
||||
object: "response" as const,
|
||||
created_at: 1710000000,
|
||||
model: "llama-test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message" as const,
|
||||
role: "assistant" as const,
|
||||
content: "Test output",
|
||||
},
|
||||
],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "Test input",
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
id: "resp_2",
|
||||
object: "response" as const,
|
||||
created_at: 1710001000,
|
||||
model: "llama-another-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message" as const,
|
||||
role: "assistant" as const,
|
||||
content: "Another output",
|
||||
},
|
||||
],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "Another input",
|
||||
},
|
||||
],
|
||||
},
|
||||
];
|
||||
|
||||
render(
|
||||
<ResponsesTable data={mockResponses} isLoading={false} error={null} />,
|
||||
);
|
||||
|
||||
// Table caption
|
||||
expect(
|
||||
screen.getByText("A list of your recent responses."),
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Table headers
|
||||
expect(screen.getByText("Input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Output")).toBeInTheDocument();
|
||||
expect(screen.getByText("Model")).toBeInTheDocument();
|
||||
expect(screen.getByText("Created")).toBeInTheDocument();
|
||||
|
||||
// Data rows
|
||||
expect(screen.getByText("Test input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Test output")).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-test-model")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
||||
).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText("Another input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Another output")).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-another-model")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710001000 * 1000).toLocaleString()),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Input Text Extraction", () => {
|
||||
test("extracts text from string content", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_string",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [{ type: "message", role: "assistant", content: "output" }],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: "Simple string input",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(screen.getByText("Simple string input")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("extracts text from array content with input_text type", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_array",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [{ type: "message", role: "assistant", content: "output" }],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: [
|
||||
{ type: "input_text", text: "Array input text" },
|
||||
{ type: "input_text", text: "Should not be used" },
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(screen.getByText("Array input text")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("returns empty string when no message input found", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_no_input",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [{ type: "message", role: "assistant", content: "output" }],
|
||||
input: [
|
||||
{
|
||||
type: "other_type",
|
||||
content: "Not a message",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const { container } = render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
|
||||
// Find the input cell (first cell in the data row) and verify it's empty
|
||||
const inputCell = container.querySelector("tbody tr td:first-child");
|
||||
expect(inputCell).toBeInTheDocument();
|
||||
expect(inputCell).toHaveTextContent("");
|
||||
});
|
||||
});
|
||||
|
||||
describe("Output Text Extraction", () => {
|
||||
test("extracts text from string message content", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_string_output",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: "Simple string output",
|
||||
},
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(screen.getByText("Simple string output")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("extracts text from array message content with output_text type", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_array_output",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: [
|
||||
{ type: "output_text", text: "Array output text" },
|
||||
{ type: "output_text", text: "Should not be used" },
|
||||
],
|
||||
},
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(screen.getByText("Array output text")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("formats function call output", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_function_call",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_123",
|
||||
status: "completed",
|
||||
name: "search_function",
|
||||
arguments: '{"query": "test"}',
|
||||
},
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(
|
||||
screen.getByText('search_function({"query": "test"})'),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("formats function call output without arguments", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_function_no_args",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "function_call",
|
||||
id: "call_123",
|
||||
status: "completed",
|
||||
name: "simple_function",
|
||||
},
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(screen.getByText("simple_function({})")).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("formats web search call output", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_web_search",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "web_search_call",
|
||||
id: "search_123",
|
||||
status: "completed",
|
||||
},
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
expect(
|
||||
screen.getByText("web_search_call(status: completed)"),
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("falls back to JSON.stringify for unknown tool call types", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_unknown_tool",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "unknown_call",
|
||||
id: "unknown_123",
|
||||
status: "completed",
|
||||
custom_field: "custom_value",
|
||||
} as any,
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
// Should contain the JSON stringified version
|
||||
expect(screen.getByText(/unknown_call/)).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("falls back to JSON.stringify for entire output when no message or tool call found", () => {
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_fallback",
|
||||
object: "response",
|
||||
created_at: 1710000000,
|
||||
model: "test-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "unknown_type",
|
||||
data: "some data",
|
||||
} as any,
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
// Should contain the JSON stringified version of the output array
|
||||
expect(screen.getByText(/unknown_type/)).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
||||
describe("Text Truncation", () => {
|
||||
test("truncates long input and output text", () => {
|
||||
// Specific mock implementation for this test
|
||||
truncateText.mockImplementation(
|
||||
(text: string | undefined, maxLength?: number) => {
|
||||
const defaultTestMaxLength = 10;
|
||||
const effectiveMaxLength = maxLength ?? defaultTestMaxLength;
|
||||
return typeof text === "string" && text.length > effectiveMaxLength
|
||||
? text.slice(0, effectiveMaxLength) + "..."
|
||||
: text;
|
||||
},
|
||||
);
|
||||
|
||||
const longInput =
|
||||
"This is a very long input message that should be truncated.";
|
||||
const longOutput =
|
||||
"This is a very long output message that should also be truncated.";
|
||||
|
||||
const mockResponse: OpenAIResponse = {
|
||||
id: "resp_trunc",
|
||||
object: "response",
|
||||
created_at: 1710002000,
|
||||
model: "llama-trunc-model",
|
||||
status: "completed",
|
||||
output: [
|
||||
{
|
||||
type: "message",
|
||||
role: "assistant",
|
||||
content: longOutput,
|
||||
},
|
||||
],
|
||||
input: [
|
||||
{
|
||||
type: "message",
|
||||
role: "user",
|
||||
content: longInput,
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
render(
|
||||
<ResponsesTable data={[mockResponse]} isLoading={false} error={null} />,
|
||||
);
|
||||
|
||||
// The truncated text should be present for both input and output
|
||||
const truncatedTexts = screen.getAllByText(
|
||||
longInput.slice(0, 10) + "...",
|
||||
);
|
||||
expect(truncatedTexts.length).toBe(2); // one for input, one for output
|
||||
truncatedTexts.forEach((textElement) =>
|
||||
expect(textElement).toBeInTheDocument(),
|
||||
);
|
||||
});
|
||||
});
|
||||
});
|
117
llama_stack/ui/components/responses/responses-table.tsx
Normal file
117
llama_stack/ui/components/responses/responses-table.tsx
Normal file
|
@ -0,0 +1,117 @@
|
|||
"use client";
|
||||
|
||||
import {
|
||||
OpenAIResponse,
|
||||
ResponseInput,
|
||||
ResponseInputMessageContent,
|
||||
} from "@/lib/types";
|
||||
import { LogsTable, LogTableRow } from "@/components/logs/logs-table";
|
||||
import {
|
||||
isMessageInput,
|
||||
isMessageItem,
|
||||
isFunctionCallItem,
|
||||
isWebSearchCallItem,
|
||||
MessageItem,
|
||||
FunctionCallItem,
|
||||
WebSearchCallItem,
|
||||
} from "./utils/item-types";
|
||||
|
||||
interface ResponsesTableProps {
|
||||
data: OpenAIResponse[];
|
||||
isLoading: boolean;
|
||||
error: Error | null;
|
||||
}
|
||||
|
||||
function getInputText(response: OpenAIResponse): string {
|
||||
const firstInput = response.input.find(isMessageInput);
|
||||
if (firstInput) {
|
||||
return extractContentFromItem(firstInput);
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
function getOutputText(response: OpenAIResponse): string {
|
||||
const firstMessage = response.output.find((item) =>
|
||||
isMessageItem(item as any),
|
||||
);
|
||||
if (firstMessage) {
|
||||
const content = extractContentFromItem(firstMessage as MessageItem);
|
||||
if (content) {
|
||||
return content;
|
||||
}
|
||||
}
|
||||
|
||||
const functionCall = response.output.find((item) =>
|
||||
isFunctionCallItem(item as any),
|
||||
);
|
||||
if (functionCall) {
|
||||
return formatFunctionCall(functionCall as FunctionCallItem);
|
||||
}
|
||||
|
||||
const webSearchCall = response.output.find((item) =>
|
||||
isWebSearchCallItem(item as any),
|
||||
);
|
||||
if (webSearchCall) {
|
||||
return formatWebSearchCall(webSearchCall as WebSearchCallItem);
|
||||
}
|
||||
|
||||
return JSON.stringify(response.output);
|
||||
}
|
||||
|
||||
function extractContentFromItem(item: {
|
||||
