mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-27 06:28:50 +00:00
chore: Enabling teste for Weaviate
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> chore: Actually enabling Chroma unit tests Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> fixed tests Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> fix integration test Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> remove changes from weavbiate Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
cd8715d327
commit
2defebc835
3 changed files with 56 additions and 28 deletions
|
@ -57,12 +57,16 @@ class ChromaIndex(EmbeddingIndex):
|
|||
self.collection = collection
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
# Chroma does not require explicit initialization, this is just a helper for unit tests
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
ids = [f"{c.metadata['document_id']}:chunk-{i}" for i, c in enumerate(chunks)]
|
||||
ids = [f"{c.metadata.get('document_id', '')}:{c.chunk_id}" for c in chunks]
|
||||
await maybe_await(
|
||||
self.collection.add(
|
||||
documents=[chunk.model_dump_json() for chunk in chunks],
|
||||
|
@ -137,9 +141,12 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.client = None
|
||||
self.cache = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
self.vector_db_store = self.kvstore
|
||||
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
|
@ -172,6 +179,10 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
)
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
log.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
|
@ -182,6 +193,8 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
|
@ -193,18 +206,27 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
if index is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack")
|
||||
collection = await maybe_await(self.client.get_collection(vector_db_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api)
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
try:
|
||||
collection = await maybe_await(self.client.get_collection(vector_db_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack")
|
||||
|
||||
index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api)
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
except Exception as exc:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma") from exc
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue