feat: Implement hybrid search in SQLite-vec (#2312)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests / test-matrix (http, 3.10, datasets) (push) Failing after 4s
Integration Tests / test-matrix (http, 3.10, providers) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.10, scoring) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.10, agents) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.11, datasets) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.10, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.11, inference) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.11, inspect) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.10, post_training) (push) Failing after 10s
Integration Tests / test-matrix (http, 3.11, tool_runtime) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.10, vector_io) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.11, agents) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.10, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.12, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, 3.12, post_training) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.10, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.11, post_training) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.12, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.11, scoring) (push) Failing after 6s
Integration Tests / test-matrix (http, 3.11, providers) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.12, inference) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.12, vector_io) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (http, 3.11, vector_io) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, vector_io) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 25s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 24s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 22s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 41s
Test Llama Stack Build / generate-matrix (push) Successful in 37s
Test Llama Stack Build / build-single-provider (push) Failing after 37s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 35s
Test External Providers / test-external-providers (venv) (push) Failing after 5s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.11) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Test Llama Stack Build / build (push) Failing after 7s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 18s
Unit Tests / unit-tests (3.10) (push) Failing after 17s
Pre-commit / pre-commit (push) Successful in 2m0s

# What does this PR do?
Add support for hybrid search mode in SQLite-vec provider, which
combines
keyword and vector search for better results. The implementation:

- Adds hybrid search mode as a new option alongside vector and keyword
search
- Implements query_hybrid method in SQLiteVecIndex that:
  - First performs keyword search to get candidate matches
  - Then applies vector similarity search on those candidates
- Updates documentation to reflect the new search mode

This change improves search quality by leveraging both semantic
similarity
and keyword matching, while maintaining backward compatibility with
existing
vector and keyword search modes.

## Test Plan
```
pytest tests/unit/providers/vector_io/test_sqlite_vec.py -v -s --tb=short
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:217: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================== test session starts ===============================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '8.3.5', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'asyncio': '0.26.0', 'nbval': '0.11.0', 'cov': '6.1.1'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, anyio-4.8.0, asyncio-0.26.0, nbval-0.11.0, cov-6.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 10 items                                                                                                                                                                                                

tests/unit/providers/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search_k_greater_than_results PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_no_keyword_matches PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_score_threshold PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_different_embedding PASSED
```

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha 2025-06-13 12:54:06 -07:00 committed by GitHub
parent 941f505eb0
commit 2e8054bede
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 910 additions and 23 deletions

View file

@ -13994,7 +13994,11 @@
},
"mode": {
"type": "string",
"description": "Search mode for retrieval—either \"vector\" or \"keyword\". Default \"vector\"."
"description": "Search mode for retrieval—either \"vector\", \"keyword\", or \"hybrid\". Default \"vector\"."
},
"ranker": {
"$ref": "#/components/schemas/Ranker",
"description": "Configuration for the ranker to use in hybrid search. Defaults to RRF ranker."
}
},
"additionalProperties": false,
@ -14024,6 +14028,69 @@
}
}
},
"RRFRanker": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "rrf",
"default": "rrf",
"description": "The type of ranker, always \"rrf\""
},
"impact_factor": {
"type": "number",
"default": 60.0,
"description": "The impact factor for RRF scoring. Higher values give more weight to higher-ranked results. Must be greater than 0. Default of 60 is from the original RRF paper (Cormack et al., 2009)."
}
},
"additionalProperties": false,
"required": [
"type",
"impact_factor"
],
"title": "RRFRanker",
"description": "Reciprocal Rank Fusion (RRF) ranker configuration."
},
"Ranker": {
"oneOf": [
{
"$ref": "#/components/schemas/RRFRanker"
},
{
"$ref": "#/components/schemas/WeightedRanker"
}
],
"discriminator": {
"propertyName": "type",
"mapping": {
"rrf": "#/components/schemas/RRFRanker",
"weighted": "#/components/schemas/WeightedRanker"
}
}
},
"WeightedRanker": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "weighted",
"default": "weighted",
"description": "The type of ranker, always \"weighted\""
},
"alpha": {
"type": "number",
"default": 0.5,
"description": "Weight factor between 0 and 1. 0 means only use keyword scores, 1 means only use vector scores, values in between blend both scores."
}
},
"additionalProperties": false,
"required": [
"type",
"alpha"
],
"title": "WeightedRanker",
"description": "Weighted ranker configuration that combines vector and keyword scores."
},
"QueryRequest": {
"type": "object",
"properties": {