content?: string | ResponseInputMessageContent[];
|
||||
}): string {
|
||||
if (!item.content) {
|
||||
return "";
|
||||
}
|
||||
|
||||
if (typeof item.content === "string") {
|
||||
return item.content;
|
||||
} else if (Array.isArray(item.content)) {
|
||||
const textContent = item.content.find(
|
||||
(c: ResponseInputMessageContent) =>
|
||||
c.type === "input_text" || c.type === "output_text",
|
||||
);
|
||||
return textContent?.text || "";
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
function formatFunctionCall(functionCall: FunctionCallItem): string {
|
||||
const args = functionCall.arguments || "{}";
|
||||
const name = functionCall.name || "unknown";
|
||||
return `${name}(${args})`;
|
||||
}
|
||||
|
||||
function formatWebSearchCall(webSearchCall: WebSearchCallItem): string {
|
||||
return `web_search_call(status: ${webSearchCall.status})`;
|
||||
}
|
||||
|
||||
function formatResponseToRow(response: OpenAIResponse): LogTableRow {
|
||||
return {
|
||||
id: response.id,
|
||||
input: getInputText(response),
|
||||
output: getOutputText(response),
|
||||
model: response.model,
|
||||
createdTime: new Date(response.created_at * 1000).toLocaleString(),
|
||||
detailPath: `/logs/responses/${response.id}`,
|
||||
};
|
||||
}
|
||||
|
||||
export function ResponsesTable({
|
||||
data,
|
||||
isLoading,
|
||||
error,
|
||||
}: ResponsesTableProps) {
|
||||
const formattedData = data.map(formatResponseToRow);
|
||||
|
||||
return (
|
||||
<LogsTable
|
||||
data={formattedData}
|
||||
isLoading={isLoading}
|
||||
error={error}
|
||||
caption="A list of your recent responses."
|
||||
emptyMessage="No responses found."
|
||||
/>
|
||||
);
|
||||
}
|
61
llama_stack/ui/components/responses/utils/item-types.ts
Normal file
61
llama_stack/ui/components/responses/utils/item-types.ts
Normal file
|
@ -0,0 +1,61 @@
|
|||
/**
|
||||
* Type guards for different item types in responses
|
||||
*/
|
||||
|
||||
import type {
|
||||
ResponseInput,
|
||||
ResponseOutput,
|
||||
ResponseMessage,
|
||||
ResponseToolCall,
|
||||
} from "@/lib/types";
|
||||
|
||||
export interface BaseItem {
|
||||
type: string;
|
||||
[key: string]: unknown;
|
||||
}
|
||||
|
||||
export type MessageItem = ResponseMessage;
|
||||
export type FunctionCallItem = ResponseToolCall & { type: "function_call" };
|
||||
export type WebSearchCallItem = ResponseToolCall & { type: "web_search_call" };
|
||||
export type FunctionCallOutputItem = BaseItem & {
|
||||
type: "function_call_output";
|
||||
call_id: string;
|
||||
output?: string | object;
|
||||
};
|
||||
|
||||
export type AnyResponseItem =
|
||||
| ResponseInput
|
||||
| ResponseOutput
|
||||
| FunctionCallOutputItem;
|
||||
|
||||
export function isMessageInput(
|
||||
item: ResponseInput,
|
||||
): item is ResponseInput & { type: "message" } {
|
||||
return item.type === "message";
|
||||
}
|
||||
|
||||
export function isMessageItem(item: AnyResponseItem): item is MessageItem {
|
||||
return item.type === "message" && "content" in item;
|
||||
}
|
||||
|
||||
export function isFunctionCallItem(
|
||||
item: AnyResponseItem,
|
||||
): item is FunctionCallItem {
|
||||
return item.type === "function_call" && "name" in item;
|
||||
}
|
||||
|
||||
export function isWebSearchCallItem(
|
||||
item: AnyResponseItem,
|
||||
): item is WebSearchCallItem {
|
||||
return item.type === "web_search_call";
|
||||
}
|
||||
|
||||
export function isFunctionCallOutputItem(
|
||||
item: AnyResponseItem,
|
||||
): item is FunctionCallOutputItem {
|
||||
return (
|
||||
item.type === "function_call_output" &&
|
||||
"call_id" in item &&
|
||||
typeof (item as any).call_id === "string"
|
||||
);
|
||||
}
|
49
llama_stack/ui/components/ui/message-components.tsx
Normal file
49
llama_stack/ui/components/ui/message-components.tsx
Normal file
|
@ -0,0 +1,49 @@
|
|||
import React from "react";
|
||||
|
||||
export interface MessageBlockProps {
|
||||
label: string;
|
||||
labelDetail?: string;
|
||||
content: React.ReactNode;
|
||||
className?: string;
|
||||
contentClassName?: string;
|
||||
}
|
||||
|
||||
export const MessageBlock: React.FC<MessageBlockProps> = ({
|
||||
label,
|
||||
labelDetail,
|
||||
content,
|
||||
className = "",
|
||||
contentClassName = "",
|
||||
}) => {
|
||||
return (
|
||||
<div className={`mb-4 ${className}`}>
|
||||
<p className="py-1 font-semibold text-gray-800 mb-1">
|
||||
{label}
|
||||
{labelDetail && (
|
||||
<span className="text-xs text-gray-500 font-normal ml-1">
|
||||
{labelDetail}
|
||||
</span>
|
||||
)}
|
||||
</p>
|
||||
<div className={`py-1 whitespace-pre-wrap ${contentClassName}`}>
|
||||
{content}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export interface ToolCallBlockProps {
|
||||
children: React.ReactNode;
|
||||
className?: string;
|
||||
}
|
||||
|
||||
export const ToolCallBlock = ({ children, className }: ToolCallBlockProps) => {
|
||||
const baseClassName =
|
||||
"p-3 bg-slate-50 border border-slate-200 rounded-md text-sm";
|
||||
|
||||
return (
|
||||
<div className={`${baseClassName} ${className || ""}`}>
|
||||
<pre className="whitespace-pre-wrap text-xs">{children}</pre>
|
||||
</div>
|
||||
);
|
||||
};
|
12
llama_stack/ui/lib/client.ts
Normal file
12
llama_stack/ui/lib/client.ts
Normal file
|
@ -0,0 +1,12 @@
|
|||
import LlamaStackClient from "llama-stack-client";
|
||||
import OpenAI from "openai";
|
||||
|
||||
export const client =
|
||||
process.env.NEXT_PUBLIC_USE_OPENAI_CLIENT === "true" // useful for testing
|
||||
? new OpenAI({
|
||||
apiKey: process.env.NEXT_PUBLIC_OPENAI_API_KEY,
|
||||
dangerouslyAllowBrowser: true,
|
||||
})
|
||||
: new LlamaStackClient({
|
||||
baseURL: process.env.NEXT_PUBLIC_LLAMA_STACK_BASE_URL,
|
||||
});
|
|
@ -43,10 +43,14 @@ export function extractDisplayableText(
|
|||
return "";
|
||||
}
|
||||
|
||||
let textPart = extractTextFromContentPart(message.content);
|
||||
const textPart = extractTextFromContentPart(message.content);
|
||||
let toolCallPart = "";
|
||||
|
||||
if (message.tool_calls && message.tool_calls.length > 0) {
|
||||
if (
|
||||
message.tool_calls &&
|
||||
Array.isArray(message.tool_calls) &&
|
||||
message.tool_calls.length > 0
|
||||
) {
|
||||
// For summary, usually the first tool call is sufficient
|
||||
toolCallPart = formatToolCallToString(message.tool_calls[0]);
|
||||
}
|
||||
|
|
|
@ -18,20 +18,20 @@ export interface ImageUrlContentBlock {
|
|||
export type ChatMessageContentPart =
|
||||
| TextContentBlock
|
||||
| ImageUrlContentBlock
|
||||
| { type: string; [key: string]: any }; // Fallback for other potential types
|
||||
| { type: string; [key: string]: unknown }; // Fallback for other potential types
|
||||
|
||||
export interface ChatMessage {
|
||||
role: string;
|
||||
content: string | ChatMessageContentPart[]; // Updated content type
|
||||
name?: string | null;
|
||||
tool_calls?: any | null; // This could also be refined to a more specific ToolCall[] type
|
||||
tool_calls?: unknown | null; // This could also be refined to a more specific ToolCall[] type
|
||||
}
|
||||
|
||||
export interface Choice {
|
||||
message: ChatMessage;
|
||||
finish_reason: string;
|
||||
index: number;
|
||||
logprobs?: any | null;
|
||||
logprobs?: unknown | null;
|
||||
}
|
||||
|
||||
export interface ChatCompletion {
|
||||
|
@ -42,3 +42,62 @@ export interface ChatCompletion {
|
|||
model: string;
|
||||
input_messages: ChatMessage[];
|
||||
}
|
||||
|
||||
// Response types for OpenAI Responses API
|
||||
export interface ResponseInputMessageContent {
|
||||
text?: string;
|
||||
type: "input_text" | "input_image" | "output_text";
|
||||
image_url?: string;
|
||||
detail?: "low" | "high" | "auto";
|
||||
}
|
||||
|
||||
export interface ResponseMessage {
|
||||
content: string | ResponseInputMessageContent[];
|
||||
role: "system" | "developer" | "user" | "assistant";
|
||||
type: "message";
|
||||
id?: string;
|
||||
status?: string;
|
||||
}
|
||||
|
||||
export interface ResponseToolCall {
|
||||
id: string;
|
||||
status: string;
|
||||
type: "web_search_call" | "function_call";
|
||||
arguments?: string;
|
||||
call_id?: string;
|
||||
name?: string;
|
||||
}
|
||||
|
||||
export type ResponseOutput = ResponseMessage | ResponseToolCall;
|
||||
|
||||
export interface ResponseInput {
|
||||
type: string;
|
||||
content?: string | ResponseInputMessageContent[];
|
||||
role?: string;
|
||||
[key: string]: unknown; // Flexible for various input types
|
||||
}
|
||||
|
||||
export interface OpenAIResponse {
|
||||
id: string;
|
||||
created_at: number;
|
||||
model: string;
|
||||
object: "response";
|
||||
status: string;
|
||||
output: ResponseOutput[];
|
||||
input: ResponseInput[];
|
||||
error?: {
|
||||
code: string;
|
||||
message: string;
|
||||
};
|
||||
parallel_tool_calls?: boolean;
|
||||
previous_response_id?: string;
|
||||
temperature?: number;
|
||||
top_p?: number;
|
||||
truncation?: string;
|
||||
user?: string;
|
||||
}
|
||||
|
||||
export interface InputItemListResponse {
|
||||
data: ResponseInput[];
|
||||
object: "list";
|
||||
}
|
||||
|
|
52
llama_stack/ui/package-lock.json
generated
52
llama_stack/ui/package-lock.json
generated
|
@ -19,6 +19,7 @@
|
|||
"lucide-react": "^0.510.0",
|
||||
"next": "15.3.2",
|
||||
"next-themes": "^0.4.6",
|
||||
"openai": "^4.103.0",
|
||||
"react": "^19.0.0",
|
||||
"react-dom": "^19.0.0",
|
||||
"tailwind-merge": "^3.3.0"
|
||||
|
@ -9092,7 +9093,7 @@
|
|||
},
|
||||
"node_modules/llama-stack-client": {
|
||||
"version": "0.0.1-alpha.0",
|
||||
"resolved": "git+ssh://git@github.com/stainless-sdks/llama-stack-node.git#efa814980d44b3b2c92944377a086915137b2134",
|
||||
"resolved": "git+ssh://git@github.com/stainless-sdks/llama-stack-node.git#5d34d229fb53b6dad02da0f19f4b310b529c6b15",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
|
@ -9804,6 +9805,51 @@
|
|||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/openai": {
|
||||
"version": "4.103.0",
|
||||
"resolved": "https://registry.npmjs.org/openai/-/openai-4.103.0.tgz",
|
||||
"integrity": "sha512-eWcz9kdurkGOFDtd5ySS5y251H2uBgq9+1a2lTBnjMMzlexJ40Am5t6Mu76SSE87VvitPa0dkIAp75F+dZVC0g==",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
"@types/node-fetch": "^2.6.4",
|
||||
"abort-controller": "^3.0.0",
|
||||
"agentkeepalive": "^4.2.1",
|
||||
"form-data-encoder": "1.7.2",
|
||||
"formdata-node": "^4.3.2",
|
||||
"node-fetch": "^2.6.7"
|
||||
},
|
||||
"bin": {
|
||||
"openai": "bin/cli"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"ws": "^8.18.0",
|
||||
"zod": "^3.23.8"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"ws": {
|
||||
"optional": true
|
||||
},
|
||||
"zod": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/openai/node_modules/@types/node": {
|
||||
"version": "18.19.103",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.19.103.tgz",
|
||||
"integrity": "sha512-hHTHp+sEz6SxFsp+SA+Tqrua3AbmlAw+Y//aEwdHrdZkYVRWdvWD3y5uPZ0flYOkgskaFWqZ/YGFm3FaFQ0pRw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"undici-types": "~5.26.4"
|
||||
}
|
||||
},
|
||||
"node_modules/openai/node_modules/undici-types": {
|
||||
"version": "5.26.5",
|
||||
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
|
||||
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/optionator": {
|
||||
"version": "0.9.4",
|
||||
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.4.tgz",
|
||||
|
@ -12223,7 +12269,7 @@
|
|||
"version": "8.18.2",
|
||||
"resolved": "https://registry.npmjs.org/ws/-/ws-8.18.2.tgz",
|
||||
"integrity": "sha512-DMricUmwGZUVr++AEAe2uiVM7UoO9MAVZMDu05UQOaUII0lp+zOzLLU4Xqh/JvTqklB1T4uELaaPBKyjE1r4fQ==",
|
||||
"dev": true,
|
||||
"devOptional": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=10.0.0"
|
||||
|
@ -12334,7 +12380,7 @@
|
|||
"version": "3.24.4",
|
||||
"resolved": "https://registry.npmjs.org/zod/-/zod-3.24.4.tgz",
|
||||
"integrity": "sha512-OdqJE9UDRPwWsrHjLN2F8bPxvwJBK22EHLWtanu0LSYr5YqzsaaW3RMgmjwr8Rypg5k+meEJdSPXJZXE/yqOMg==",
|
||||
"dev": true,
|
||||
"devOptional": true,
|
||||
"license": "MIT",
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/colinhacks"
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
"@radix-ui/react-tooltip": "^1.2.6",
|
||||
"class-variance-authority": "^0.7.1",
|
||||
"clsx": "^2.1.1",
|
||||
"llama-stack-client": "github:stainless-sdks/llama-stack-node#ehhuang/dev",
|
||||
"llama-stack-client": "0.2.8",
|
||||
"lucide-react": "^0.510.0",
|
||||
"next": "15.3.2",
|
||||
"next-themes": "^0.4.6",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue