mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-05 20:27:35 +00:00
chore(api): remove deprecated embeddings impls
This commit is contained in:
parent
478b4ff1e6
commit
30998fd1ff
20 changed files with 3 additions and 927 deletions
|
@ -15,7 +15,6 @@ from openai.types.chat.chat_completion_chunk import (
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
|
@ -30,8 +29,6 @@ from llama_stack.apis.inference import (
|
|||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
GrammarResponseFormat,
|
||||
Inference,
|
||||
JsonSchemaResponseFormat,
|
||||
|
@ -47,7 +44,6 @@ from llama_stack.apis.inference import (
|
|||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
|
@ -78,8 +74,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -535,32 +529,6 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
**options,
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
self._lazy_initialize_client()
|
||||
assert self.client is not None
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
kwargs = {}
|
||||
assert model.model_type == ModelType.embedding
|
||||
assert model.metadata.get("embedding_dimension")
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
|
||||
assert all(not content_has_media(content) for content in contents), "VLLM does not support media for embeddings"
|
||||
response = await self.client.embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue