chore(api): remove deprecated embeddings impls

This commit is contained in:
Matthew Farrellee 2025-09-02 02:02:02 -04:00
parent 478b4ff1e6
commit 30998fd1ff
20 changed files with 3 additions and 927 deletions

View file

@ -901,49 +901,6 @@
]
}
},
"/v1/inference/embeddings": {
"post": {
"responses": {
"200": {
"description": "An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/EmbeddingsResponse"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"Inference"
],
"description": "Generate embeddings for content pieces using the specified model.",
"parameters": [],
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/EmbeddingsRequest"
}
}
},
"required": true
}
}
},
"/v1/eval/benchmarks/{benchmark_id}/evaluations": {
"post": {
"responses": {
@ -9698,80 +9655,6 @@
"title": "OpenAIDeleteResponseObject",
"description": "Response object confirming deletion of an OpenAI response."
},
"EmbeddingsRequest": {
"type": "object",
"properties": {
"model_id": {
"type": "string",
"description": "The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint."
},
"contents": {
"oneOf": [
{
"type": "array",
"items": {
"type": "string"
}
},
{
"type": "array",
"items": {
"$ref": "#/components/schemas/InterleavedContentItem"
}
}
],
"description": "List of contents to generate embeddings for. Each content can be a string or an InterleavedContentItem (and hence can be multimodal). The behavior depends on the model and provider. Some models may only support text."
},
"text_truncation": {
"type": "string",
"enum": [
"none",
"start",
"end"
],
"description": "(Optional) Config for how to truncate text for embedding when text is longer than the model's max sequence length."
},
"output_dimension": {
"type": "integer",
"description": "(Optional) Output dimensionality for the embeddings. Only supported by Matryoshka models."
},
"task_type": {
"type": "string",
"enum": [
"query",
"document"
],
"description": "(Optional) How is the embedding being used? This is only supported by asymmetric embedding models."
}
},
"additionalProperties": false,
"required": [
"model_id",
"contents"
],
"title": "EmbeddingsRequest"
},
"EmbeddingsResponse": {
"type": "object",
"properties": {
"embeddings": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
}
},
"description": "List of embedding vectors, one per input content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}"
}
},
"additionalProperties": false,
"required": [
"embeddings"
],
"title": "EmbeddingsResponse",
"description": "Response containing generated embeddings."
},
"AgentCandidate": {
"type": "object",
"properties": {

View file

@ -616,39 +616,6 @@ paths:
required: true
schema:
type: string
/v1/inference/embeddings:
post:
responses:
'200':
description: >-
An array of embeddings, one for each content. Each embedding is a list
of floats. The dimensionality of the embedding is model-specific; you
can check model metadata using /models/{model_id}.
content:
application/json:
schema:
$ref: '#/components/schemas/EmbeddingsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate embeddings for content pieces using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/EmbeddingsRequest'
required: true
/v1/eval/benchmarks/{benchmark_id}/evaluations:
post:
responses:
@ -7173,72 +7140,6 @@ components:
title: OpenAIDeleteResponseObject
description: >-
Response object confirming deletion of an OpenAI response.
EmbeddingsRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be an embedding model
registered with Llama Stack and available via the /models endpoint.
contents:
oneOf:
- type: array
items:
type: string
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
description: >-
List of contents to generate embeddings for. Each content can be a string
or an InterleavedContentItem (and hence can be multimodal). The behavior
depends on the model and provider. Some models may only support text.
text_truncation:
type: string
enum:
- none
- start
- end
description: >-
(Optional) Config for how to truncate text for embedding when text is
longer than the model's max sequence length.
output_dimension:
type: integer
description: >-
(Optional) Output dimensionality for the embeddings. Only supported by
Matryoshka models.
task_type:
type: string
enum:
- query
- document
description: >-
(Optional) How is the embedding being used? This is only supported by
asymmetric embedding models.
additionalProperties: false
required:
- model_id
- contents
title: EmbeddingsRequest
EmbeddingsResponse:
type: object
properties:
embeddings:
type: array
items:
type: array
items:
type: number
description: >-
List of embedding vectors, one per input content. Each embedding is a
list of floats. The dimensionality of the embedding is model-specific;
you can check model metadata using /models/{model_id}
additionalProperties: false
required:
- embeddings
title: EmbeddingsResponse
description: >-
Response containing generated embeddings.
AgentCandidate:
type: object
properties:

View file

@ -17,7 +17,7 @@ from typing import (
from pydantic import BaseModel, Field, field_validator
from typing_extensions import TypedDict
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent, InterleavedContentItem
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
from llama_stack.apis.common.responses import Order
from llama_stack.apis.models import Model
from llama_stack.apis.telemetry import MetricResponseMixin
@ -1135,26 +1135,6 @@ class InferenceProvider(Protocol):
raise NotImplementedError("Batch chat completion is not implemented")
return # this is so mypy's safe-super rule will consider the method concrete
@webmethod(route="/inference/embeddings", method="POST")
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
"""Generate embeddings for content pieces using the specified model.
:param model_id: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
:param contents: List of contents to generate embeddings for. Each content can be a string or an InterleavedContentItem (and hence can be multimodal). The behavior depends on the model and provider. Some models may only support text.
:param output_dimension: (Optional) Output dimensionality for the embeddings. Only supported by Matryoshka models.
:param text_truncation: (Optional) Config for how to truncate text for embedding when text is longer than the model's max sequence length.
:param task_type: (Optional) How is the embedding being used? This is only supported by asymmetric embedding models.
:returns: An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}.
"""
...
@webmethod(route="/inference/rerank", method="POST", experimental=True)
async def rerank(
self,

View file

@ -16,7 +16,6 @@ from pydantic import Field, TypeAdapter
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
from llama_stack.apis.inference import (
@ -28,8 +27,6 @@ from llama_stack.apis.inference import (
CompletionMessage,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
ListOpenAIChatCompletionResponse,
LogProbConfig,
@ -50,7 +47,6 @@ from llama_stack.apis.inference import (
ResponseFormat,
SamplingParams,
StopReason,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -347,25 +343,6 @@ class InferenceRouter(Inference):
provider = await self.routing_table.get_provider_impl(model_id)
return await provider.batch_completion(model_id, content_batch, sampling_params, response_format, logprobs)
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
logger.debug(f"InferenceRouter.embeddings: {model_id}")
await self._get_model(model_id, ModelType.embedding)
provider = await self.routing_table.get_provider_impl(model_id)
return await provider.embeddings(
model_id=model_id,
contents=contents,
text_truncation=text_truncation,
output_dimension=output_dimension,
task_type=task_type,
)
async def openai_completion(
self,
model: str,

View file

@ -11,21 +11,17 @@ from botocore.client import BaseClient
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -47,8 +43,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
)
from .models import MODEL_ENTRIES
@ -176,31 +170,6 @@ class BedrockInferenceAdapter(
),
}
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
embeddings = []
for content in contents:
assert not content_has_media(content), "Bedrock does not support media for embeddings"
input_text = interleaved_content_as_str(content)
input_body = {"inputText": input_text}
body = json.dumps(input_body)
response = self.client.invoke_model(
body=body,
modelId=model.provider_resource_id,
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
embeddings.append(response_body.get("embedding"))
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,

View file

@ -10,21 +10,17 @@ from cerebras.cloud.sdk import AsyncCerebras
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
CompletionRequest,
CompletionResponse,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -187,16 +183,6 @@ class CerebrasInferenceAdapter(
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,

View file

@ -10,20 +10,16 @@ from openai import OpenAI
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -147,16 +143,6 @@ class DatabricksInferenceAdapter(
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,

View file

@ -12,15 +12,12 @@ from openai import AsyncOpenAI
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
@ -33,7 +30,6 @@ from llama_stack.apis.inference import (
ResponseFormat,
ResponseFormatType,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -57,8 +53,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
@ -261,31 +255,6 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
return params
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
kwargs = {}
if model.metadata.get("embedding_dimension"):
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
assert all(not content_has_media(content) for content in contents), (
"Fireworks does not support media for embeddings"
)
response = self._get_client().embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,

View file

@ -11,8 +11,6 @@ from openai import NOT_GIVEN, APIConnectionError
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
TextContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -21,8 +19,6 @@ from llama_stack.apis.inference import (
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
@ -31,7 +27,6 @@ from llama_stack.apis.inference import (
OpenAIEmbeddingUsage,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
)
@ -155,60 +150,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
# we pass n=1 to get only one completion
return convert_openai_completion_choice(response.choices[0])
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
if any(content_has_media(content) for content in contents):
raise NotImplementedError("Media is not supported")
#
# Llama Stack: contents = list[str] | list[InterleavedContentItem]
# ->
# OpenAI: input = str | list[str]
#
# we can ignore str and always pass list[str] to OpenAI
#
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
provider_model_id = await self._get_provider_model_id(model_id)
extra_body = {}
if text_truncation is not None:
text_truncation_options = {
TextTruncation.none: "NONE",
TextTruncation.end: "END",
TextTruncation.start: "START",
}
extra_body["truncate"] = text_truncation_options[text_truncation]
if output_dimension is not None:
extra_body["dimensions"] = output_dimension
if task_type is not None:
task_type_options = {
EmbeddingTaskType.document: "passage",
EmbeddingTaskType.query: "query",
}
extra_body["input_type"] = task_type_options[task_type]
response = await self.client.embeddings.create(
model=provider_model_id,
input=input,
extra_body=extra_body,
)
#
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...)
# ->
# Llama Stack: EmbeddingsResponse(embeddings=list[list[float]])
#
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
async def openai_embeddings(
self,
model: str,

View file

@ -17,7 +17,6 @@ from openai import AsyncOpenAI
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
InterleavedContentItem,
TextContentItem,
)
from llama_stack.apis.common.errors import UnsupportedModelError
@ -28,8 +27,6 @@ from llama_stack.apis.inference import (
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
GrammarResponseFormat,
InferenceProvider,
JsonSchemaResponseFormat,
@ -44,7 +41,6 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -76,9 +72,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
convert_image_content_to_url,
interleaved_content_as_str,
localize_image_content,
request_has_media,
)
@ -394,27 +388,6 @@ class OllamaInferenceAdapter(
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self._get_model(model_id)
assert all(not content_has_media(content) for content in contents), (
"Ollama does not support media for embeddings"
)
response = await self.client.embed(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = response["embeddings"]
return EmbeddingsResponse(embeddings=embeddings)
async def register_model(self, model: Model) -> Model:
try:
model = await self.register_helper.register_model(model)

View file

@ -14,8 +14,6 @@ from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionMessage,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
@ -27,7 +25,6 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -190,25 +187,6 @@ class PassthroughInferenceAdapter(Inference):
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
yield chunk
async def embeddings(
self,
model_id: str,
contents: list[InterleavedContent],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
client = self._get_client()
model = await self.model_store.get_model(model_id)
return await client.inference.embeddings(
model_id=model.provider_resource_id,
contents=contents,
text_truncation=text_truncation,
output_dimension=output_dimension,
task_type=task_type,
)
async def openai_embeddings(
self,
model: str,

View file

@ -136,16 +136,6 @@ class RunpodInferenceAdapter(
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,

View file

@ -11,14 +11,11 @@ from huggingface_hub import AsyncInferenceClient, HfApi
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
@ -26,7 +23,6 @@ from llama_stack.apis.inference import (
ResponseFormat,
ResponseFormatType,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -282,16 +278,6 @@ class _HfAdapter(
**self._build_options(request.sampling_params, request.response_format),
)
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,

View file

@ -12,14 +12,11 @@ from together import AsyncTogether
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
@ -32,7 +29,6 @@ from llama_stack.apis.inference import (
ResponseFormat,
ResponseFormatType,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -53,8 +49,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
@ -235,26 +229,6 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
logger.debug(f"params to together: {params}")
return params
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
assert all(not content_has_media(content) for content in contents), (
"Together does not support media for embeddings"
)
client = self._get_client()
r = await client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = [item.embedding for item in r.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,

View file

@ -15,7 +15,6 @@ from openai.types.chat.chat_completion_chunk import (
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
@ -30,8 +29,6 @@ from llama_stack.apis.inference import (
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
GrammarResponseFormat,
Inference,
JsonSchemaResponseFormat,
@ -47,7 +44,6 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -78,8 +74,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
)
from llama_stack.providers.utils.inference.prompt_adapter import (
completion_request_to_prompt,
content_has_media,
interleaved_content_as_str,
request_has_media,
)
@ -535,32 +529,6 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
**options,
}
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
self._lazy_initialize_client()
assert self.client is not None
model = await self._get_model(model_id)
kwargs = {}
assert model.model_type == ModelType.embedding
assert model.metadata.get("embedding_dimension")
kwargs["dimensions"] = model.metadata.get("embedding_dimension")
assert all(not content_has_media(content) for content in contents), "VLLM does not support media for embeddings"
response = await self.client.embeddings.create(
model=model.provider_resource_id,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
)
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,

View file

@ -11,13 +11,11 @@ from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from openai import AsyncOpenAI
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
EmbeddingTaskType,
GreedySamplingStrategy,
Inference,
LogProbConfig,
@ -30,7 +28,6 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -249,16 +246,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
}
return params
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError("embedding is not supported for watsonx")
async def openai_embeddings(
self,
model: str,

View file

@ -14,16 +14,11 @@ if TYPE_CHECKING:
from sentence_transformers import SentenceTransformer
from llama_stack.apis.inference import (
EmbeddingsResponse,
EmbeddingTaskType,
InterleavedContentItem,
ModelStore,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
TextTruncation,
)
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
EMBEDDING_MODELS = {}
@ -34,21 +29,6 @@ log = get_logger(name=__name__, category="providers::utils")
class SentenceTransformerEmbeddingMixin:
model_store: ModelStore
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
embedding_model = self._load_sentence_transformer_model(model.provider_resource_id)
embeddings = embedding_model.encode(
[interleaved_content_as_str(content) for content in contents], show_progress_bar=False
)
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,

View file

@ -11,14 +11,11 @@ import litellm
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
InferenceProvider,
JsonSchemaResponseFormat,
LogProbConfig,
@ -32,7 +29,6 @@ from llama_stack.apis.inference import (
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
@ -50,9 +46,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
prepare_openai_completion_params,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
logger = get_logger(name=__name__, category="providers::utils")
@ -269,24 +262,6 @@ class LiteLLMOpenAIMixin(
)
return api_key
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
response = litellm.embedding(
model=self.get_litellm_model_name(model.provider_resource_id),
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = [data["embedding"] for data in response["data"]]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,

View file

@ -1,303 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
#
# Test plan:
#
# Types of input:
# - array of a string
# - array of a image (ImageContentItem, either URL or base64 string)
# - array of a text (TextContentItem)
# Types of output:
# - list of list of floats
# Params:
# - text_truncation
# - absent w/ long text -> error
# - none w/ long text -> error
# - absent w/ short text -> ok
# - none w/ short text -> ok
# - end w/ long text -> ok
# - end w/ short text -> ok
# - start w/ long text -> ok
# - start w/ short text -> ok
# - output_dimension
# - response dimension matches
# - task_type, only for asymmetric models
# - query embedding != passage embedding
# Negative:
# - long string
# - long text
#
# Todo:
# - negative tests
# - empty
# - empty list
# - empty string
# - empty text
# - empty image
# - long
# - large image
# - appropriate combinations
# - batch size
# - many inputs
# - invalid
# - invalid URL
# - invalid base64
#
# Notes:
# - use llama_stack_client fixture
# - use pytest.mark.parametrize when possible
# - no accuracy tests: only check the type of output, not the content
#
import pytest
from llama_stack_client import BadRequestError as LlamaStackBadRequestError
from llama_stack_client.types import EmbeddingsResponse
from llama_stack_client.types.shared.interleaved_content import (
ImageContentItem,
ImageContentItemImage,
ImageContentItemImageURL,
TextContentItem,
)
from openai import BadRequestError as OpenAIBadRequestError
from llama_stack.core.library_client import LlamaStackAsLibraryClient
DUMMY_STRING = "hello"
DUMMY_STRING2 = "world"
DUMMY_LONG_STRING = "NVDA " * 10240
DUMMY_TEXT = TextContentItem(text=DUMMY_STRING, type="text")
DUMMY_TEXT2 = TextContentItem(text=DUMMY_STRING2, type="text")
DUMMY_LONG_TEXT = TextContentItem(text=DUMMY_LONG_STRING, type="text")
# TODO(mf): add a real image URL and base64 string
DUMMY_IMAGE_URL = ImageContentItem(
image=ImageContentItemImage(url=ImageContentItemImageURL(uri="https://example.com/image.jpg")), type="image"
)
DUMMY_IMAGE_BASE64 = ImageContentItem(image=ImageContentItemImage(data="base64string"), type="image")
SUPPORTED_PROVIDERS = {"remote::nvidia"}
MODELS_SUPPORTING_MEDIA = {}
MODELS_SUPPORTING_OUTPUT_DIMENSION = {"nvidia/llama-3.2-nv-embedqa-1b-v2"}
MODELS_REQUIRING_TASK_TYPE = {
"nvidia/llama-3.2-nv-embedqa-1b-v2",
"nvidia/nv-embedqa-e5-v5",
"nvidia/nv-embedqa-mistral-7b-v2",
"snowflake/arctic-embed-l",
}
MODELS_SUPPORTING_TASK_TYPE = MODELS_REQUIRING_TASK_TYPE
def default_task_type(model_id):
"""
Some models require a task type parameter. This provides a default value for
testing those models.
"""
if model_id in MODELS_REQUIRING_TASK_TYPE:
return {"task_type": "query"}
return {}
@pytest.mark.parametrize(
"contents",
[
[DUMMY_STRING, DUMMY_STRING2],
[DUMMY_TEXT, DUMMY_TEXT2],
],
ids=[
"list[string]",
"list[text]",
],
)
def test_embedding_text(llama_stack_client, embedding_model_id, contents, inference_provider_type):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=contents, **default_task_type(embedding_model_id)
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == sum(len(content) if isinstance(content, list) else 1 for content in contents)
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"contents",
[
[DUMMY_IMAGE_URL, DUMMY_IMAGE_BASE64],
[DUMMY_IMAGE_URL, DUMMY_STRING, DUMMY_IMAGE_BASE64, DUMMY_TEXT],
],
ids=[
"list[url,base64]",
"list[url,string,base64,text]",
],
)
def test_embedding_image(llama_stack_client, embedding_model_id, contents, inference_provider_type):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
if embedding_model_id not in MODELS_SUPPORTING_MEDIA:
pytest.xfail(f"{embedding_model_id} doesn't support media")
response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=contents, **default_task_type(embedding_model_id)
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == sum(len(content) if isinstance(content, list) else 1 for content in contents)
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"text_truncation",
[
"end",
"start",
],
)
@pytest.mark.parametrize(
"contents",
[
[DUMMY_LONG_TEXT],
[DUMMY_STRING],
],
ids=[
"long",
"short",
],
)
def test_embedding_truncation(
llama_stack_client, embedding_model_id, text_truncation, contents, inference_provider_type
):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=contents,
text_truncation=text_truncation,
**default_task_type(embedding_model_id),
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == 1
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"text_truncation",
[
None,
"none",
],
)
@pytest.mark.parametrize(
"contents",
[
[DUMMY_LONG_TEXT],
[DUMMY_LONG_STRING],
],
ids=[
"long-text",
"long-str",
],
)
def test_embedding_truncation_error(
llama_stack_client, embedding_model_id, text_truncation, contents, inference_provider_type
):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
# Using LlamaStackClient from llama_stack_client will raise llama_stack_client.BadRequestError
# While using LlamaStackAsLibraryClient from llama_stack.distribution.library_client will raise the error that the backend raises
error_type = (
OpenAIBadRequestError
if isinstance(llama_stack_client, LlamaStackAsLibraryClient)
else LlamaStackBadRequestError
)
with pytest.raises(error_type):
llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=[DUMMY_LONG_TEXT],
text_truncation=text_truncation,
**default_task_type(embedding_model_id),
)
def test_embedding_output_dimension(llama_stack_client, embedding_model_id, inference_provider_type):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
if embedding_model_id not in MODELS_SUPPORTING_OUTPUT_DIMENSION:
pytest.xfail(f"{embedding_model_id} doesn't support output_dimension")
base_response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], **default_task_type(embedding_model_id)
)
test_response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=[DUMMY_STRING],
**default_task_type(embedding_model_id),
output_dimension=32,
)
assert len(base_response.embeddings[0]) != len(test_response.embeddings[0])
assert len(test_response.embeddings[0]) == 32
def test_embedding_task_type(llama_stack_client, embedding_model_id, inference_provider_type):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
pytest.xfail(f"{embedding_model_id} doesn't support task_type")
query_embedding = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="query"
)
document_embedding = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="document"
)
assert query_embedding.embeddings != document_embedding.embeddings
@pytest.mark.parametrize(
"text_truncation",
[
None,
"none",
"end",
"start",
],
)
def test_embedding_text_truncation(llama_stack_client, embedding_model_id, text_truncation, inference_provider_type):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=[DUMMY_STRING],
text_truncation=text_truncation,
**default_task_type(embedding_model_id),
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == 1
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"text_truncation",
[
"NONE",
"END",
"START",
"left",
"right",
],
)
def test_embedding_text_truncation_error(
llama_stack_client, embedding_model_id, text_truncation, inference_provider_type
):
if inference_provider_type not in SUPPORTED_PROVIDERS:
pytest.xfail(f"{inference_provider_type} doesn't support embedding model yet")
error_type = ValueError if isinstance(llama_stack_client, LlamaStackAsLibraryClient) else LlamaStackBadRequestError
with pytest.raises(error_type):
llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=[DUMMY_STRING],
text_truncation=text_truncation,
**default_task_type(embedding_model_id),
)

View file

@ -5,13 +5,12 @@
# the root directory of this source tree.
import asyncio
from unittest.mock import AsyncMock, MagicMock, patch
from unittest.mock import MagicMock, patch
import numpy as np
import pytest
from llama_stack.apis.files import Files
from llama_stack.apis.inference import EmbeddingsResponse, Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.providers.datatypes import HealthStatus
@ -70,13 +69,6 @@ def mock_vector_db(vector_db_id, embedding_dimension) -> MagicMock:
return mock_vector_db
@pytest.fixture
def mock_inference_api(sample_embeddings):
mock_api = MagicMock(spec=Inference)
mock_api.embeddings = AsyncMock(return_value=EmbeddingsResponse(embeddings=sample_embeddings))
return mock_api
@pytest.fixture
def mock_files_api():
mock_api = MagicMock(spec=Files)
@ -96,22 +88,6 @@ async def faiss_index(embedding_dimension):
yield index
@pytest.fixture
async def faiss_adapter(faiss_config, mock_inference_api, mock_files_api) -> FaissVectorIOAdapter:
# Create the adapter
adapter = FaissVectorIOAdapter(config=faiss_config, inference_api=mock_inference_api, files_api=mock_files_api)
# Create a mock KVStore
mock_kvstore = MagicMock()
mock_kvstore.values_in_range = AsyncMock(return_value=[])
# Patch the initialize method to avoid the kvstore_impl call
with patch.object(FaissVectorIOAdapter, "initialize"):
# Set the kvstore directly
adapter.kvstore = mock_kvstore
yield adapter
async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_identical(
faiss_index, sample_chunks, sample_embeddings, embedding_dimension
):