Merge remote-tracking branch 'origin/main' into stack-config-default-embed

This commit is contained in:
Ashwin Bharambe 2025-10-20 13:29:19 -07:00
commit 31249a1a75
237 changed files with 30895 additions and 15441 deletions

View file

@ -545,6 +545,7 @@ class OpenAIResponseObject(BaseModel):
:param tools: (Optional) An array of tools the model may call while generating a response.
:param truncation: (Optional) Truncation strategy applied to the response
:param usage: (Optional) Token usage information for the response
:param instructions: (Optional) System message inserted into the model's context
"""
created_at: int
@ -564,6 +565,7 @@ class OpenAIResponseObject(BaseModel):
tools: list[OpenAIResponseTool] | None = None
truncation: str | None = None
usage: OpenAIResponseUsage | None = None
instructions: str | None = None
@json_schema_type

View file

@ -173,7 +173,9 @@ class ConversationItemDeletedResource(BaseModel):
@runtime_checkable
@trace_protocol
class Conversations(Protocol):
"""Protocol for conversation management operations."""
"""Conversations
Protocol for conversation management operations."""
@webmethod(route="/conversations", method="POST", level=LLAMA_STACK_API_V1)
async def create_conversation(
@ -181,6 +183,8 @@ class Conversations(Protocol):
) -> Conversation:
"""Create a conversation.
Create a conversation.
:param items: Initial items to include in the conversation context.
:param metadata: Set of key-value pairs that can be attached to an object.
:returns: The created conversation object.
@ -189,7 +193,9 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}", method="GET", level=LLAMA_STACK_API_V1)
async def get_conversation(self, conversation_id: str) -> Conversation:
"""Get a conversation with the given ID.
"""Retrieve a conversation.
Get a conversation with the given ID.
:param conversation_id: The conversation identifier.
:returns: The conversation object.
@ -198,7 +204,9 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}", method="POST", level=LLAMA_STACK_API_V1)
async def update_conversation(self, conversation_id: str, metadata: Metadata) -> Conversation:
"""Update a conversation's metadata with the given ID.
"""Update a conversation.
Update a conversation's metadata with the given ID.
:param conversation_id: The conversation identifier.
:param metadata: Set of key-value pairs that can be attached to an object.
@ -208,7 +216,9 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}", method="DELETE", level=LLAMA_STACK_API_V1)
async def openai_delete_conversation(self, conversation_id: str) -> ConversationDeletedResource:
"""Delete a conversation with the given ID.
"""Delete a conversation.
Delete a conversation with the given ID.
:param conversation_id: The conversation identifier.
:returns: The deleted conversation resource.
@ -217,7 +227,9 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}/items", method="POST", level=LLAMA_STACK_API_V1)
async def add_items(self, conversation_id: str, items: list[ConversationItem]) -> ConversationItemList:
"""Create items in the conversation.
"""Create items.
Create items in the conversation.
:param conversation_id: The conversation identifier.
:param items: Items to include in the conversation context.
@ -227,7 +239,9 @@ class Conversations(Protocol):
@webmethod(route="/conversations/{conversation_id}/items/{item_id}", method="GET", level=LLAMA_STACK_API_V1)
async def retrieve(self, conversation_id: str, item_id: str) -> ConversationItem:
"""Retrieve a conversation item.
"""Retrieve an item.
Retrieve a conversation item.
:param conversation_id: The conversation identifier.
:param item_id: The item identifier.
@ -244,7 +258,9 @@ class Conversations(Protocol):
limit: int | NotGiven = NOT_GIVEN,
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
) -> ConversationItemList:
"""List items in the conversation.
"""List items.
List items in the conversation.
:param conversation_id: The conversation identifier.
:param after: An item ID to list items after, used in pagination.
@ -259,7 +275,9 @@ class Conversations(Protocol):
async def openai_delete_conversation_item(
self, conversation_id: str, item_id: str
) -> ConversationItemDeletedResource:
"""Delete a conversation item.
"""Delete an item.
Delete a conversation item.
:param conversation_id: The conversation identifier.
:param item_id: The item identifier.

View file

@ -82,7 +82,9 @@ class EvaluateResponse(BaseModel):
class Eval(Protocol):
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
"""Evaluations
Llama Stack Evaluation API for running evaluations on model and agent candidates."""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1ALPHA)

View file

@ -40,12 +40,20 @@ from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.external import load_external_apis
from llama_stack.core.resolver import InvalidProviderError
from llama_stack.core.stack import replace_env_vars
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageConfig,
)
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.core.utils.exec import formulate_run_args, run_command
from llama_stack.core.utils.image_types import LlamaStackImageType
from llama_stack.providers.datatypes import Api
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions"
@ -286,21 +294,42 @@ def _generate_run_config(
Generate a run.yaml template file for user to edit from a build.yaml file
"""
apis = list(build_config.distribution_spec.providers.keys())
distro_dir = DISTRIBS_BASE_DIR / image_name
storage = StorageConfig(
backends={
"kv_default": SqliteKVStoreConfig(
db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/kvstore.db",
),
"sql_default": SqliteSqlStoreConfig(
db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/sql_store.db",
),
},
stores=ServerStoresConfig(
metadata=KVStoreReference(
backend="kv_default",
namespace="registry",
),
inference=InferenceStoreReference(
backend="sql_default",
table_name="inference_store",
),
conversations=SqlStoreReference(
backend="sql_default",
table_name="openai_conversations",
),
),
)
run_config = StackRunConfig(
container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None),
image_name=image_name,
apis=apis,
providers={},
storage=storage,
external_providers_dir=build_config.external_providers_dir
if build_config.external_providers_dir
else EXTERNAL_PROVIDERS_DIR,
)
if not run_config.inference_store:
run_config.inference_store = SqliteSqlStoreConfig(
**SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=(DISTRIBS_BASE_DIR / image_name).as_posix(), db_name="inference_store.db"
)
)
# build providers dict
provider_registry = get_provider_registry(build_config)
for api in apis:

View file

@ -0,0 +1,182 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import sys
from pathlib import Path
import yaml
from termcolor import cprint
from llama_stack.cli.stack.utils import ImageType
from llama_stack.core.build import get_provider_dependencies
from llama_stack.core.datatypes import (
BuildConfig,
BuildProvider,
DistributionSpec,
)
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.stack import replace_env_vars
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates"
logger = get_logger(name=__name__, category="cli")
# These are the dependencies needed by the distribution server.
# `llama-stack` is automatically installed by the installation script.
SERVER_DEPENDENCIES = [
"aiosqlite",
"fastapi",
"fire",
"httpx",
"uvicorn",
"opentelemetry-sdk",
"opentelemetry-exporter-otlp-proto-http",
]
def format_output_deps_only(
normal_deps: list[str],
special_deps: list[str],
external_deps: list[str],
uv: bool = False,
) -> str:
"""Format dependencies as a list."""
lines = []
uv_str = ""
if uv:
uv_str = "uv pip install "
# Quote deps with commas
quoted_normal_deps = [quote_if_needed(dep) for dep in normal_deps]
lines.append(f"{uv_str}{' '.join(quoted_normal_deps)}")
for special_dep in special_deps:
lines.append(f"{uv_str}{quote_special_dep(special_dep)}")
for external_dep in external_deps:
lines.append(f"{uv_str}{quote_special_dep(external_dep)}")
return "\n".join(lines)
def run_stack_list_deps_command(args: argparse.Namespace) -> None:
if args.config:
try:
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
config_file = resolve_config_or_distro(args.config, Mode.BUILD)
except ValueError as e:
cprint(
f"Could not parse config file {args.config}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
if config_file:
with open(config_file) as f:
try:
contents = yaml.safe_load(f)
contents = replace_env_vars(contents)
build_config = BuildConfig(**contents)
build_config.image_type = "venv"
except Exception as e:
cprint(
f"Could not parse config file {config_file}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
elif args.providers:
provider_list: dict[str, list[BuildProvider]] = dict()
for api_provider in args.providers.split(","):
if "=" not in api_provider:
cprint(
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
color="red",
file=sys.stderr,
)
sys.exit(1)
api, provider_type = api_provider.split("=")
providers_for_api = get_provider_registry().get(Api(api), None)
if providers_for_api is None:
cprint(
f"{api} is not a valid API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
if provider_type in providers_for_api:
provider = BuildProvider(
provider_type=provider_type,
module=None,
)
provider_list.setdefault(api, []).append(provider)
else:
cprint(
f"{provider_type} is not a valid provider for the {api} API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
distribution_spec = DistributionSpec(
providers=provider_list,
description=",".join(args.providers),
)
build_config = BuildConfig(image_type=ImageType.VENV.value, distribution_spec=distribution_spec)
normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config)
normal_deps += SERVER_DEPENDENCIES
# Add external API dependencies
if build_config.external_apis_dir:
from llama_stack.core.external import load_external_apis
external_apis = load_external_apis(build_config)
if external_apis:
for _, api_spec in external_apis.items():
normal_deps.extend(api_spec.pip_packages)
# Format and output based on requested format
output = format_output_deps_only(
normal_deps=normal_deps,
special_deps=special_deps,
external_deps=external_provider_dependencies,
uv=args.format == "uv",
)
print(output)
def quote_if_needed(dep):
# Add quotes if the dependency contains special characters that need escaping in shell
# This includes: commas, comparison operators (<, >, <=, >=, ==, !=)
needs_quoting = any(char in dep for char in [",", "<", ">", "="])
return f"'{dep}'" if needs_quoting else dep
def quote_special_dep(dep_string):
"""
Quote individual packages in a special dependency string.
Special deps may contain multiple packages and flags like --extra-index-url.
We need to quote only the package specs that contain special characters.
"""
parts = dep_string.split()
quoted_parts = []
for part in parts:
# Don't quote flags (they start with -)
if part.startswith("-"):
quoted_parts.append(part)
else:
# Quote package specs that need it
quoted_parts.append(quote_if_needed(part))
return " ".join(quoted_parts)

View file

@ -8,6 +8,9 @@ import textwrap
from llama_stack.cli.stack.utils import ImageType
from llama_stack.cli.subcommand import Subcommand
from llama_stack.log import get_logger
logger = get_logger(__name__, category="cli")
class StackBuild(Subcommand):
@ -16,7 +19,7 @@ class StackBuild(Subcommand):
self.parser = subparsers.add_parser(
"build",
prog="llama stack build",
description="Build a Llama stack container",
description="[DEPRECATED] Build a Llama stack container. This command is deprecated and will be removed in a future release. Use `llama stack list-deps <distro>' instead.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
self._add_arguments()
@ -93,6 +96,9 @@ the build. If not specified, currently active environment will be used if found.
)
def _run_stack_build_command(self, args: argparse.Namespace) -> None:
logger.warning(
"The 'llama stack build' command is deprecated and will be removed in a future release. Please use 'llama stack list-deps'"
)
# always keep implementation completely silo-ed away from CLI so CLI
# can be fast to load and reduces dependencies
from ._build import run_stack_build_command

View file

@ -0,0 +1,51 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
from llama_stack.cli.subcommand import Subcommand
class StackListDeps(Subcommand):
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"list-deps",
prog="llama stack list-deps",
description="list the dependencies for a llama stack distribution",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_stack_list_deps_command)
def _add_arguments(self):
self.parser.add_argument(
"config",
type=str,
nargs="?", # Make it optional
metavar="config | distro",
help="Path to config file to use or name of known distro (llama stack list for a list).",
)
self.parser.add_argument(
"--providers",
type=str,
default=None,
help="sync dependencies for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per API.",
)
self.parser.add_argument(
"--format",
type=str,
choices=["uv", "deps-only"],
default="deps-only",
help="Output format: 'uv' shows shell commands, 'deps-only' shows just the list of dependencies without `uv` (default)",
)
def _run_stack_list_deps_command(self, args: argparse.Namespace) -> None:
# always keep implementation completely silo-ed away from CLI so CLI
# can be fast to load and reduces dependencies
from ._list_deps import run_stack_list_deps_command
return run_stack_list_deps_command(args)

View file

@ -13,6 +13,7 @@ from llama_stack.cli.subcommand import Subcommand
from .build import StackBuild
from .list_apis import StackListApis
from .list_deps import StackListDeps
from .list_providers import StackListProviders
from .remove import StackRemove
from .run import StackRun
@ -39,6 +40,7 @@ class StackParser(Subcommand):
subparsers = self.parser.add_subparsers(title="stack_subcommands")
# Add sub-commands
StackListDeps.create(subparsers)
StackBuild.create(subparsers)
StackListApis.create(subparsers)
StackListProviders.create(subparsers)

View file

@ -4,7 +4,37 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import sys
from enum import Enum
from functools import lru_cache
from pathlib import Path
import yaml
from termcolor import cprint
from llama_stack.core.datatypes import (
BuildConfig,
Provider,
StackRunConfig,
StorageConfig,
)
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.resolver import InvalidProviderError
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
)
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.core.utils.image_types import LlamaStackImageType
from llama_stack.providers.datatypes import Api
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "distributions"
class ImageType(Enum):
@ -19,3 +49,103 @@ def print_subcommand_description(parser, subparsers):
description = subcommand.description
description_text += f" {name:<21} {description}\n"
parser.epilog = description_text
def generate_run_config(
build_config: BuildConfig,
build_dir: Path,
image_name: str,
) -> Path:
"""
Generate a run.yaml template file for user to edit from a build.yaml file
"""
apis = list(build_config.distribution_spec.providers.keys())
distro_dir = DISTRIBS_BASE_DIR / image_name
run_config = StackRunConfig(
container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None),
image_name=image_name,
apis=apis,
providers={},
storage=StorageConfig(
backends={
"kv_default": SqliteKVStoreConfig(db_path=str(distro_dir / "kvstore.db")),
"sql_default": SqliteSqlStoreConfig(db_path=str(distro_dir / "sql_store.db")),
},
stores=ServerStoresConfig(
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
conversations=SqlStoreReference(backend="sql_default", table_name="openai_conversations"),
),
),
external_providers_dir=build_config.external_providers_dir
if build_config.external_providers_dir
else EXTERNAL_PROVIDERS_DIR,
)
# build providers dict
provider_registry = get_provider_registry(build_config)
for api in apis:
run_config.providers[api] = []
providers = build_config.distribution_spec.providers[api]
for provider in providers:
pid = provider.provider_type.split("::")[-1]
p = provider_registry[Api(api)][provider.provider_type]
if p.deprecation_error:
raise InvalidProviderError(p.deprecation_error)
try:
config_type = instantiate_class_type(provider_registry[Api(api)][provider.provider_type].config_class)
except (ModuleNotFoundError, ValueError) as exc:
# HACK ALERT:
# This code executes after building is done, the import cannot work since the
# package is either available in the venv or container - not available on the host.
# TODO: use a "is_external" flag in ProviderSpec to check if the provider is
# external
cprint(
f"Failed to import provider {provider.provider_type} for API {api} - assuming it's external, skipping: {exc}",
color="yellow",
file=sys.stderr,
)
# Set config_type to None to avoid UnboundLocalError
config_type = None
if config_type is not None and hasattr(config_type, "sample_run_config"):
config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}")
else:
config = {}
p_spec = Provider(
provider_id=pid,
provider_type=provider.provider_type,
config=config,
module=provider.module,
)
run_config.providers[api].append(p_spec)
run_config_file = build_dir / f"{image_name}-run.yaml"
with open(run_config_file, "w") as f:
to_write = json.loads(run_config.model_dump_json())
f.write(yaml.dump(to_write, sort_keys=False))
# Only print this message for non-container builds since it will be displayed before the
# container is built
# For non-container builds, the run.yaml is generated at the very end of the build process so it
# makes sense to display this message
if build_config.image_type != LlamaStackImageType.CONTAINER.value:
cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr)
return run_config_file
@lru_cache
def available_templates_specs() -> dict[str, BuildConfig]:
import yaml
template_specs = {}
for p in TEMPLATES_PATH.rglob("*build.yaml"):
template_name = p.parent.name
with open(p) as f:
build_config = BuildConfig(**yaml.safe_load(f))
template_specs[template_name] = build_config
return template_specs

View file

@ -159,6 +159,37 @@ def upgrade_from_routing_table(
config_dict["apis"] = config_dict["apis_to_serve"]
config_dict.pop("apis_to_serve", None)
# Add default storage config if not present
if "storage" not in config_dict:
config_dict["storage"] = {
"backends": {
"kv_default": {
"type": "kv_sqlite",
"db_path": "~/.llama/kvstore.db",
},
"sql_default": {
"type": "sql_sqlite",
"db_path": "~/.llama/sql_store.db",
},
},
"stores": {
"metadata": {
"namespace": "registry",
"backend": "kv_default",
},
"inference": {
"table_name": "inference_store",
"backend": "sql_default",
"max_write_queue_size": 10000,
"num_writers": 4,
},
"conversations": {
"table_name": "openai_conversations",
"backend": "sql_default",
},
},
}
return config_dict

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import secrets
import time
from typing import Any
@ -21,16 +20,11 @@ from llama_stack.apis.conversations.conversations import (
Conversations,
Metadata,
)
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.core.datatypes import AccessRule, StackRunConfig
from llama_stack.log import get_logger
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore
from llama_stack.providers.utils.sqlstore.sqlstore import (
SqliteSqlStoreConfig,
SqlStoreConfig,
sqlstore_impl,
)
from llama_stack.providers.utils.sqlstore.sqlstore import sqlstore_impl
logger = get_logger(name=__name__, category="openai_conversations")
@ -38,13 +32,11 @@ logger = get_logger(name=__name__, category="openai_conversations")
class ConversationServiceConfig(BaseModel):
"""Configuration for the built-in conversation service.
:param conversations_store: SQL store configuration for conversations (defaults to SQLite)
:param run_config: Stack run configuration for resolving persistence
:param policy: Access control rules
"""
conversations_store: SqlStoreConfig = SqliteSqlStoreConfig(
db_path=(DISTRIBS_BASE_DIR / "conversations.db").as_posix()
)
run_config: StackRunConfig
policy: list[AccessRule] = []
@ -63,14 +55,16 @@ class ConversationServiceImpl(Conversations):
self.deps = deps
self.policy = config.policy
base_sql_store = sqlstore_impl(config.conversations_store)
# Use conversations store reference from run config
conversations_ref = config.run_config.storage.stores.conversations
if not conversations_ref:
raise ValueError("storage.stores.conversations must be configured in run config")
base_sql_store = sqlstore_impl(conversations_ref)
self.sql_store = AuthorizedSqlStore(base_sql_store, self.policy)
async def initialize(self) -> None:
"""Initialize the store and create tables."""
if isinstance(self.config.conversations_store, SqliteSqlStoreConfig):
os.makedirs(os.path.dirname(self.config.conversations_store.db_path), exist_ok=True)
await self.sql_store.create_table(
"openai_conversations",
{

View file

@ -26,9 +26,12 @@ from llama_stack.apis.tools import ToolGroup, ToolGroupInput, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.access_control.datatypes import AccessRule
from llama_stack.core.storage.datatypes import (
KVStoreReference,
StorageBackendType,
StorageConfig,
)
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStoreConfig
LLAMA_STACK_BUILD_CONFIG_VERSION = 2
LLAMA_STACK_RUN_CONFIG_VERSION = 2
@ -382,7 +385,7 @@ class QuotaPeriod(StrEnum):
class QuotaConfig(BaseModel):
kvstore: SqliteKVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
kvstore: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
anonymous_max_requests: int = Field(default=100, description="Max requests for unauthenticated clients per period")
authenticated_max_requests: int = Field(
default=1000, description="Max requests for authenticated clients per period"
@ -464,18 +467,6 @@ class ServerConfig(BaseModel):
)
class InferenceStoreConfig(BaseModel):
sql_store_config: SqlStoreConfig
max_write_queue_size: int = Field(default=10000, description="Max queued writes for inference store")
num_writers: int = Field(default=4, description="Number of concurrent background writers")
class ResponsesStoreConfig(BaseModel):
sql_store_config: SqlStoreConfig
max_write_queue_size: int = Field(default=10000, description="Max queued writes for responses store")
num_writers: int = Field(default=4, description="Number of concurrent background writers")
class StackRunConfig(BaseModel):
version: int = LLAMA_STACK_RUN_CONFIG_VERSION
@ -502,26 +493,8 @@ One or more providers to use for each API. The same provider_type (e.g., meta-re
can be instantiated multiple times (with different configs) if necessary.
""",
)
metadata_store: KVStoreConfig | None = Field(
default=None,
description="""
Configuration for the persistence store used by the distribution registry. If not specified,
a default SQLite store will be used.""",
)
inference_store: InferenceStoreConfig | SqlStoreConfig | None = Field(
default=None,
description="""
Configuration for the persistence store used by the inference API. Can be either a
InferenceStoreConfig (with queue tuning parameters) or a SqlStoreConfig (deprecated).
If not specified, a default SQLite store will be used.""",
)
conversations_store: SqlStoreConfig | None = Field(
default=None,
description="""
Configuration for the persistence store used by the conversations API.
If not specified, a default SQLite store will be used.""",
storage: StorageConfig = Field(
description="Catalog of named storage backends and references available to the stack",
)
# registry of "resources" in the distribution
@ -566,6 +539,49 @@ If not specified, a default SQLite store will be used.""",
return Path(v)
return v
@model_validator(mode="after")
def validate_server_stores(self) -> "StackRunConfig":
backend_map = self.storage.backends
stores = self.storage.stores
kv_backends = {
name
for name, cfg in backend_map.items()
if cfg.type
in {
StorageBackendType.KV_REDIS,
StorageBackendType.KV_SQLITE,
StorageBackendType.KV_POSTGRES,
StorageBackendType.KV_MONGODB,
}
}
sql_backends = {
name
for name, cfg in backend_map.items()
if cfg.type in {StorageBackendType.SQL_SQLITE, StorageBackendType.SQL_POSTGRES}
}
def _ensure_backend(reference, expected_set, store_name: str) -> None:
if reference is None:
return
backend_name = reference.backend
if backend_name not in backend_map:
raise ValueError(
f"{store_name} references unknown backend '{backend_name}'. "
f"Available backends: {sorted(backend_map)}"
)
if backend_name not in expected_set:
raise ValueError(
f"{store_name} references backend '{backend_name}' of type "
f"'{backend_map[backend_name].type.value}', but a backend of type "
f"{'kv_*' if expected_set is kv_backends else 'sql_*'} is required."
)
_ensure_backend(stores.metadata, kv_backends, "storage.stores.metadata")
_ensure_backend(stores.inference, sql_backends, "storage.stores.inference")
_ensure_backend(stores.conversations, sql_backends, "storage.stores.conversations")
_ensure_backend(stores.responses, sql_backends, "storage.stores.responses")
return self
class BuildConfig(BaseModel):
version: int = LLAMA_STACK_BUILD_CONFIG_VERSION

View file

@ -11,9 +11,8 @@ from pydantic import BaseModel
from llama_stack.apis.prompts import ListPromptsResponse, Prompt, Prompts
from llama_stack.core.datatypes import StackRunConfig
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class PromptServiceConfig(BaseModel):
@ -41,10 +40,12 @@ class PromptServiceImpl(Prompts):
self.kvstore: KVStore
async def initialize(self) -> None:
kvstore_config = SqliteKVStoreConfig(
db_path=(DISTRIBS_BASE_DIR / self.config.run_config.image_name / "prompts.db").as_posix()
)
self.kvstore = await kvstore_impl(kvstore_config)
# Use metadata store backend with prompts-specific namespace
metadata_ref = self.config.run_config.storage.stores.metadata
if not metadata_ref:
raise ValueError("storage.stores.metadata must be configured in run config")
prompts_ref = KVStoreReference(namespace="prompts", backend=metadata_ref.backend)
self.kvstore = await kvstore_impl(prompts_ref)
def _get_default_key(self, prompt_id: str) -> str:
"""Get the KVStore key that stores the default version number."""

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import importlib
import importlib.metadata
import inspect
from typing import Any

View file

@ -6,7 +6,10 @@
from typing import Any
from llama_stack.core.datatypes import AccessRule, RoutedProtocol
from llama_stack.core.datatypes import (
AccessRule,
RoutedProtocol,
)
from llama_stack.core.stack import StackRunConfig
from llama_stack.core.store import DistributionRegistry
from llama_stack.providers.datatypes import Api, RoutingTable
@ -78,9 +81,13 @@ async def get_auto_router_impl(
api_to_dep_impl[dep_name] = deps[dep_api]
# TODO: move pass configs to routers instead
if api == Api.inference and run_config.inference_store:
if api == Api.inference:
inference_ref = run_config.storage.stores.inference
if not inference_ref:
raise ValueError("storage.stores.inference must be configured in run config")
inference_store = InferenceStore(
config=run_config.inference_store,
reference=inference_ref,
policy=policy,
)
await inference_store.initialize()

View file

@ -72,13 +72,30 @@ class AuthProvider(ABC):
def get_attributes_from_claims(claims: dict[str, str], mapping: dict[str, str]) -> dict[str, list[str]]:
attributes: dict[str, list[str]] = {}
for claim_key, attribute_key in mapping.items():
if claim_key not in claims:
# First try dot notation for nested traversal (e.g., "resource_access.llamastack.roles")
# Then fall back to literal key with dots (e.g., "my.dotted.key")
claim: object = claims
keys = claim_key.split(".")
for key in keys:
if isinstance(claim, dict) and key in claim:
claim = claim[key]
else:
claim = None
break
if claim is None and claim_key in claims:
# Fall back to checking if claim_key exists as a literal key
claim = claims[claim_key]
if claim is None:
continue
claim = claims[claim_key]
if isinstance(claim, list):
values = claim
else:
elif isinstance(claim, str):
values = claim.split()
else:
continue
if attribute_key in attributes:
attributes[attribute_key].extend(values)

View file

@ -10,10 +10,10 @@ from datetime import UTC, datetime, timedelta
from starlette.types import ASGIApp, Receive, Scope, Send
from llama_stack.core.storage.datatypes import KVStoreReference, StorageBackendType
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.kvstore import _KVSTORE_BACKENDS, kvstore_impl
logger = get_logger(name=__name__, category="core::server")
@ -33,7 +33,7 @@ class QuotaMiddleware:
def __init__(
self,
app: ASGIApp,
kv_config: KVStoreConfig,
kv_config: KVStoreReference,
anonymous_max_requests: int,
authenticated_max_requests: int,
window_seconds: int = 86400,
@ -45,15 +45,15 @@ class QuotaMiddleware:
self.authenticated_max_requests = authenticated_max_requests
self.window_seconds = window_seconds
if isinstance(self.kv_config, SqliteKVStoreConfig):
logger.warning(
"QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. "
f"window_seconds={self.window_seconds}"
)
async def _get_kv(self) -> KVStore:
if self.kv is None:
self.kv = await kvstore_impl(self.kv_config)
backend_config = _KVSTORE_BACKENDS.get(self.kv_config.backend)
if backend_config and backend_config.type == StorageBackendType.KV_SQLITE:
logger.warning(
"QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. "
f"window_seconds={self.window_seconds}"
)
return self.kv
async def __call__(self, scope: Scope, receive: Receive, send: Send):

View file

@ -42,6 +42,16 @@ from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceI
from llama_stack.core.providers import ProviderImpl, ProviderImplConfig
from llama_stack.core.resolver import ProviderRegistry, resolve_impls
from llama_stack.core.routing_tables.common import CommonRoutingTableImpl
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
ServerStoresConfig,
SqliteKVStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageBackendConfig,
StorageConfig,
)
from llama_stack.core.store.registry import create_dist_registry
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.log import get_logger
@ -357,6 +367,25 @@ def add_internal_implementations(impls: dict[Api, Any], run_config: StackRunConf
impls[Api.conversations] = conversations_impl
def _initialize_storage(run_config: StackRunConfig):
kv_backends: dict[str, StorageBackendConfig] = {}
sql_backends: dict[str, StorageBackendConfig] = {}
for backend_name, backend_config in run_config.storage.backends.items():
type = backend_config.type.value
if type.startswith("kv_"):
kv_backends[backend_name] = backend_config
elif type.startswith("sql_"):
sql_backends[backend_name] = backend_config
else:
raise ValueError(f"Unknown storage backend type: {type}")
from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
register_kvstore_backends(kv_backends)
register_sqlstore_backends(sql_backends)
class Stack:
def __init__(self, run_config: StackRunConfig, provider_registry: ProviderRegistry | None = None):
self.run_config = run_config
@ -375,7 +404,11 @@ class Stack:
TEST_RECORDING_CONTEXT.__enter__()
logger.info(f"API recording enabled: mode={os.environ.get('LLAMA_STACK_TEST_INFERENCE_MODE')}")
dist_registry, _ = await create_dist_registry(self.run_config.metadata_store, self.run_config.image_name)
_initialize_storage(self.run_config)
stores = self.run_config.storage.stores
if not stores.metadata:
raise ValueError("storage.stores.metadata must be configured with a kv_* backend")
dist_registry, _ = await create_dist_registry(stores.metadata, self.run_config.image_name)
policy = self.run_config.server.auth.access_policy if self.run_config.server.auth else []
internal_impls = {}
@ -516,5 +549,16 @@ def run_config_from_adhoc_config_spec(
image_name="distro-test",
apis=list(provider_configs_by_api.keys()),
providers=provider_configs_by_api,
storage=StorageConfig(
backends={
"kv_default": SqliteKVStoreConfig(db_path=f"{distro_dir}/kvstore.db"),
"sql_default": SqliteSqlStoreConfig(db_path=f"{distro_dir}/sql_store.db"),
},
stores=ServerStoresConfig(
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
conversations=SqlStoreReference(backend="sql_default", table_name="openai_conversations"),
),
),
)
return config

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,283 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from abc import abstractmethod
from enum import StrEnum
from pathlib import Path
from typing import Annotated, Literal
from pydantic import BaseModel, Field, field_validator
class StorageBackendType(StrEnum):
KV_REDIS = "kv_redis"
KV_SQLITE = "kv_sqlite"
KV_POSTGRES = "kv_postgres"
KV_MONGODB = "kv_mongodb"
SQL_SQLITE = "sql_sqlite"
SQL_POSTGRES = "sql_postgres"
class CommonConfig(BaseModel):
namespace: str | None = Field(
default=None,
description="All keys will be prefixed with this namespace",
)
class RedisKVStoreConfig(CommonConfig):
type: Literal[StorageBackendType.KV_REDIS] = StorageBackendType.KV_REDIS
host: str = "localhost"
port: int = 6379
@property
def url(self) -> str:
return f"redis://{self.host}:{self.port}"
@classmethod
def pip_packages(cls) -> list[str]:
return ["redis"]
@classmethod
def sample_run_config(cls):
return {
"type": StorageBackendType.KV_REDIS.value,
"host": "${env.REDIS_HOST:=localhost}",
"port": "${env.REDIS_PORT:=6379}",
}
class SqliteKVStoreConfig(CommonConfig):
type: Literal[StorageBackendType.KV_SQLITE] = StorageBackendType.KV_SQLITE
db_path: str = Field(
description="File path for the sqlite database",
)
@classmethod
def pip_packages(cls) -> list[str]:
return ["aiosqlite"]
@classmethod
def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"):
return {
"type": StorageBackendType.KV_SQLITE.value,
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
}
class PostgresKVStoreConfig(CommonConfig):
type: Literal[StorageBackendType.KV_POSTGRES] = StorageBackendType.KV_POSTGRES
host: str = "localhost"
port: int | str = 5432
db: str = "llamastack"
user: str
password: str | None = None
ssl_mode: str | None = None
ca_cert_path: str | None = None
table_name: str = "llamastack_kvstore"
@classmethod
def sample_run_config(cls, table_name: str = "llamastack_kvstore", **kwargs):
return {
"type": StorageBackendType.KV_POSTGRES.value,
"host": "${env.POSTGRES_HOST:=localhost}",
"port": "${env.POSTGRES_PORT:=5432}",
"db": "${env.POSTGRES_DB:=llamastack}",
"user": "${env.POSTGRES_USER:=llamastack}",
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
"table_name": "${env.POSTGRES_TABLE_NAME:=" + table_name + "}",
}
@classmethod
@field_validator("table_name")
def validate_table_name(cls, v: str) -> str:
# PostgreSQL identifiers rules:
# - Must start with a letter or underscore
# - Can contain letters, numbers, and underscores
# - Maximum length is 63 bytes
pattern = r"^[a-zA-Z_][a-zA-Z0-9_]*$"
if not re.match(pattern, v):
raise ValueError(
"Invalid table name. Must start with letter or underscore and contain only letters, numbers, and underscores"
)
if len(v) > 63:
raise ValueError("Table name must be less than 63 characters")
return v
@classmethod
def pip_packages(cls) -> list[str]:
return ["psycopg2-binary"]
class MongoDBKVStoreConfig(CommonConfig):
type: Literal[StorageBackendType.KV_MONGODB] = StorageBackendType.KV_MONGODB
host: str = "localhost"
port: int = 27017
db: str = "llamastack"
user: str | None = None
password: str | None = None
collection_name: str = "llamastack_kvstore"
@classmethod
def pip_packages(cls) -> list[str]:
return ["pymongo"]
@classmethod
def sample_run_config(cls, collection_name: str = "llamastack_kvstore"):
return {
"type": StorageBackendType.KV_MONGODB.value,
"host": "${env.MONGODB_HOST:=localhost}",
"port": "${env.MONGODB_PORT:=5432}",
"db": "${env.MONGODB_DB}",
"user": "${env.MONGODB_USER}",
"password": "${env.MONGODB_PASSWORD}",
"collection_name": "${env.MONGODB_COLLECTION_NAME:=" + collection_name + "}",
}
class SqlAlchemySqlStoreConfig(BaseModel):
@property
@abstractmethod
def engine_str(self) -> str: ...
# TODO: move this when we have a better way to specify dependencies with internal APIs
@classmethod
def pip_packages(cls) -> list[str]:
return ["sqlalchemy[asyncio]"]
class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig):
type: Literal[StorageBackendType.SQL_SQLITE] = StorageBackendType.SQL_SQLITE
db_path: str = Field(
description="Database path, e.g. ~/.llama/distributions/ollama/sqlstore.db",
)
@property
def engine_str(self) -> str:
return "sqlite+aiosqlite:///" + Path(self.db_path).expanduser().as_posix()
@classmethod
def sample_run_config(cls, __distro_dir__: str, db_name: str = "sqlstore.db"):
return {
"type": StorageBackendType.SQL_SQLITE.value,
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
}
@classmethod
def pip_packages(cls) -> list[str]:
return super().pip_packages() + ["aiosqlite"]
class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
type: Literal[StorageBackendType.SQL_POSTGRES] = StorageBackendType.SQL_POSTGRES
host: str = "localhost"
port: int | str = 5432
db: str = "llamastack"
user: str
password: str | None = None
@property
def engine_str(self) -> str:
return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}"
@classmethod
def pip_packages(cls) -> list[str]:
return super().pip_packages() + ["asyncpg"]
@classmethod
def sample_run_config(cls, **kwargs):
return {
"type": StorageBackendType.SQL_POSTGRES.value,
"host": "${env.POSTGRES_HOST:=localhost}",
"port": "${env.POSTGRES_PORT:=5432}",
"db": "${env.POSTGRES_DB:=llamastack}",
"user": "${env.POSTGRES_USER:=llamastack}",
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
}
# reference = (backend_name, table_name)
class SqlStoreReference(BaseModel):
"""A reference to a 'SQL-like' persistent store. A table name must be provided."""
table_name: str = Field(
description="Name of the table to use for the SqlStore",
)
backend: str = Field(
description="Name of backend from storage.backends",
)
# reference = (backend_name, namespace)
class KVStoreReference(BaseModel):
"""A reference to a 'key-value' persistent store. A namespace must be provided."""
namespace: str = Field(
description="Key prefix for KVStore backends",
)
backend: str = Field(
description="Name of backend from storage.backends",
)
StorageBackendConfig = Annotated[
RedisKVStoreConfig
| SqliteKVStoreConfig
| PostgresKVStoreConfig
| MongoDBKVStoreConfig
| SqliteSqlStoreConfig
| PostgresSqlStoreConfig,
Field(discriminator="type"),
]
class InferenceStoreReference(SqlStoreReference):
"""Inference store configuration with queue tuning."""
max_write_queue_size: int = Field(
default=10000,
description="Max queued writes for inference store",
)
num_writers: int = Field(
default=4,
description="Number of concurrent background writers",
)
class ResponsesStoreReference(InferenceStoreReference):
"""Responses store configuration with queue tuning."""
class ServerStoresConfig(BaseModel):
metadata: KVStoreReference | None = Field(
default=None,
description="Metadata store configuration (uses KV backend)",
)
inference: InferenceStoreReference | None = Field(
default=None,
description="Inference store configuration (uses SQL backend)",
)
conversations: SqlStoreReference | None = Field(
default=None,
description="Conversations store configuration (uses SQL backend)",
)
responses: ResponsesStoreReference | None = Field(
default=None,
description="Responses store configuration (uses SQL backend)",
)
class StorageConfig(BaseModel):
backends: dict[str, StorageBackendConfig] = Field(
description="Named backend configurations (e.g., 'default', 'cache')",
)
stores: ServerStoresConfig = Field(
default_factory=lambda: ServerStoresConfig(),
description="Named references to storage backends used by the stack core",
)

View file

@ -11,10 +11,9 @@ from typing import Protocol
import pydantic
from llama_stack.core.datatypes import RoutableObjectWithProvider
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
logger = get_logger(__name__, category="core::registry")
@ -191,16 +190,10 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry):
async def create_dist_registry(
metadata_store: KVStoreConfig | None,
image_name: str,
metadata_store: KVStoreReference, image_name: str
) -> tuple[CachedDiskDistributionRegistry, KVStore]:
# instantiate kvstore for storing and retrieving distribution metadata
if metadata_store:
dist_kvstore = await kvstore_impl(metadata_store)
else:
dist_kvstore = await kvstore_impl(
SqliteKVStoreConfig(db_path=(DISTRIBS_BASE_DIR / image_name / "kvstore.db").as_posix())
)
dist_kvstore = await kvstore_impl(metadata_store)
dist_registry = CachedDiskDistributionRegistry(dist_kvstore)
await dist_registry.initialize()
return dist_registry, dist_kvstore

View file

@ -42,25 +42,25 @@ def resolve_config_or_distro(
# Strategy 1: Try as file path first
config_path = Path(config_or_distro)
if config_path.exists() and config_path.is_file():
logger.info(f"Using file path: {config_path}")
logger.debug(f"Using file path: {config_path}")
return config_path.resolve()
# Strategy 2: Try as distribution name (if no .yaml extension)
if not config_or_distro.endswith(".yaml"):
distro_config = _get_distro_config_path(config_or_distro, mode)
if distro_config.exists():
logger.info(f"Using distribution: {distro_config}")
logger.debug(f"Using distribution: {distro_config}")
return distro_config
# Strategy 3: Try as built distribution name
distrib_config = DISTRIBS_BASE_DIR / f"llamastack-{config_or_distro}" / f"{config_or_distro}-{mode}.yaml"
if distrib_config.exists():
logger.info(f"Using built distribution: {distrib_config}")
logger.debug(f"Using built distribution: {distrib_config}")
return distrib_config
distrib_config = DISTRIBS_BASE_DIR / f"{config_or_distro}" / f"{config_or_distro}-{mode}.yaml"
if distrib_config.exists():
logger.info(f"Using built distribution: {distrib_config}")
logger.debug(f"Using built distribution: {distrib_config}")
return distrib_config
# Strategy 4: Failed - provide helpful error

View file

@ -93,30 +93,30 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec_registry.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.MILVUS_URL:+milvus}
provider_type: inline::milvus
config:
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/ci-tests}/milvus.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/milvus_registry.db
persistence:
namespace: vector_io::milvus
backend: kv_default
- provider_id: ${env.CHROMADB_URL:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests/}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.PGVECTOR_DB:+pgvector}
provider_type: remote::pgvector
config:
@ -125,32 +125,32 @@ providers:
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/pgvector_registry.db
persistence:
namespace: vector_io::pgvector
backend: kv_default
- provider_id: ${env.QDRANT_URL:+qdrant}
provider_type: remote::qdrant
config:
api_key: ${env.QDRANT_API_KEY:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/qdrant_registry.db
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
provider_type: remote::weaviate
config:
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/weaviate_registry.db
persistence:
namespace: vector_io::weaviate
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/ci-tests/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/files_metadata.db
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -162,12 +162,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
post_training:
- provider_id: torchtune-cpu
provider_type: inline::torchtune-cpu
@ -178,21 +181,21 @@ providers:
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -222,17 +225,28 @@ providers:
provider_type: inline::reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/batches.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/conversations.db
namespace: batches
backend: kv_default
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models: []
shields:
- shield_id: llama-guard

View file

@ -26,9 +26,9 @@ providers:
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -38,32 +38,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -86,15 +89,26 @@ providers:
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -22,9 +22,9 @@ providers:
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -34,32 +34,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -82,15 +85,26 @@ providers:
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -70,10 +70,10 @@ docker run \
### Via venv
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
Make sure you have the Llama Stack CLI available.
```bash
llama stack build --distro {{ name }} --image-type venv
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
llama stack run distributions/{{ name }}/run.yaml \
--port 8321

View file

@ -37,9 +37,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -49,32 +49,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -99,15 +102,26 @@ providers:
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -27,9 +27,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -39,32 +39,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -89,15 +92,26 @@ providers:
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -126,11 +126,11 @@ docker run \
### Via venv
If you've set up your local development environment, you can also build the image using your local virtual environment.
If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
llama stack build --distro nvidia --image-type venv
llama stack list-deps nvidia | xargs -L1 uv pip install
NVIDIA_API_KEY=$NVIDIA_API_KEY \
INFERENCE_MODEL=$INFERENCE_MODEL \
llama stack run ./run.yaml \

View file

@ -28,9 +28,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: nvidia
provider_type: remote::nvidia
@ -41,12 +41,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: nvidia
provider_type: remote::nvidia
@ -65,8 +68,8 @@ providers:
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
- provider_id: nvidia
provider_type: remote::nvidia
config:
@ -86,17 +89,28 @@ providers:
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/conversations.db
table_name: files_metadata
backend: sql_default
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -23,9 +23,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: nvidia
provider_type: remote::nvidia
@ -36,12 +36,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: nvidia
provider_type: remote::nvidia
@ -75,17 +78,28 @@ providers:
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/conversations.db
table_name: files_metadata
backend: sql_default
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models: []
shields: []
vector_dbs: []

View file

@ -39,16 +39,16 @@ providers:
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec_registry.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.ENABLE_PGVECTOR:+pgvector}
provider_type: remote::pgvector
config:
@ -57,9 +57,9 @@ providers:
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/pgvector_registry.db
persistence:
namespace: vector_io::pgvector
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -69,32 +69,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -119,15 +122,26 @@ providers:
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/conversations.db
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: gpt-4o

View file

@ -91,7 +91,6 @@ def get_distribution_template() -> DistributionTemplate:
"embedding_dimension": 768,
},
)
postgres_config = PostgresSqlStoreConfig.sample_run_config()
return DistributionTemplate(
name=name,
distro_type="self_hosted",
@ -105,22 +104,16 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
"agents": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=dict(
persistence_store=postgres_config,
responses_store=postgres_config,
),
)
],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
metadata_store=PostgresKVStoreConfig.sample_run_config(),
inference_store=postgres_config,
storage_backends={
"kv_default": PostgresKVStoreConfig.sample_run_config(
table_name="llamastack_kvstore",
),
"sql_default": PostgresSqlStoreConfig.sample_run_config(),
},
),
},
run_config_env_vars={

View file

@ -22,9 +22,9 @@ providers:
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/postgres-demo}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -34,20 +34,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
@ -63,24 +58,35 @@ providers:
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/postgres-demo}/conversations.db
storage:
backends:
kv_default:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}

View file

@ -93,30 +93,30 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec_registry.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.MILVUS_URL:+milvus}
provider_type: inline::milvus
config:
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter-gpu}/milvus.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/milvus_registry.db
persistence:
namespace: vector_io::milvus
backend: kv_default
- provider_id: ${env.CHROMADB_URL:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu/}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.PGVECTOR_DB:+pgvector}
provider_type: remote::pgvector
config:
@ -125,32 +125,32 @@ providers:
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/pgvector_registry.db
persistence:
namespace: vector_io::pgvector
backend: kv_default
- provider_id: ${env.QDRANT_URL:+qdrant}
provider_type: remote::qdrant
config:
api_key: ${env.QDRANT_API_KEY:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/qdrant_registry.db
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
provider_type: remote::weaviate
config:
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/weaviate_registry.db
persistence:
namespace: vector_io::weaviate
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter-gpu/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/files_metadata.db
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -162,12 +162,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
post_training:
- provider_id: huggingface-gpu
provider_type: inline::huggingface-gpu
@ -181,21 +184,21 @@ providers:
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -225,17 +228,28 @@ providers:
provider_type: inline::reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/batches.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/conversations.db
namespace: batches
backend: kv_default
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models: []
shields:
- shield_id: llama-guard

View file

@ -93,30 +93,30 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec_registry.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.MILVUS_URL:+milvus}
provider_type: inline::milvus
config:
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter}/milvus.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/milvus_registry.db
persistence:
namespace: vector_io::milvus
backend: kv_default
- provider_id: ${env.CHROMADB_URL:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter/}/chroma_remote_registry.db
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.PGVECTOR_DB:+pgvector}
provider_type: remote::pgvector
config:
@ -125,32 +125,32 @@ providers:
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/pgvector_registry.db
persistence:
namespace: vector_io::pgvector
backend: kv_default
- provider_id: ${env.QDRANT_URL:+qdrant}
provider_type: remote::qdrant
config:
api_key: ${env.QDRANT_API_KEY:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/qdrant_registry.db
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
provider_type: remote::weaviate
config:
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/weaviate_registry.db
persistence:
namespace: vector_io::weaviate
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -162,12 +162,15 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
post_training:
- provider_id: torchtune-cpu
provider_type: inline::torchtune-cpu
@ -178,21 +181,21 @@ providers:
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -222,17 +225,28 @@ providers:
provider_type: inline::reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/batches.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/conversations.db
namespace: batches
backend: kv_default
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models: []
shields:
- shield_id: llama-guard

View file

@ -30,6 +30,12 @@ from llama_stack.core.datatypes import (
VectorStoresConfig,
)
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
SqlStoreReference,
StorageBackendType,
)
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.core.utils.image_types import LlamaStackImageType
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
@ -181,11 +187,10 @@ class RunConfigSettings(BaseModel):
default_tool_groups: list[ToolGroupInput] | None = None
default_datasets: list[DatasetInput] | None = None
default_benchmarks: list[BenchmarkInput] | None = None
metadata_store: dict | None = None
inference_store: dict | None = None
conversations_store: dict | None = None
vector_stores_config: VectorStoresConfig | None = None
telemetry: TelemetryConfig = Field(default_factory=lambda: TelemetryConfig(enabled=True))
storage_backends: dict[str, Any] | None = None
storage_stores: dict[str, Any] | None = None
def run_config(
self,
@ -228,6 +233,37 @@ class RunConfigSettings(BaseModel):
# Get unique set of APIs from providers
apis = sorted(providers.keys())
storage_backends = self.storage_backends or {
"kv_default": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="kvstore.db",
),
"sql_default": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="sql_store.db",
),
}
storage_stores = self.storage_stores or {
"metadata": KVStoreReference(
backend="kv_default",
namespace="registry",
).model_dump(exclude_none=True),
"inference": InferenceStoreReference(
backend="sql_default",
table_name="inference_store",
).model_dump(exclude_none=True),
"conversations": SqlStoreReference(
backend="sql_default",
table_name="openai_conversations",
).model_dump(exclude_none=True),
}
storage_config = dict(
backends=storage_backends,
stores=storage_stores,
)
# Return a dict that matches StackRunConfig structure
config = {
"version": LLAMA_STACK_RUN_CONFIG_VERSION,
@ -235,21 +271,7 @@ class RunConfigSettings(BaseModel):
"container_image": container_image,
"apis": apis,
"providers": provider_configs,
"metadata_store": self.metadata_store
or SqliteKVStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="registry.db",
),
"inference_store": self.inference_store
or SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="inference_store.db",
),
"conversations_store": self.conversations_store
or SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
db_name="conversations.db",
),
"storage": storage_config,
"models": [m.model_dump(exclude_none=True) for m in (self.default_models or [])],
"shields": [s.model_dump(exclude_none=True) for s in (self.default_shields or [])],
"vector_dbs": [],
@ -304,11 +326,15 @@ class DistributionTemplate(BaseModel):
# We should have a better way to do this by formalizing the concept of "internal" APIs
# and providers, with a way to specify dependencies for them.
if run_config_.get("inference_store"):
additional_pip_packages.extend(get_sql_pip_packages(run_config_["inference_store"]))
if run_config_.get("metadata_store"):
additional_pip_packages.extend(get_kv_pip_packages(run_config_["metadata_store"]))
storage_cfg = run_config_.get("storage", {})
for backend_cfg in storage_cfg.get("backends", {}).values():
store_type = backend_cfg.get("type")
if not store_type:
continue
if str(store_type).startswith("kv_"):
additional_pip_packages.extend(get_kv_pip_packages(backend_cfg))
elif str(store_type).startswith("sql_"):
additional_pip_packages.extend(get_sql_pip_packages(backend_cfg))
if self.additional_pip_packages:
additional_pip_packages.extend(self.additional_pip_packages)
@ -394,11 +420,13 @@ class DistributionTemplate(BaseModel):
def enum_representer(dumper, data):
return dumper.represent_scalar("tag:yaml.org,2002:str", data.value)
# Register YAML representer for ModelType
# Register YAML representer for enums
yaml.add_representer(ModelType, enum_representer)
yaml.add_representer(DatasetPurpose, enum_representer)
yaml.add_representer(StorageBackendType, enum_representer)
yaml.SafeDumper.add_representer(ModelType, enum_representer)
yaml.SafeDumper.add_representer(DatasetPurpose, enum_representer)
yaml.SafeDumper.add_representer(StorageBackendType, enum_representer)
for output_dir in [yaml_output_dir, doc_output_dir]:
output_dir.mkdir(parents=True, exist_ok=True)

View file

@ -22,9 +22,9 @@ providers:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/faiss_store.db
persistence:
namespace: vector_io::faiss
backend: kv_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
@ -34,32 +34,35 @@ providers:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/responses_store.db
persistence:
agent_state:
namespace: agents
backend: kv_default
responses:
table_name: responses
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/meta_reference_eval.db
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/huggingface_datasetio.db
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/localfs_datasetio.db
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
@ -90,17 +93,28 @@ providers:
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/watsonx/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/files_metadata.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/inference_store.db
conversations_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/conversations.db
table_name: files_metadata
backend: sql_default
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/kvstore.db
sql_default:
type: sql_sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/sql_store.db
stores:
metadata:
namespace: registry
backend: kv_default
inference:
table_name: inference_store
backend: sql_default
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_default
models: []
shields: []
vector_dbs: []

View file

@ -83,8 +83,8 @@ class MetaReferenceAgentsImpl(Agents):
self.policy = policy
async def initialize(self) -> None:
self.persistence_store = await kvstore_impl(self.config.persistence_store)
self.responses_store = ResponsesStore(self.config.responses_store, self.policy)
self.persistence_store = await kvstore_impl(self.config.persistence.agent_state)
self.responses_store = ResponsesStore(self.config.persistence.responses, self.policy)
await self.responses_store.initialize()
self.openai_responses_impl = OpenAIResponsesImpl(
inference_api=self.inference_api,

View file

@ -8,24 +8,30 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore import KVStoreConfig
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
class AgentPersistenceConfig(BaseModel):
"""Nested persistence configuration for agents."""
agent_state: KVStoreReference
responses: ResponsesStoreReference
class MetaReferenceAgentsImplConfig(BaseModel):
persistence_store: KVStoreConfig
responses_store: SqlStoreConfig
persistence: AgentPersistenceConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"persistence_store": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="agents_store.db",
),
"responses_store": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="responses_store.db",
),
"persistence": {
"agent_state": KVStoreReference(
backend="kv_default",
namespace="agents",
).model_dump(exclude_none=True),
"responses": ResponsesStoreReference(
backend="sql_default",
table_name="responses",
).model_dump(exclude_none=True),
}
}

View file

@ -359,6 +359,7 @@ class OpenAIResponsesImpl:
tool_executor=self.tool_executor,
safety_api=self.safety_api,
guardrail_ids=guardrail_ids,
instructions=instructions,
)
# Stream the response

View file

@ -110,6 +110,7 @@ class StreamingResponseOrchestrator:
text: OpenAIResponseText,
max_infer_iters: int,
tool_executor, # Will be the tool execution logic from the main class
instructions: str,
safety_api,
guardrail_ids: list[str] | None = None,
):
@ -133,6 +134,8 @@ class StreamingResponseOrchestrator:
self.accumulated_usage: OpenAIResponseUsage | None = None
# Track if we've sent a refusal response
self.violation_detected = False
# system message that is inserted into the model's context
self.instructions = instructions
async def _create_refusal_response(self, violation_message: str) -> OpenAIResponseObjectStream:
"""Create a refusal response to replace streaming content."""
@ -176,6 +179,7 @@ class StreamingResponseOrchestrator:
tools=self.ctx.available_tools(),
error=error,
usage=self.accumulated_usage,
instructions=self.instructions,
)
async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]:

View file

@ -6,13 +6,13 @@
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
class ReferenceBatchesImplConfig(BaseModel):
"""Configuration for the Reference Batches implementation."""
kvstore: KVStoreConfig = Field(
kvstore: KVStoreReference = Field(
description="Configuration for the key-value store backend.",
)
@ -33,8 +33,8 @@ class ReferenceBatchesImplConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="batches.db",
),
"kvstore": KVStoreReference(
backend="kv_default",
namespace="batches",
).model_dump(exclude_none=True),
}

View file

@ -7,20 +7,17 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class LocalFSDatasetIOConfig(BaseModel):
kvstore: KVStoreConfig
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="localfs_datasetio.db",
)
"kvstore": KVStoreReference(
backend="kv_default",
namespace="datasetio::localfs",
).model_dump(exclude_none=True)
}

View file

@ -7,20 +7,17 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class MetaReferenceEvalConfig(BaseModel):
kvstore: KVStoreConfig
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="meta_reference_eval.db",
)
"kvstore": KVStoreReference(
backend="kv_default",
namespace="eval",
).model_dump(exclude_none=True)
}

View file

@ -8,14 +8,14 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
from llama_stack.core.storage.datatypes import SqlStoreReference
class LocalfsFilesImplConfig(BaseModel):
storage_dir: str = Field(
description="Directory to store uploaded files",
)
metadata_store: SqlStoreConfig = Field(
metadata_store: SqlStoreReference = Field(
description="SQL store configuration for file metadata",
)
ttl_secs: int = 365 * 24 * 60 * 60 # 1 year
@ -24,8 +24,8 @@ class LocalfsFilesImplConfig(BaseModel):
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"storage_dir": "${env.FILES_STORAGE_DIR:=" + __distro_dir__ + "/files}",
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="files_metadata.db",
),
"metadata_store": SqlStoreReference(
backend="sql_default",
table_name="files_metadata",
).model_dump(exclude_none=True),
}

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import threading
from typing import Any
@ -60,26 +61,28 @@ class TelemetryAdapter(Telemetry):
# Recreating the telemetry adapter multiple times will result in duplicate span processors.
# Since the library client can be recreated multiple times in a notebook,
# the kernel will hold on to the span processor and cause duplicate spans to be written.
if _TRACER_PROVIDER is None:
provider = TracerProvider()
trace.set_tracer_provider(provider)
_TRACER_PROVIDER = provider
if os.environ.get("OTEL_EXPORTER_OTLP_ENDPOINT"):
if _TRACER_PROVIDER is None:
provider = TracerProvider()
trace.set_tracer_provider(provider)
_TRACER_PROVIDER = provider
# Use single OTLP endpoint for all telemetry signals
# Use single OTLP endpoint for all telemetry signals
# Let OpenTelemetry SDK handle endpoint construction automatically
# The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
span_exporter = OTLPSpanExporter()
span_processor = BatchSpanProcessor(span_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
# Let OpenTelemetry SDK handle endpoint construction automatically
# The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
span_exporter = OTLPSpanExporter()
span_processor = BatchSpanProcessor(span_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
metric_provider = MeterProvider(metric_readers=[metric_reader])
metrics.set_meter_provider(metric_provider)
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
metric_provider = MeterProvider(metric_readers=[metric_reader])
metrics.set_meter_provider(metric_provider)
else:
logger.warning("OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry")
self.meter = metrics.get_meter(__name__)
self._lock = _global_lock
async def initialize(self) -> None:

View file

@ -8,14 +8,14 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class ChromaVectorIOConfig(BaseModel):
db_path: str
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
persistence: KVStoreReference = Field(description="Config for KV store backend")
@classmethod
def sample_run_config(
@ -23,7 +23,8 @@ class ChromaVectorIOConfig(BaseModel):
) -> dict[str, Any]:
return {
"db_path": db_path,
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="chroma_inline_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::chroma",
).model_dump(exclude_none=True),
}

View file

@ -8,16 +8,19 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class FaissVectorIOConfig(BaseModel):
kvstore: KVStoreConfig
persistence: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(__distro_dir__=__distro_dir__, db_name="faiss_store.db")
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::faiss",
).model_dump(exclude_none=True)
}

View file

@ -184,7 +184,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
self.cache: dict[str, VectorDBWithIndex] = {}
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
# Load existing banks from kvstore
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"

View file

@ -8,21 +8,22 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class MilvusVectorIOConfig(BaseModel):
db_path: str
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"db_path": "${env.MILVUS_DB_PATH:=" + __distro_dir__ + "}/" + "milvus.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="milvus_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::milvus",
).model_dump(exclude_none=True),
}

View file

@ -9,20 +9,21 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
kvstore: KVStoreConfig
persistence: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="qdrant_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::qdrant",
).model_dump(exclude_none=True),
}

View file

@ -8,18 +8,19 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
class SQLiteVectorIOConfig(BaseModel):
db_path: str = Field(description="Path to the SQLite database file")
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + "sqlite_vec.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="sqlite_vec_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::sqlite_vec",
).model_dump(exclude_none=True),
}

View file

@ -389,7 +389,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
self.vector_db_store = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"

View file

@ -7,20 +7,17 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class HuggingfaceDatasetIOConfig(BaseModel):
kvstore: KVStoreConfig
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="huggingface_datasetio.db",
)
"kvstore": KVStoreReference(
backend="kv_default",
namespace="datasetio::huggingface",
).model_dump(exclude_none=True)
}

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
from llama_stack.core.storage.datatypes import SqlStoreReference
class S3FilesImplConfig(BaseModel):
@ -24,7 +24,7 @@ class S3FilesImplConfig(BaseModel):
auto_create_bucket: bool = Field(
default=False, description="Automatically create the S3 bucket if it doesn't exist"
)
metadata_store: SqlStoreConfig = Field(description="SQL store configuration for file metadata")
metadata_store: SqlStoreReference = Field(description="SQL store configuration for file metadata")
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
@ -35,8 +35,8 @@ class S3FilesImplConfig(BaseModel):
"aws_secret_access_key": "${env.AWS_SECRET_ACCESS_KEY:=}",
"endpoint_url": "${env.S3_ENDPOINT_URL:=}",
"auto_create_bucket": "${env.S3_AUTO_CREATE_BUCKET:=false}",
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="s3_files_metadata.db",
),
"metadata_store": SqlStoreReference(
backend="sql_default",
table_name="s3_files_metadata",
).model_dump(exclude_none=True),
}

View file

@ -45,7 +45,7 @@ The following example shows how to create a chat completion for an NVIDIA NIM.
```python
response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
model="nvidia/meta/llama-3.1-8b-instruct",
messages=[
{
"role": "system",
@ -67,37 +67,40 @@ print(f"Response: {response.choices[0].message.content}")
The following example shows how to do tool calling for an NVIDIA NIM.
```python
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
tool_definition = ToolDefinition(
tool_name="get_weather",
description="Get current weather information for a location",
parameters={
"location": ToolParamDefinition(
param_type="string",
description="The city and state, e.g. San Francisco, CA",
required=True,
),
"unit": ToolParamDefinition(
param_type="string",
description="Temperature unit (celsius or fahrenheit)",
required=False,
default="celsius",
),
tool_definition = {
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather information for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"description": "Temperature unit (celsius or fahrenheit)",
"default": "celsius",
},
},
"required": ["location"],
},
},
)
}
tool_response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
model="nvidia/meta/llama-3.1-8b-instruct",
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=[tool_definition],
)
print(f"Tool Response: {tool_response.choices[0].message.content}")
print(f"Response content: {tool_response.choices[0].message.content}")
if tool_response.choices[0].message.tool_calls:
for tool_call in tool_response.choices[0].message.tool_calls:
print(f"Tool Called: {tool_call.tool_name}")
print(f"Arguments: {tool_call.arguments}")
print(f"Tool Called: {tool_call.function.name}")
print(f"Arguments: {tool_call.function.arguments}")
```
### Structured Output Example
@ -105,33 +108,26 @@ if tool_response.choices[0].message.tool_calls:
The following example shows how to do structured output for an NVIDIA NIM.
```python
from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType
person_schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"age": {"type": "number"},
"occupation": {"type": "string"},
},
"required": ["name", "age", "occupation"],
}
response_format = JsonSchemaResponseFormat(
type=ResponseFormatType.json_schema, json_schema=person_schema
)
structured_response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
model="nvidia/meta/llama-3.1-8b-instruct",
messages=[
{
"role": "user",
"content": "Create a profile for a fictional person named Alice who is 30 years old and is a software engineer. ",
}
],
response_format=response_format,
extra_body={"nvext": {"guided_json": person_schema}},
)
print(f"Structured Response: {structured_response.choices[0].message.content}")
```
@ -141,7 +137,7 @@ The following example shows how to create embeddings for an NVIDIA NIM.
```python
response = client.embeddings.create(
model="nvidia/llama-3.2-nv-embedqa-1b-v2",
model="nvidia/nvidia/llama-3.2-nv-embedqa-1b-v2",
input=["What is the capital of France?"],
extra_body={"input_type": "query"},
)
@ -163,15 +159,15 @@ image_path = {path_to_the_image}
demo_image_b64 = load_image_as_base64(image_path)
vlm_response = client.chat.completions.create(
model="nvidia/vila",
model="nvidia/meta/llama-3.2-11b-vision-instruct",
messages=[
{
"role": "user",
"content": [
{
"type": "image",
"image": {
"data": demo_image_b64,
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{demo_image_b64}",
},
},
{

View file

@ -19,15 +19,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
"""
NVIDIA Inference Adapter for Llama Stack.
Note: The inheritance order is important here. OpenAIMixin must come before
ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability()
is used instead of ModelRegistryHelper.check_model_availability(). It also
must come before Inference to ensure that OpenAIMixin methods are available
in the Inference interface.
- OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
"""
# source: https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html

View file

@ -130,7 +130,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.vector_db_store = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
self.vector_db_store = self.kvstore
if isinstance(self.config, RemoteChromaVectorIOConfig):

View file

@ -8,20 +8,21 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class ChromaVectorIOConfig(BaseModel):
url: str | None
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
persistence: KVStoreReference = Field(description="Config for KV store backend")
@classmethod
def sample_run_config(cls, __distro_dir__: str, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
return {
"url": url,
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="chroma_remote_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::chroma_remote",
).model_dump(exclude_none=True),
}

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@ -17,7 +17,7 @@ class MilvusVectorIOConfig(BaseModel):
uri: str = Field(description="The URI of the Milvus server")
token: str | None = Field(description="The token of the Milvus server")
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
persistence: KVStoreReference = Field(description="Config for KV store backend")
# This configuration allows additional fields to be passed through to the underlying Milvus client.
# See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general.
@ -28,7 +28,8 @@ class MilvusVectorIOConfig(BaseModel):
return {
"uri": "${env.MILVUS_ENDPOINT}",
"token": "${env.MILVUS_TOKEN}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="milvus_remote_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::milvus_remote",
).model_dump(exclude_none=True),
}

View file

@ -277,7 +277,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.metadata_collection_name = "openai_vector_stores_metadata"
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@ -19,7 +19,9 @@ class PGVectorVectorIOConfig(BaseModel):
db: str | None = Field(default="postgres")
user: str | None = Field(default="postgres")
password: str | None = Field(default="mysecretpassword")
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
persistence: KVStoreReference | None = Field(
description="Config for KV store backend (SQLite only for now)", default=None
)
@classmethod
def sample_run_config(
@ -38,7 +40,8 @@ class PGVectorVectorIOConfig(BaseModel):
"db": db,
"user": user,
"password": password,
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="pgvector_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::pgvector",
).model_dump(exclude_none=True),
}

View file

@ -337,7 +337,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
async def initialize(self) -> None:
log.info(f"Initializing PGVector memory adapter with config: {self.config}")
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
await self.initialize_openai_vector_stores()
try:

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@ -24,13 +24,14 @@ class QdrantVectorIOConfig(BaseModel):
prefix: str | None = None
timeout: int | None = None
host: str | None = None
kvstore: KVStoreConfig
persistence: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"api_key": "${env.QDRANT_API_KEY:=}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="qdrant_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::qdrant_remote",
).model_dump(exclude_none=True),
}

View file

@ -161,9 +161,9 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self._qdrant_lock = asyncio.Lock()
async def initialize(self) -> None:
client_config = self.config.model_dump(exclude_none=True, exclude={"kvstore"})
client_config = self.config.model_dump(exclude_none=True, exclude={"persistence"})
self.client = AsyncQdrantClient(**client_config)
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@ -16,14 +16,17 @@ from llama_stack.schema_utils import json_schema_type
class WeaviateVectorIOConfig(BaseModel):
weaviate_api_key: str | None = Field(description="The API key for the Weaviate instance", default=None)
weaviate_cluster_url: str | None = Field(description="The URL of the Weaviate cluster", default="localhost:8080")
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
persistence: KVStoreReference | None = Field(
description="Config for KV store backend (SQLite only for now)", default=None
)
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"weaviate_api_key": None,
"weaviate_cluster_url": "${env.WEAVIATE_CLUSTER_URL:=localhost:8080}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="weaviate_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::weaviate",
).model_dump(exclude_none=True),
}

View file

@ -288,8 +288,8 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv
async def initialize(self) -> None:
"""Set up KV store and load existing vector DBs and OpenAI vector stores."""
# Initialize KV store for metadata if configured
if self.config.kvstore is not None:
self.kvstore = await kvstore_impl(self.config.kvstore)
if self.config.persistence is not None:
self.kvstore = await kvstore_impl(self.config.persistence)
else:
self.kvstore = None
log.info("No kvstore configured, registry will not persist across restarts")

View file

@ -15,12 +15,13 @@ from llama_stack.apis.inference import (
OpenAIMessageParam,
Order,
)
from llama_stack.core.datatypes import AccessRule, InferenceStoreConfig
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.storage.datatypes import InferenceStoreReference, StorageBackendType
from llama_stack.log import get_logger
from ..sqlstore.api import ColumnDefinition, ColumnType
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
from ..sqlstore.sqlstore import SqlStoreConfig, SqlStoreType, sqlstore_impl
from ..sqlstore.sqlstore import _SQLSTORE_BACKENDS, sqlstore_impl
logger = get_logger(name=__name__, category="inference")
@ -28,33 +29,32 @@ logger = get_logger(name=__name__, category="inference")
class InferenceStore:
def __init__(
self,
config: InferenceStoreConfig | SqlStoreConfig,
reference: InferenceStoreReference,
policy: list[AccessRule],
):
# Handle backward compatibility
if not isinstance(config, InferenceStoreConfig):
# Legacy: SqlStoreConfig passed directly as config
config = InferenceStoreConfig(
sql_store_config=config,
)
self.config = config
self.sql_store_config = config.sql_store_config
self.reference = reference
self.sql_store = None
self.policy = policy
# Disable write queue for SQLite to avoid concurrency issues
self.enable_write_queue = self.sql_store_config.type != SqlStoreType.sqlite
# Async write queue and worker control
self._queue: asyncio.Queue[tuple[OpenAIChatCompletion, list[OpenAIMessageParam]]] | None = None
self._worker_tasks: list[asyncio.Task[Any]] = []
self._max_write_queue_size: int = config.max_write_queue_size
self._num_writers: int = max(1, config.num_writers)
self._max_write_queue_size: int = reference.max_write_queue_size
self._num_writers: int = max(1, reference.num_writers)
async def initialize(self):
"""Create the necessary tables if they don't exist."""
self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.sql_store_config), self.policy)
base_store = sqlstore_impl(self.reference)
self.sql_store = AuthorizedSqlStore(base_store, self.policy)
# Disable write queue for SQLite to avoid concurrency issues
backend_name = self.reference.backend
backend_config = _SQLSTORE_BACKENDS.get(backend_name)
if backend_config is None:
raise ValueError(
f"Unregistered SQL backend '{backend_name}'. Registered backends: {sorted(_SQLSTORE_BACKENDS)}"
)
self.enable_write_queue = backend_config.type != StorageBackendType.SQL_SQLITE
await self.sql_store.create_table(
"chat_completions",
{

View file

@ -4,143 +4,20 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from enum import Enum
from typing import Annotated, Literal
from typing import Annotated
from pydantic import BaseModel, Field, field_validator
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
class KVStoreType(Enum):
redis = "redis"
sqlite = "sqlite"
postgres = "postgres"
mongodb = "mongodb"
class CommonConfig(BaseModel):
namespace: str | None = Field(
default=None,
description="All keys will be prefixed with this namespace",
)
class RedisKVStoreConfig(CommonConfig):
type: Literal["redis"] = KVStoreType.redis.value
host: str = "localhost"
port: int = 6379
@property
def url(self) -> str:
return f"redis://{self.host}:{self.port}"
@classmethod
def pip_packages(cls) -> list[str]:
return ["redis"]
@classmethod
def sample_run_config(cls):
return {
"type": "redis",
"host": "${env.REDIS_HOST:=localhost}",
"port": "${env.REDIS_PORT:=6379}",
}
class SqliteKVStoreConfig(CommonConfig):
type: Literal["sqlite"] = KVStoreType.sqlite.value
db_path: str = Field(
default=(RUNTIME_BASE_DIR / "kvstore.db").as_posix(),
description="File path for the sqlite database",
)
@classmethod
def pip_packages(cls) -> list[str]:
return ["aiosqlite"]
@classmethod
def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"):
return {
"type": "sqlite",
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
}
class PostgresKVStoreConfig(CommonConfig):
type: Literal["postgres"] = KVStoreType.postgres.value
host: str = "localhost"
port: int = 5432
db: str = "llamastack"
user: str
password: str | None = None
ssl_mode: str | None = None
ca_cert_path: str | None = None
table_name: str = "llamastack_kvstore"
@classmethod
def sample_run_config(cls, table_name: str = "llamastack_kvstore", **kwargs):
return {
"type": "postgres",
"host": "${env.POSTGRES_HOST:=localhost}",
"port": "${env.POSTGRES_PORT:=5432}",
"db": "${env.POSTGRES_DB:=llamastack}",
"user": "${env.POSTGRES_USER:=llamastack}",
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
"table_name": "${env.POSTGRES_TABLE_NAME:=" + table_name + "}",
}
@classmethod
@field_validator("table_name")
def validate_table_name(cls, v: str) -> str:
# PostgreSQL identifiers rules:
# - Must start with a letter or underscore
# - Can contain letters, numbers, and underscores
# - Maximum length is 63 bytes
pattern = r"^[a-zA-Z_][a-zA-Z0-9_]*$"
if not re.match(pattern, v):
raise ValueError(
"Invalid table name. Must start with letter or underscore and contain only letters, numbers, and underscores"
)
if len(v) > 63:
raise ValueError("Table name must be less than 63 characters")
return v
@classmethod
def pip_packages(cls) -> list[str]:
return ["psycopg2-binary"]
class MongoDBKVStoreConfig(CommonConfig):
type: Literal["mongodb"] = KVStoreType.mongodb.value
host: str = "localhost"
port: int = 27017
db: str = "llamastack"
user: str | None = None
password: str | None = None
collection_name: str = "llamastack_kvstore"
@classmethod
def pip_packages(cls) -> list[str]:
return ["pymongo"]
@classmethod
def sample_run_config(cls, collection_name: str = "llamastack_kvstore"):
return {
"type": "mongodb",
"host": "${env.MONGODB_HOST:=localhost}",
"port": "${env.MONGODB_PORT:=5432}",
"db": "${env.MONGODB_DB}",
"user": "${env.MONGODB_USER}",
"password": "${env.MONGODB_PASSWORD}",
"collection_name": "${env.MONGODB_COLLECTION_NAME:=" + collection_name + "}",
}
from pydantic import Field
from llama_stack.core.storage.datatypes import (
MongoDBKVStoreConfig,
PostgresKVStoreConfig,
RedisKVStoreConfig,
SqliteKVStoreConfig,
StorageBackendType,
)
KVStoreConfig = Annotated[
RedisKVStoreConfig | SqliteKVStoreConfig | PostgresKVStoreConfig | MongoDBKVStoreConfig,
Field(discriminator="type", default=KVStoreType.sqlite.value),
RedisKVStoreConfig | SqliteKVStoreConfig | PostgresKVStoreConfig | MongoDBKVStoreConfig, Field(discriminator="type")
]
@ -148,13 +25,13 @@ def get_pip_packages(store_config: dict | KVStoreConfig) -> list[str]:
"""Get pip packages for KV store config, handling both dict and object cases."""
if isinstance(store_config, dict):
store_type = store_config.get("type")
if store_type == "sqlite":
if store_type == StorageBackendType.KV_SQLITE.value:
return SqliteKVStoreConfig.pip_packages()
elif store_type == "postgres":
elif store_type == StorageBackendType.KV_POSTGRES.value:
return PostgresKVStoreConfig.pip_packages()
elif store_type == "redis":
elif store_type == StorageBackendType.KV_REDIS.value:
return RedisKVStoreConfig.pip_packages()
elif store_type == "mongodb":
elif store_type == StorageBackendType.KV_MONGODB.value:
return MongoDBKVStoreConfig.pip_packages()
else:
raise ValueError(f"Unknown KV store type: {store_type}")

View file

@ -4,9 +4,17 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from __future__ import annotations
from llama_stack.core.storage.datatypes import KVStoreReference, StorageBackendConfig, StorageBackendType
from .api import KVStore
from .config import KVStoreConfig, KVStoreType
from .config import KVStoreConfig
def kvstore_dependencies():
@ -44,20 +52,41 @@ class InmemoryKVStoreImpl(KVStore):
del self._store[key]
async def kvstore_impl(config: KVStoreConfig) -> KVStore:
if config.type == KVStoreType.redis.value:
_KVSTORE_BACKENDS: dict[str, KVStoreConfig] = {}
def register_kvstore_backends(backends: dict[str, StorageBackendConfig]) -> None:
"""Register the set of available KV store backends for reference resolution."""
global _KVSTORE_BACKENDS
_KVSTORE_BACKENDS.clear()
for name, cfg in backends.items():
_KVSTORE_BACKENDS[name] = cfg
async def kvstore_impl(reference: KVStoreReference) -> KVStore:
backend_name = reference.backend
backend_config = _KVSTORE_BACKENDS.get(backend_name)
if backend_config is None:
raise ValueError(f"Unknown KVStore backend '{backend_name}'. Registered backends: {sorted(_KVSTORE_BACKENDS)}")
config = backend_config.model_copy()
config.namespace = reference.namespace
if config.type == StorageBackendType.KV_REDIS.value:
from .redis import RedisKVStoreImpl
impl = RedisKVStoreImpl(config)
elif config.type == KVStoreType.sqlite.value:
elif config.type == StorageBackendType.KV_SQLITE.value:
from .sqlite import SqliteKVStoreImpl
impl = SqliteKVStoreImpl(config)
elif config.type == KVStoreType.postgres.value:
elif config.type == StorageBackendType.KV_POSTGRES.value:
from .postgres import PostgresKVStoreImpl
impl = PostgresKVStoreImpl(config)
elif config.type == KVStoreType.mongodb.value:
elif config.type == StorageBackendType.KV_MONGODB.value:
from .mongodb import MongoDBKVStoreImpl
impl = MongoDBKVStoreImpl(config)

View file

@ -18,13 +18,13 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseObjectWithInput,
)
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.core.datatypes import AccessRule, ResponsesStoreConfig
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqlStoreReference, StorageBackendType
from llama_stack.log import get_logger
from ..sqlstore.api import ColumnDefinition, ColumnType
from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore
from ..sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig, SqlStoreType, sqlstore_impl
from ..sqlstore.sqlstore import _SQLSTORE_BACKENDS, sqlstore_impl
logger = get_logger(name=__name__, category="openai_responses")
@ -45,39 +45,38 @@ class _OpenAIResponseObjectWithInputAndMessages(OpenAIResponseObjectWithInput):
class ResponsesStore:
def __init__(
self,
config: ResponsesStoreConfig | SqlStoreConfig,
reference: ResponsesStoreReference | SqlStoreReference,
policy: list[AccessRule],
):
# Handle backward compatibility
if not isinstance(config, ResponsesStoreConfig):
# Legacy: SqlStoreConfig passed directly as config
config = ResponsesStoreConfig(
sql_store_config=config,
)
if isinstance(reference, ResponsesStoreReference):
self.reference = reference
else:
self.reference = ResponsesStoreReference(**reference.model_dump())
self.config = config
self.sql_store_config = config.sql_store_config
if not self.sql_store_config:
self.sql_store_config = SqliteSqlStoreConfig(
db_path=(RUNTIME_BASE_DIR / "sqlstore.db").as_posix(),
)
self.sql_store = None
self.policy = policy
# Disable write queue for SQLite to avoid concurrency issues
self.enable_write_queue = self.sql_store_config.type != SqlStoreType.sqlite
self.sql_store = None
self.enable_write_queue = True
# Async write queue and worker control
self._queue: (
asyncio.Queue[tuple[OpenAIResponseObject, list[OpenAIResponseInput], list[OpenAIMessageParam]]] | None
) = None
self._worker_tasks: list[asyncio.Task[Any]] = []
self._max_write_queue_size: int = config.max_write_queue_size
self._num_writers: int = max(1, config.num_writers)
self._max_write_queue_size: int = self.reference.max_write_queue_size
self._num_writers: int = max(1, self.reference.num_writers)
async def initialize(self):
"""Create the necessary tables if they don't exist."""
self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.sql_store_config), self.policy)
base_store = sqlstore_impl(self.reference)
self.sql_store = AuthorizedSqlStore(base_store, self.policy)
backend_config = _SQLSTORE_BACKENDS.get(self.reference.backend)
if backend_config is None:
raise ValueError(
f"Unregistered SQL backend '{self.reference.backend}'. Registered backends: {sorted(_SQLSTORE_BACKENDS)}"
)
if backend_config.type == StorageBackendType.SQL_SQLITE:
self.enable_write_queue = False
await self.sql_store.create_table(
"openai_responses",
{

View file

@ -12,10 +12,10 @@ from llama_stack.core.access_control.conditions import ProtectedResource
from llama_stack.core.access_control.datatypes import AccessRule, Action, Scope
from llama_stack.core.datatypes import User
from llama_stack.core.request_headers import get_authenticated_user
from llama_stack.core.storage.datatypes import StorageBackendType
from llama_stack.log import get_logger
from .api import ColumnDefinition, ColumnType, PaginatedResponse, SqlStore
from .sqlstore import SqlStoreType
logger = get_logger(name=__name__, category="providers::utils")
@ -82,8 +82,8 @@ class AuthorizedSqlStore:
if not hasattr(self.sql_store, "config"):
raise ValueError("SqlStore must have a config attribute to be used with AuthorizedSqlStore")
self.database_type = self.sql_store.config.type
if self.database_type not in [SqlStoreType.postgres, SqlStoreType.sqlite]:
self.database_type = self.sql_store.config.type.value
if self.database_type not in [StorageBackendType.SQL_POSTGRES.value, StorageBackendType.SQL_SQLITE.value]:
raise ValueError(f"Unsupported database type: {self.database_type}")
def _validate_sql_optimized_policy(self) -> None:
@ -220,9 +220,9 @@ class AuthorizedSqlStore:
Returns:
SQL expression to extract JSON value
"""
if self.database_type == SqlStoreType.postgres:
if self.database_type == StorageBackendType.SQL_POSTGRES.value:
return f"{column}->'{path}'"
elif self.database_type == SqlStoreType.sqlite:
elif self.database_type == StorageBackendType.SQL_SQLITE.value:
return f"JSON_EXTRACT({column}, '$.{path}')"
else:
raise ValueError(f"Unsupported database type: {self.database_type}")
@ -237,9 +237,9 @@ class AuthorizedSqlStore:
Returns:
SQL expression to extract JSON value as text
"""
if self.database_type == SqlStoreType.postgres:
if self.database_type == StorageBackendType.SQL_POSTGRES.value:
return f"{column}->>'{path}'"
elif self.database_type == SqlStoreType.sqlite:
elif self.database_type == StorageBackendType.SQL_SQLITE.value:
return f"JSON_EXTRACT({column}, '$.{path}')"
else:
raise ValueError(f"Unsupported database type: {self.database_type}")
@ -248,10 +248,10 @@ class AuthorizedSqlStore:
"""Get the SQL conditions for public access."""
# Public records are records that have no owner_principal or access_attributes
conditions = ["owner_principal = ''"]
if self.database_type == SqlStoreType.postgres:
if self.database_type == StorageBackendType.SQL_POSTGRES.value:
# Postgres stores JSON null as 'null'
conditions.append("access_attributes::text = 'null'")
elif self.database_type == SqlStoreType.sqlite:
elif self.database_type == StorageBackendType.SQL_SQLITE.value:
conditions.append("access_attributes = 'null'")
else:
raise ValueError(f"Unsupported database type: {self.database_type}")

View file

@ -26,10 +26,10 @@ from sqlalchemy.ext.asyncio.engine import AsyncEngine
from sqlalchemy.sql.elements import ColumnElement
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.core.storage.datatypes import SqlAlchemySqlStoreConfig
from llama_stack.log import get_logger
from .api import ColumnDefinition, ColumnType, SqlStore
from .sqlstore import SqlAlchemySqlStoreConfig
logger = get_logger(name=__name__, category="providers::utils")

View file

@ -4,90 +4,28 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import abstractmethod
from enum import StrEnum
from pathlib import Path
from typing import Annotated, Literal
from typing import Annotated, cast
from pydantic import BaseModel, Field
from pydantic import Field
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.core.storage.datatypes import (
PostgresSqlStoreConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageBackendConfig,
StorageBackendType,
)
from .api import SqlStore
sql_store_pip_packages = ["sqlalchemy[asyncio]", "aiosqlite", "asyncpg"]
class SqlStoreType(StrEnum):
sqlite = "sqlite"
postgres = "postgres"
class SqlAlchemySqlStoreConfig(BaseModel):
@property
@abstractmethod
def engine_str(self) -> str: ...
# TODO: move this when we have a better way to specify dependencies with internal APIs
@classmethod
def pip_packages(cls) -> list[str]:
return ["sqlalchemy[asyncio]"]
class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig):
type: Literal[SqlStoreType.sqlite] = SqlStoreType.sqlite
db_path: str = Field(
default=(RUNTIME_BASE_DIR / "sqlstore.db").as_posix(),
description="Database path, e.g. ~/.llama/distributions/ollama/sqlstore.db",
)
@property
def engine_str(self) -> str:
return "sqlite+aiosqlite:///" + Path(self.db_path).expanduser().as_posix()
@classmethod
def sample_run_config(cls, __distro_dir__: str, db_name: str = "sqlstore.db"):
return {
"type": "sqlite",
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
}
@classmethod
def pip_packages(cls) -> list[str]:
return super().pip_packages() + ["aiosqlite"]
class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
type: Literal[SqlStoreType.postgres] = SqlStoreType.postgres
host: str = "localhost"
port: int = 5432
db: str = "llamastack"
user: str
password: str | None = None
@property
def engine_str(self) -> str:
return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}"
@classmethod
def pip_packages(cls) -> list[str]:
return super().pip_packages() + ["asyncpg"]
@classmethod
def sample_run_config(cls, **kwargs):
return {
"type": "postgres",
"host": "${env.POSTGRES_HOST:=localhost}",
"port": "${env.POSTGRES_PORT:=5432}",
"db": "${env.POSTGRES_DB:=llamastack}",
"user": "${env.POSTGRES_USER:=llamastack}",
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
}
_SQLSTORE_BACKENDS: dict[str, StorageBackendConfig] = {}
SqlStoreConfig = Annotated[
SqliteSqlStoreConfig | PostgresSqlStoreConfig,
Field(discriminator="type", default=SqlStoreType.sqlite.value),
Field(discriminator="type"),
]
@ -95,9 +33,9 @@ def get_pip_packages(store_config: dict | SqlStoreConfig) -> list[str]:
"""Get pip packages for SQL store config, handling both dict and object cases."""
if isinstance(store_config, dict):
store_type = store_config.get("type")
if store_type == "sqlite":
if store_type == StorageBackendType.SQL_SQLITE.value:
return SqliteSqlStoreConfig.pip_packages()
elif store_type == "postgres":
elif store_type == StorageBackendType.SQL_POSTGRES.value:
return PostgresSqlStoreConfig.pip_packages()
else:
raise ValueError(f"Unknown SQL store type: {store_type}")
@ -105,12 +43,28 @@ def get_pip_packages(store_config: dict | SqlStoreConfig) -> list[str]:
return store_config.pip_packages()
def sqlstore_impl(config: SqlStoreConfig) -> SqlStore:
if config.type in [SqlStoreType.sqlite, SqlStoreType.postgres]:
def sqlstore_impl(reference: SqlStoreReference) -> SqlStore:
backend_name = reference.backend
backend_config = _SQLSTORE_BACKENDS.get(backend_name)
if backend_config is None:
raise ValueError(
f"Unknown SQL store backend '{backend_name}'. Registered backends: {sorted(_SQLSTORE_BACKENDS)}"
)
if isinstance(backend_config, SqliteSqlStoreConfig | PostgresSqlStoreConfig):
from .sqlalchemy_sqlstore import SqlAlchemySqlStoreImpl
impl = SqlAlchemySqlStoreImpl(config)
config = cast(SqliteSqlStoreConfig | PostgresSqlStoreConfig, backend_config).model_copy()
return SqlAlchemySqlStoreImpl(config)
else:
raise ValueError(f"Unknown sqlstore type {config.type}")
raise ValueError(f"Unknown sqlstore type {backend_config.type}")
return impl
def register_sqlstore_backends(backends: dict[str, StorageBackendConfig]) -> None:
"""Register the set of available SQL store backends for reference resolution."""
global _SQLSTORE_BACKENDS
_SQLSTORE_BACKENDS.clear()
for name, cfg in backends.items():
_SQLSTORE_BACKENDS[name] = cfg

View file

@ -70,7 +70,7 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
"__class__": class_name,
"__method__": method_name,
"__type__": span_type,
"__args__": str(combined_args),
"__args__": json.dumps(combined_args),
}
return class_name, method_name, span_attributes
@ -82,8 +82,8 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
with tracing.span(f"{class_name}.{method_name}", span_attributes) as span:
count = 0
try:
count = 0
async for item in method(self, *args, **kwargs):
yield item
count += 1

File diff suppressed because it is too large Load diff

View file

@ -43,16 +43,16 @@
"@testing-library/dom": "^10.4.1",
"@testing-library/jest-dom": "^6.8.0",
"@testing-library/react": "^16.3.0",
"@types/jest": "^29.5.14",
"@types/jest": "^30.0.0",
"@types/node": "^24",
"@types/react": "^19",
"@types/react-dom": "^19",
"eslint": "^9",
"eslint-config-next": "15.5.2",
"eslint-config-next": "15.5.6",
"eslint-config-prettier": "^10.1.8",
"eslint-plugin-prettier": "^5.5.4",
"jest": "^29.7.0",
"jest-environment-jsdom": "^30.1.2",
"jest": "^30.2.0",
"jest-environment-jsdom": "^30.2.0",
"prettier": "3.6.2",
"tailwindcss": "^4",
"ts-node": "^10.9.2",