View file

@ -9756,7 +9756,13 @@ components:
mode:
type: string
description: >-
Search mode for retrieval—either "vector" or "keyword". Default "vector".
Search mode for retrieval—either "vector", "keyword", or "hybrid". Default
"vector".
ranker:
$ref: '#/components/schemas/Ranker'
description: >-
Configuration for the ranker to use in hybrid search. Defaults to RRF
ranker.
additionalProperties: false
required:
- query_generator_config
@ -9775,6 +9781,58 @@ components:
mapping:
default: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
llm: '#/components/schemas/LLMRAGQueryGeneratorConfig'
RRFRanker:
type: object
properties:
type:
type: string
const: rrf
default: rrf
description: The type of ranker, always "rrf"
impact_factor:
type: number
default: 60.0
description: >-
The impact factor for RRF scoring. Higher values give more weight to higher-ranked
results. Must be greater than 0. Default of 60 is from the original RRF
paper (Cormack et al., 2009).
additionalProperties: false
required:
- type
- impact_factor
title: RRFRanker
description: >-
Reciprocal Rank Fusion (RRF) ranker configuration.
Ranker:
oneOf:
- $ref: '#/components/schemas/RRFRanker'
- $ref: '#/components/schemas/WeightedRanker'
discriminator:
propertyName: type
mapping:
rrf: '#/components/schemas/RRFRanker'
weighted: '#/components/schemas/WeightedRanker'
WeightedRanker:
type: object
properties:
type:
type: string
const: weighted
default: weighted
description: The type of ranker, always "weighted"
alpha:
type: number
default: 0.5
description: >-
Weight factor between 0 and 1. 0 means only use keyword scores, 1 means
only use vector scores, values in between blend both scores.
additionalProperties: false
required:
- type
- alpha
title: WeightedRanker
description: >-
Weighted ranker configuration that combines vector and keyword scores.
QueryRequest:
type: object
properties:

View file

@ -66,25 +66,126 @@ To use sqlite-vec in your Llama Stack project, follow these steps:
2. Configure your Llama Stack project to use SQLite-Vec.
3. Start storing and querying vectors.
## Supported Search Modes
The SQLite-vec provider supports three search modes:
The sqlite-vec provider supports both vector-based and keyword-based (full-text) search modes.
When using the RAGTool interface, you can specify the desired search behavior via the `mode` parameter in
`RAGQueryConfig`. For example:
1. **Vector Search** (`mode="vector"`): Performs pure vector similarity search using the embeddings.
2. **Keyword Search** (`mode="keyword"`): Performs full-text search using SQLite's FTS5.
3. **Hybrid Search** (`mode="hybrid"`): Combines both vector and keyword search for better results. First performs keyword search to get candidate matches, then applies vector similarity search on those candidates.
Example with hybrid search:
```python
from llama_stack.apis.tool_runtime.rag import RAGQueryConfig
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
)
query_config = RAGQueryConfig(max_chunks=6, mode="vector")
# Using RRF ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={
"mode": "hybrid",
"max_chunks": 3,
"score_threshold": 0.7,
"ranker": {"type": "rrf", "impact_factor": 60.0},
},
)
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="what is torchtune",
query_config=query_config,
# Using weighted ranker
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={
"mode": "hybrid",
"max_chunks": 3,
"score_threshold": 0.7,
"ranker": {"type": "weighted", "alpha": 0.7}, # 70% vector, 30% keyword
},
)
```
Example with explicit vector search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
)
```
Example with keyword search:
```python
response = await vector_io.query_chunks(
vector_db_id="my_db",
query="your query here",
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
)
```
## Supported Search Modes
The SQLite vector store supports three search modes:
1. **Vector Search** (`mode="vector"`): Uses vector similarity to find relevant chunks
2. **Keyword Search** (`mode="keyword"`): Uses keyword matching to find relevant chunks
3. **Hybrid Search** (`mode="hybrid"`): Combines both vector and keyword scores using a ranker
### Hybrid Search
Hybrid search combines the strengths of both vector and keyword search by:
- Computing vector similarity scores
- Computing keyword match scores
- Using a ranker to combine these scores
Two ranker types are supported:
1. **RRF (Reciprocal Rank Fusion)**:
- Combines ranks from both vector and keyword results
- Uses an impact factor (default: 60.0) to control the weight of higher-ranked results
- Good for balancing between vector and keyword results
- The default impact factor of 60.0 comes from the original RRF paper by Cormack et al. (2009) [^1], which found this value to provide optimal performance across various retrieval tasks
2. **Weighted**:
- Linearly combines normalized vector and keyword scores
- Uses an alpha parameter (0-1) to control the blend:
- alpha=0: Only use keyword scores
- alpha=1: Only use vector scores
- alpha=0.5: Equal weight to both (default)
Example using RAGQueryConfig with different search modes:
```python
from llama_stack.apis.tools import RAGQueryConfig, RRFRanker, WeightedRanker
# Vector search
config = RAGQueryConfig(mode="vector", max_chunks=5)
# Keyword search
config = RAGQueryConfig(mode="keyword", max_chunks=5)
# Hybrid search with custom RRF ranker
config = RAGQueryConfig(
mode="hybrid",
max_chunks=5,
ranker=RRFRanker(impact_factor=50.0), # Custom impact factor
)
# Hybrid search with weighted ranker
config = RAGQueryConfig(
mode="hybrid",
max_chunks=5,
ranker=WeightedRanker(alpha=0.7), # 70% vector, 30% keyword
)
# Hybrid search with default RRF ranker
config = RAGQueryConfig(
mode="hybrid", max_chunks=5
) # Will use RRF with impact_factor=60.0
```
Note: The ranker configuration is only used in hybrid mode. For vector or keyword modes, the ranker parameter is ignored.
## Installation
You can install SQLite-Vec using pip:
@ -96,3 +197,5 @@ pip install sqlite-vec
## Documentation
See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) for more details about sqlite-vec in general.
[^1]: Cormack, G. V., Clarke, C. L., & Buettcher, S. (2009). [Reciprocal rank fusion outperforms condorcet and individual rank learning methods](https://dl.acm.org/doi/10.1145/1571941.1572114). In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 758-759).