mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 02:19:49 +00:00
add NVIDIA NIM inference adapter
This commit is contained in:
parent
ac93dd89cf
commit
2dd8c4bcb6
12 changed files with 1115 additions and 0 deletions
328
llama_stack/providers/adapters/inference/nvidia/_utils.py
Normal file
328
llama_stack/providers/adapters/inference/nvidia/_utils.py
Normal file
|
|
@ -0,0 +1,328 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import httpx
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
CompletionMessage,
|
||||
StopReason,
|
||||
TokenLogProbs,
|
||||
ToolCall,
|
||||
)
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
Message,
|
||||
)
|
||||
|
||||
from ._config import NVIDIAConfig
|
||||
|
||||
|
||||
def convert_message(message: Message) -> dict:
|
||||
"""
|
||||
Convert a Message to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
out_dict = message.dict()
|
||||
# Llama Stack uses role="ipython" for tool call messages, OpenAI uses "tool"
|
||||
if out_dict["role"] == "ipython":
|
||||
out_dict.update(role="tool")
|
||||
|
||||
if "stop_reason" in out_dict:
|
||||
out_dict.update(stop_reason=out_dict["stop_reason"].value)
|
||||
|
||||
# TODO(mf): tool_calls
|
||||
|
||||
return out_dict
|
||||
|
||||
|
||||
async def _get_health(url: str) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Query {url}/v1/health/{live,ready} to check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Returns:
|
||||
Tuple[bool, bool]: (is_live, is_ready)
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
live = await client.get(f"{url}/v1/health/live")
|
||||
ready = await client.get(f"{url}/v1/health/ready")
|
||||
return live.status_code == 200, ready.status_code == 200
|
||||
|
||||
|
||||
async def check_health(config: NVIDIAConfig) -> None:
|
||||
"""
|
||||
Check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the server is not running or ready
|
||||
"""
|
||||
if not config.is_hosted:
|
||||
print("Checking NVIDIA NIM health...")
|
||||
try:
|
||||
is_live, is_ready = await _get_health(config.base_url)
|
||||
if not is_live:
|
||||
raise ConnectionError("NVIDIA NIM is not running")
|
||||
if not is_ready:
|
||||
raise ConnectionError("NVIDIA NIM is not ready")
|
||||
# TODO(mf): should we wait for the server to be ready?
|
||||
except httpx.ConnectError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
|
||||
|
||||
|
||||
def convert_chat_completion_request(
|
||||
request: ChatCompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# messages -> messages
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# tools -> tools
|
||||
# tool_choice ("auto", "required") -> tool_choice
|
||||
# tool_prompt_format -> TBD
|
||||
# stream -> stream
|
||||
# logprobs -> logprobs
|
||||
|
||||
print(f"sampling_params: {request.sampling_params}")
|
||||
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
messages=[convert_message(message) for message in request.messages],
|
||||
stream=request.stream,
|
||||
nvext={},
|
||||
n=n,
|
||||
)
|
||||
nvext = payload["nvext"]
|
||||
|
||||
if request.tools:
|
||||
payload.update(tools=request.tools)
|
||||
if request.tool_choice:
|
||||
payload.update(
|
||||
tool_choice=request.tool_choice.value
|
||||
) # we cannot include tool_choice w/o tools, server will complain
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=True)
|
||||
payload.update(top_logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
if request.sampling_params.strategy == "top_p":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=request.sampling_params.top_p)
|
||||
elif request.sampling_params.strategy == "top_k":
|
||||
if (
|
||||
request.sampling_params.top_k != -1
|
||||
and request.sampling_params.top_k < 1
|
||||
):
|
||||
warnings.warn("top_k must be -1 or >= 1")
|
||||
nvext.update(top_k=request.sampling_params.top_k)
|
||||
elif request.sampling_params.strategy == "greedy":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(temperature=request.sampling_params.temperature)
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def _parse_content(completion: dict) -> str:
|
||||
"""
|
||||
Get the content from an OpenAI completion response.
|
||||
|
||||
OpenAI completion response format -
|
||||
{
|
||||
...
|
||||
"message": {"role": "assistant", "content": ..., ...},
|
||||
...
|
||||
}
|
||||
"""
|
||||
# content is nullable in the OpenAI response, common for tool calls
|
||||
return completion["message"]["content"] or ""
|
||||
|
||||
|
||||
def _parse_stop_reason(completion: dict) -> StopReason:
|
||||
"""
|
||||
Get the StopReason from an OpenAI completion response.
|
||||
|
||||
OpenAI completion response format -
|
||||
{
|
||||
...
|
||||
"finish_reason": "length" or "stop" or "tool_calls",
|
||||
...
|
||||
}
|
||||
"""
|
||||
|
||||
# StopReason options are end_of_turn, end_of_message, out_of_tokens
|
||||
# TODO(mf): is end_of_turn and end_of_message usage correct?
|
||||
stop_reason = StopReason.end_of_turn
|
||||
if completion["finish_reason"] == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
elif completion["finish_reason"] == "stop":
|
||||
stop_reason = StopReason.end_of_message
|
||||
elif completion["finish_reason"] == "tool_calls":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
return stop_reason
|
||||
|
||||
|
||||
def _parse_tool_calls(completion: dict) -> List[ToolCall]:
|
||||
"""
|
||||
Get the tool calls from an OpenAI completion response.
|
||||
|
||||
OpenAI completion response format -
|
||||
{
|
||||
...,
|
||||
"message": {
|
||||
...,
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": X,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": Y,
|
||||
"arguments": Z,
|
||||
},
|
||||
}*
|
||||
],
|
||||
},
|
||||
}
|
||||
->
|
||||
[
|
||||
ToolCall(call_id=X, tool_name=Y, arguments=Z),
|
||||
...
|
||||
]
|
||||
"""
|
||||
tool_calls = []
|
||||
if "tool_calls" in completion["message"]:
|
||||
assert isinstance(
|
||||
completion["message"]["tool_calls"], list
|
||||
), "error in server response: tool_calls not a list"
|
||||
for call in completion["message"]["tool_calls"]:
|
||||
assert "id" in call, "error in server response: tool call id not found"
|
||||
assert (
|
||||
"function" in call
|
||||
), "error in server response: tool call function not found"
|
||||
assert (
|
||||
"name" in call["function"]
|
||||
), "error in server response: tool call function name not found"
|
||||
assert (
|
||||
"arguments" in call["function"]
|
||||
), "error in server response: tool call function arguments not found"
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
call_id=call["id"],
|
||||
tool_name=call["function"]["name"],
|
||||
arguments=call["function"]["arguments"],
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
|
||||
def _parse_logprobs(completion: dict) -> Optional[List[TokenLogProbs]]:
|
||||
"""
|
||||
Extract logprobs from OpenAI as a list of TokenLogProbs.
|
||||
|
||||
OpenAI completion response format -
|
||||
{
|
||||
...
|
||||
"logprobs": {
|
||||
content: [
|
||||
{
|
||||
...,
|
||||
top_logprobs: [{token: X, logprob: Y, bytes: [...]}+]
|
||||
}+
|
||||
]
|
||||
},
|
||||
...
|
||||
}
|
||||
->
|
||||
[
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={X: Y, ...}
|
||||
),
|
||||
...
|
||||
]
|
||||
"""
|
||||
if not (logprobs := completion.get("logprobs")):
|
||||
return None
|
||||
|
||||
return [
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
logprobs["token"]: logprobs["logprob"]
|
||||
for logprobs in content["top_logprobs"]
|
||||
}
|
||||
)
|
||||
for content in logprobs["content"]
|
||||
]
|
||||
|
||||
|
||||
def parse_completion(
|
||||
completion: dict,
|
||||
) -> ChatCompletionResponse:
|
||||
"""
|
||||
Parse an OpenAI completion response into a CompletionMessage and logprobs.
|
||||
|
||||
OpenAI completion response format -
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": ...,
|
||||
"tool_calls": [
|
||||
{
|
||||
...
|
||||
"id": ...,
|
||||
"function": {
|
||||
"name": ...,
|
||||
"arguments": ...,
|
||||
},
|
||||
}*
|
||||
]?,
|
||||
"finish_reason": ...,
|
||||
"logprobs": {
|
||||
"content": [
|
||||
{
|
||||
...,
|
||||
"top_logprobs": [{"token": ..., "logprob": ..., ...}+]
|
||||
}+
|
||||
]
|
||||
}?
|
||||
}
|
||||
"""
|
||||
assert "message" in completion, "error in server response: message not found"
|
||||
assert (
|
||||
"finish_reason" in completion
|
||||
), "error in server response: finish_reason not found"
|
||||
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=_parse_content(completion),
|
||||
stop_reason=_parse_stop_reason(completion),
|
||||
tool_calls=_parse_tool_calls(completion),
|
||||
),
|
||||
logprobs=_parse_logprobs(completion),
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue