mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-14 13:02:36 +00:00
Merge remote-tracking branch 'origin/main' into stack-config-default-embed
This commit is contained in:
commit
31249a1a75
237 changed files with 30895 additions and 15441 deletions
|
|
@ -83,8 +83,8 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
self.policy = policy
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
||||
self.responses_store = ResponsesStore(self.config.responses_store, self.policy)
|
||||
self.persistence_store = await kvstore_impl(self.config.persistence.agent_state)
|
||||
self.responses_store = ResponsesStore(self.config.persistence.responses, self.policy)
|
||||
await self.responses_store.initialize()
|
||||
self.openai_responses_impl = OpenAIResponsesImpl(
|
||||
inference_api=self.inference_api,
|
||||
|
|
|
|||
|
|
@ -8,24 +8,30 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore import KVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
|
||||
|
||||
|
||||
class AgentPersistenceConfig(BaseModel):
|
||||
"""Nested persistence configuration for agents."""
|
||||
|
||||
agent_state: KVStoreReference
|
||||
responses: ResponsesStoreReference
|
||||
|
||||
|
||||
class MetaReferenceAgentsImplConfig(BaseModel):
|
||||
persistence_store: KVStoreConfig
|
||||
responses_store: SqlStoreConfig
|
||||
persistence: AgentPersistenceConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"persistence_store": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="agents_store.db",
|
||||
),
|
||||
"responses_store": SqliteSqlStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="responses_store.db",
|
||||
),
|
||||
"persistence": {
|
||||
"agent_state": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="agents",
|
||||
).model_dump(exclude_none=True),
|
||||
"responses": ResponsesStoreReference(
|
||||
backend="sql_default",
|
||||
table_name="responses",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -359,6 +359,7 @@ class OpenAIResponsesImpl:
|
|||
tool_executor=self.tool_executor,
|
||||
safety_api=self.safety_api,
|
||||
guardrail_ids=guardrail_ids,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
# Stream the response
|
||||
|
|
|
|||
|
|
@ -110,6 +110,7 @@ class StreamingResponseOrchestrator:
|
|||
text: OpenAIResponseText,
|
||||
max_infer_iters: int,
|
||||
tool_executor, # Will be the tool execution logic from the main class
|
||||
instructions: str,
|
||||
safety_api,
|
||||
guardrail_ids: list[str] | None = None,
|
||||
):
|
||||
|
|
@ -133,6 +134,8 @@ class StreamingResponseOrchestrator:
|
|||
self.accumulated_usage: OpenAIResponseUsage | None = None
|
||||
# Track if we've sent a refusal response
|
||||
self.violation_detected = False
|
||||
# system message that is inserted into the model's context
|
||||
self.instructions = instructions
|
||||
|
||||
async def _create_refusal_response(self, violation_message: str) -> OpenAIResponseObjectStream:
|
||||
"""Create a refusal response to replace streaming content."""
|
||||
|
|
@ -176,6 +179,7 @@ class StreamingResponseOrchestrator:
|
|||
tools=self.ctx.available_tools(),
|
||||
error=error,
|
||||
usage=self.accumulated_usage,
|
||||
instructions=self.instructions,
|
||||
)
|
||||
|
||||
async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
|
|
|
|||
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
|
||||
|
||||
class ReferenceBatchesImplConfig(BaseModel):
|
||||
"""Configuration for the Reference Batches implementation."""
|
||||
|
||||
kvstore: KVStoreConfig = Field(
|
||||
kvstore: KVStoreReference = Field(
|
||||
description="Configuration for the key-value store backend.",
|
||||
)
|
||||
|
||||
|
|
@ -33,8 +33,8 @@ class ReferenceBatchesImplConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="batches.db",
|
||||
),
|
||||
"kvstore": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="batches",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,20 +7,17 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
|
||||
|
||||
class LocalFSDatasetIOConfig(BaseModel):
|
||||
kvstore: KVStoreConfig
|
||||
kvstore: KVStoreReference
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="localfs_datasetio.db",
|
||||
)
|
||||
"kvstore": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="datasetio::localfs",
|
||||
).model_dump(exclude_none=True)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,20 +7,17 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
|
||||
|
||||
class MetaReferenceEvalConfig(BaseModel):
|
||||
kvstore: KVStoreConfig
|
||||
kvstore: KVStoreReference
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="meta_reference_eval.db",
|
||||
)
|
||||
"kvstore": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="eval",
|
||||
).model_dump(exclude_none=True)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -8,14 +8,14 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
|
||||
from llama_stack.core.storage.datatypes import SqlStoreReference
|
||||
|
||||
|
||||
class LocalfsFilesImplConfig(BaseModel):
|
||||
storage_dir: str = Field(
|
||||
description="Directory to store uploaded files",
|
||||
)
|
||||
metadata_store: SqlStoreConfig = Field(
|
||||
metadata_store: SqlStoreReference = Field(
|
||||
description="SQL store configuration for file metadata",
|
||||
)
|
||||
ttl_secs: int = 365 * 24 * 60 * 60 # 1 year
|
||||
|
|
@ -24,8 +24,8 @@ class LocalfsFilesImplConfig(BaseModel):
|
|||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"storage_dir": "${env.FILES_STORAGE_DIR:=" + __distro_dir__ + "/files}",
|
||||
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="files_metadata.db",
|
||||
),
|
||||
"metadata_store": SqlStoreReference(
|
||||
backend="sql_default",
|
||||
table_name="files_metadata",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import threading
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -60,26 +61,28 @@ class TelemetryAdapter(Telemetry):
|
|||
# Recreating the telemetry adapter multiple times will result in duplicate span processors.
|
||||
# Since the library client can be recreated multiple times in a notebook,
|
||||
# the kernel will hold on to the span processor and cause duplicate spans to be written.
|
||||
if _TRACER_PROVIDER is None:
|
||||
provider = TracerProvider()
|
||||
trace.set_tracer_provider(provider)
|
||||
_TRACER_PROVIDER = provider
|
||||
if os.environ.get("OTEL_EXPORTER_OTLP_ENDPOINT"):
|
||||
if _TRACER_PROVIDER is None:
|
||||
provider = TracerProvider()
|
||||
trace.set_tracer_provider(provider)
|
||||
_TRACER_PROVIDER = provider
|
||||
|
||||
# Use single OTLP endpoint for all telemetry signals
|
||||
# Use single OTLP endpoint for all telemetry signals
|
||||
|
||||
# Let OpenTelemetry SDK handle endpoint construction automatically
|
||||
# The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
|
||||
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
|
||||
span_exporter = OTLPSpanExporter()
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
# Let OpenTelemetry SDK handle endpoint construction automatically
|
||||
# The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
|
||||
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
|
||||
span_exporter = OTLPSpanExporter()
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
|
||||
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
|
||||
metric_provider = MeterProvider(metric_readers=[metric_reader])
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
|
||||
metric_provider = MeterProvider(metric_readers=[metric_reader])
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
else:
|
||||
logger.warning("OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry")
|
||||
|
||||
self.meter = metrics.get_meter(__name__)
|
||||
|
||||
self._lock = _global_lock
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
|||
|
|
@ -8,14 +8,14 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
persistence: KVStoreReference = Field(description="Config for KV store backend")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
|
|
@ -23,7 +23,8 @@ class ChromaVectorIOConfig(BaseModel):
|
|||
) -> dict[str, Any]:
|
||||
return {
|
||||
"db_path": db_path,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__, db_name="chroma_inline_registry.db"
|
||||
),
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::chroma",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -8,16 +8,19 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FaissVectorIOConfig(BaseModel):
|
||||
kvstore: KVStoreConfig
|
||||
persistence: KVStoreReference
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(__distro_dir__=__distro_dir__, db_name="faiss_store.db")
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::faiss",
|
||||
).model_dump(exclude_none=True)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -184,7 +184,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
# Load existing banks from kvstore
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
|
|
|
|||
|
|
@ -8,21 +8,22 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"db_path": "${env.MILVUS_DB_PATH:=" + __distro_dir__ + "}/" + "milvus.db",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__, db_name="milvus_registry.db"
|
||||
),
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::milvus",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,20 +9,21 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QdrantVectorIOConfig(BaseModel):
|
||||
path: str
|
||||
kvstore: KVStoreConfig
|
||||
persistence: KVStoreReference
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__, db_name="qdrant_registry.db"
|
||||
),
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::qdrant",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -8,18 +8,19 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
|
||||
|
||||
class SQLiteVectorIOConfig(BaseModel):
|
||||
db_path: str = Field(description="Path to the SQLite database file")
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + "sqlite_vec.db",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__, db_name="sqlite_vec_registry.db"
|
||||
),
|
||||
"persistence": KVStoreReference(
|
||||
backend="kv_default",
|
||||
namespace="vector_io::sqlite_vec",
|
||||
).model_dump(exclude_none=True),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -389,7 +389,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
self.vector_db_store = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue