[rag evals][2/n] add more braintrust scoring fns for RAG eval (#666)

# What does this PR do?

- add more braintrust scoring functions for RAG eval
- add tests for evaluating against context

## Test Plan

```
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
```
<img width="850" alt="image"
src="https://github.com/user-attachments/assets/2f8f0693-ea13-422c-a183-f798faf86433"
/>


**Example Output**
- https://gist.github.com/yanxi0830/2acf3b8b3e8132fda2a48b1f0a49711b

<img width="827" alt="image"
src="https://github.com/user-attachments/assets/9014b957-107c-4c23-bbc0-812cbd0b16da"
/>

<img width="436" alt="image"
src="https://github.com/user-attachments/assets/21e9da17-f426-49b2-9113-855cab7b3d40"
/>




## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2025-01-02 11:19:22 -08:00 committed by GitHub
parent eb92322c3c
commit 2da455f48e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 276 additions and 12 deletions

View file

@ -38,9 +38,15 @@ def data_url_from_file(file_path: str) -> str:
async def register_dataset(
datasets_impl: Datasets, for_generation=False, dataset_id="test_dataset"
datasets_impl: Datasets,
for_generation=False,
for_rag=False,
dataset_id="test_dataset",
):
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
if for_rag:
test_file = Path(os.path.abspath(__file__)).parent / "test_rag_dataset.csv"
else:
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
test_url = data_url_from_file(str(test_file))
if for_generation:
@ -49,6 +55,13 @@ async def register_dataset(
"input_query": StringType(),
"chat_completion_input": ChatCompletionInputType(),
}
elif for_rag:
dataset_schema = {
"expected_answer": StringType(),
"input_query": StringType(),
"generated_answer": StringType(),
"context": StringType(),
}
else:
dataset_schema = {
"expected_answer": StringType(),