Merge remote-tracking branch 'origin/main' into stack-config-default-embed

This commit is contained in:
Ashwin Bharambe 2025-10-20 13:29:19 -07:00
commit 31249a1a75
237 changed files with 30895 additions and 15441 deletions

View file

@ -26,6 +26,20 @@ from llama_stack.providers.inline.agents.meta_reference.config import MetaRefere
from llama_stack.providers.inline.agents.meta_reference.persistence import AgentInfo
@pytest.fixture(autouse=True)
def setup_backends(tmp_path):
"""Register KV and SQL store backends for testing."""
from llama_stack.core.storage.datatypes import SqliteKVStoreConfig, SqliteSqlStoreConfig
from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
kv_path = str(tmp_path / "test_kv.db")
sql_path = str(tmp_path / "test_sql.db")
register_kvstore_backends({"kv_default": SqliteKVStoreConfig(db_path=kv_path)})
register_sqlstore_backends({"sql_default": SqliteSqlStoreConfig(db_path=sql_path)})
@pytest.fixture
def mock_apis():
return {
@ -40,15 +54,20 @@ def mock_apis():
@pytest.fixture
def config(tmp_path):
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
from llama_stack.providers.inline.agents.meta_reference.config import AgentPersistenceConfig
return MetaReferenceAgentsImplConfig(
persistence_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
responses_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
persistence=AgentPersistenceConfig(
agent_state=KVStoreReference(
backend="kv_default",
namespace="agents",
),
responses=ResponsesStoreReference(
backend="sql_default",
table_name="responses",
),
)
)

View file

@ -42,7 +42,7 @@ from llama_stack.apis.inference import (
)
from llama_stack.apis.tools.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.core.access_control.access_control import default_policy
from llama_stack.core.datatypes import ResponsesStoreConfig
from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqliteSqlStoreConfig
from llama_stack.providers.inline.agents.meta_reference.responses.openai_responses import (
OpenAIResponsesImpl,
)
@ -50,7 +50,7 @@ from llama_stack.providers.utils.responses.responses_store import (
ResponsesStore,
_OpenAIResponseObjectWithInputAndMessages,
)
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
from tests.unit.providers.agents.meta_reference.fixtures import load_chat_completion_fixture
@ -814,6 +814,69 @@ async def test_create_openai_response_with_instructions_and_previous_response(
assert sent_messages[3].content == "Which is the largest?"
async def test_create_openai_response_with_previous_response_instructions(
openai_responses_impl, mock_responses_store, mock_inference_api
):
"""Test prepending instructions and previous response with instructions."""
input_item_message = OpenAIResponseMessage(
id="123",
content="Name some towns in Ireland",
role="user",
)
response_output_message = OpenAIResponseMessage(
id="123",
content="Galway, Longford, Sligo",
status="completed",
role="assistant",
)
response = _OpenAIResponseObjectWithInputAndMessages(
created_at=1,
id="resp_123",
model="fake_model",
output=[response_output_message],
status="completed",
text=OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")),
input=[input_item_message],
messages=[
OpenAIUserMessageParam(content="Name some towns in Ireland"),
OpenAIAssistantMessageParam(content="Galway, Longford, Sligo"),
],
instructions="You are a helpful assistant.",
)
mock_responses_store.get_response_object.return_value = response
model = "meta-llama/Llama-3.1-8B-Instruct"
instructions = "You are a geography expert. Provide concise answers."
mock_inference_api.openai_chat_completion.return_value = fake_stream()
# Execute
await openai_responses_impl.create_openai_response(
input="Which is the largest?", model=model, instructions=instructions, previous_response_id="123"
)
# Verify
mock_inference_api.openai_chat_completion.assert_called_once()
call_args = mock_inference_api.openai_chat_completion.call_args
params = call_args.args[0]
sent_messages = params.messages
# Check that instructions were prepended as a system message
# and that the previous response instructions were not carried over
assert len(sent_messages) == 4, sent_messages
assert sent_messages[0].role == "system"
assert sent_messages[0].content == instructions
# Check the rest of the messages were converted correctly
assert sent_messages[1].role == "user"
assert sent_messages[1].content == "Name some towns in Ireland"
assert sent_messages[2].role == "assistant"
assert sent_messages[2].content == "Galway, Longford, Sligo"
assert sent_messages[3].role == "user"
assert sent_messages[3].content == "Which is the largest?"
async def test_list_openai_response_input_items_delegation(openai_responses_impl, mock_responses_store):
"""Test that list_openai_response_input_items properly delegates to responses_store with correct parameters."""
# Setup
@ -854,8 +917,10 @@ async def test_responses_store_list_input_items_logic():
# Create mock store and response store
mock_sql_store = AsyncMock()
backend_name = "sql_responses_test"
register_sqlstore_backends({backend_name: SqliteSqlStoreConfig(db_path="mock_db_path")})
responses_store = ResponsesStore(
ResponsesStoreConfig(sql_store_config=SqliteSqlStoreConfig(db_path="mock_db_path")), policy=default_policy()
ResponsesStoreReference(backend=backend_name, table_name="responses"), policy=default_policy()
)
responses_store.sql_store = mock_sql_store

View file

@ -12,10 +12,10 @@ from unittest.mock import AsyncMock
import pytest
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
from llama_stack.providers.inline.batches.reference.batches import ReferenceBatchesImpl
from llama_stack.providers.inline.batches.reference.config import ReferenceBatchesImplConfig
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_backends
@pytest.fixture
@ -23,8 +23,10 @@ async def provider():
"""Create a test provider instance with temporary database."""
with tempfile.TemporaryDirectory() as tmpdir:
db_path = Path(tmpdir) / "test_batches.db"
backend_name = "kv_batches_test"
kvstore_config = SqliteKVStoreConfig(db_path=str(db_path))
config = ReferenceBatchesImplConfig(kvstore=kvstore_config)
register_kvstore_backends({backend_name: kvstore_config})
config = ReferenceBatchesImplConfig(kvstore=KVStoreReference(backend=backend_name, namespace="batches"))
# Create kvstore and mock APIs
kvstore = await kvstore_impl(config.kvstore)

View file

@ -8,8 +8,9 @@ import boto3
import pytest
from moto import mock_aws
from llama_stack.core.storage.datatypes import SqliteSqlStoreConfig, SqlStoreReference
from llama_stack.providers.remote.files.s3 import S3FilesImplConfig, get_adapter_impl
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
class MockUploadFile:
@ -38,11 +39,13 @@ def sample_text_file2():
def s3_config(tmp_path):
db_path = tmp_path / "s3_files_metadata.db"
backend_name = f"sql_s3_{tmp_path.name}"
register_sqlstore_backends({backend_name: SqliteSqlStoreConfig(db_path=db_path.as_posix())})
return S3FilesImplConfig(
bucket_name=f"test-bucket-{tmp_path.name}",
region="not-a-region",
auto_create_bucket=True,
metadata_store=SqliteSqlStoreConfig(db_path=db_path.as_posix()),
metadata_store=SqlStoreReference(backend=backend_name, table_name="s3_files_metadata"),
)

View file

@ -12,13 +12,14 @@ import pytest
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter
from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import SQLiteVecIndex, SQLiteVecVectorIOAdapter
from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector.pgvector import PGVectorIndex, PGVectorVectorIOAdapter
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore import register_kvstore_backends
EMBEDDING_DIMENSION = 768
COLLECTION_PREFIX = "test_collection"
@ -112,8 +113,9 @@ async def unique_kvstore_config(tmp_path_factory):
unique_id = f"test_kv_{np.random.randint(1e6)}"
temp_dir = tmp_path_factory.getbasetemp()
db_path = str(temp_dir / f"{unique_id}.db")
return SqliteKVStoreConfig(db_path=db_path)
backend_name = f"kv_vector_{unique_id}"
register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=db_path)})
return KVStoreReference(backend=backend_name, namespace=f"vector_io::{unique_id}")
@pytest.fixture(scope="session")
@ -138,7 +140,7 @@ async def sqlite_vec_vec_index(embedding_dimension, tmp_path_factory):
async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inference_api, embedding_dimension):
config = SQLiteVectorIOConfig(
db_path=sqlite_vec_db_path,
kvstore=unique_kvstore_config,
persistence=unique_kvstore_config,
)
adapter = SQLiteVecVectorIOAdapter(
config=config,
@ -176,7 +178,7 @@ async def faiss_vec_index(embedding_dimension):
@pytest.fixture
async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding_dimension):
config = FaissVectorIOConfig(
kvstore=unique_kvstore_config,
persistence=unique_kvstore_config,
)
adapter = FaissVectorIOAdapter(
config=config,
@ -251,7 +253,7 @@ async def pgvector_vec_adapter(unique_kvstore_config, mock_inference_api, embedd
db="test_db",
user="test_user",
password="test_password",
kvstore=unique_kvstore_config,
persistence=unique_kvstore_config,
)
adapter = PGVectorVectorIOAdapter(config, mock_inference_api, None)