mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-31 08:00:09 +00:00
NIM not working yet
This commit is contained in:
parent
7065b0fb4d
commit
31a15332c4
3 changed files with 218 additions and 9 deletions
|
@ -5,21 +5,40 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
|
||||
class LlamaStackApi:
|
||||
def __init__(self):
|
||||
# Initialize provider data from environment variables
|
||||
self.provider_data = {
|
||||
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
|
||||
"together_api_key": os.environ.get("TOGETHER_API_KEY", ""),
|
||||
"sambanova_api_key": os.environ.get("SAMBANOVA_API_KEY", ""),
|
||||
"openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
|
||||
"tavily_search_api_key": os.environ.get("TAVILY_SEARCH_API_KEY", ""),
|
||||
}
|
||||
|
||||
# Check if we have any API keys stored in session state
|
||||
if st.session_state.get("tavily_search_api_key"):
|
||||
self.provider_data["tavily_search_api_key"] = st.session_state.get("tavily_search_api_key")
|
||||
|
||||
# Initialize the client
|
||||
self.client = LlamaStackClient(
|
||||
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:8321"),
|
||||
provider_data={
|
||||
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
|
||||
"together_api_key": os.environ.get("TOGETHER_API_KEY", ""),
|
||||
"sambanova_api_key": os.environ.get("SAMBANOVA_API_KEY", ""),
|
||||
"openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
|
||||
"tavily_search_api_key": os.environ.get("TAVILY_SEARCH_API_KEY", ""),
|
||||
},
|
||||
provider_data=self.provider_data,
|
||||
)
|
||||
|
||||
def update_provider_data(self, key, value):
|
||||
"""Update a specific provider data key and reinitialize the client"""
|
||||
self.provider_data[key] = value
|
||||
|
||||
# Reinitialize the client with updated provider data
|
||||
self.client = LlamaStackClient(
|
||||
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:8321"),
|
||||
provider_data=self.provider_data,
|
||||
)
|
||||
|
||||
def run_scoring(self, row, scoring_function_ids: list[str], scoring_params: dict | None):
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
@ -11,6 +12,37 @@ from llama_stack.distribution.ui.modules.api import llama_stack_api
|
|||
|
||||
def providers():
|
||||
st.header("🔍 API Providers")
|
||||
|
||||
# API Key Management Section
|
||||
st.subheader("API Key Management")
|
||||
|
||||
# Create a form for API key input
|
||||
with st.form("api_keys_form"):
|
||||
# Get the current value from session state or environment variable
|
||||
tavily_key = st.session_state.get("tavily_search_api_key", os.environ.get("TAVILY_SEARCH_API_KEY", ""))
|
||||
|
||||
# Input field for Tavily Search API key
|
||||
tavily_search_api_key = st.text_input(
|
||||
"Tavily Search API Key",
|
||||
value=tavily_key,
|
||||
type="password",
|
||||
help="Enter your Tavily Search API key. This will be used for search operations."
|
||||
)
|
||||
|
||||
# Submit button
|
||||
submit_button = st.form_submit_button("Save API Keys")
|
||||
|
||||
if submit_button:
|
||||
# Store the API key in session state
|
||||
st.session_state["tavily_search_api_key"] = tavily_search_api_key
|
||||
|
||||
# Update the client with the new API key
|
||||
llama_stack_api.update_provider_data("tavily_search_api_key", tavily_search_api_key)
|
||||
|
||||
st.success("API keys saved successfully!")
|
||||
|
||||
# Display API Providers
|
||||
st.subheader("Available API Providers")
|
||||
apis_providers_lst = llama_stack_api.client.providers.list()
|
||||
api_to_providers = {}
|
||||
for api_provider in apis_providers_lst:
|
||||
|
|
|
@ -8,7 +8,7 @@ import logging
|
|||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from openai import APIConnectionError, BadRequestError
|
||||
from openai import APIConnectionError, BadRequestError, AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -27,13 +27,20 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ModelStore,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat
|
||||
from llama_stack.providers.datatypes import (
|
||||
HealthResponse,
|
||||
HealthStatus,
|
||||
ModelsProtocolPrivate,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
@ -57,7 +64,7 @@ from .utils import _is_nvidia_hosted
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper, ModelsProtocolPrivate):
|
||||
"""
|
||||
NVIDIA Inference Adapter for Llama Stack.
|
||||
|
||||
|
@ -71,6 +78,10 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
|
||||
"""
|
||||
|
||||
# automatically set by the resolver when instantiating the provider
|
||||
__provider_id__: str
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
def __init__(self, config: NVIDIAConfig) -> None:
|
||||
# TODO(mf): filter by available models
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
|
@ -93,6 +104,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
# )
|
||||
|
||||
self._config = config
|
||||
self._client = None
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
|
@ -110,6 +122,149 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
"""
|
||||
return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
@property
|
||||
def client(self):
|
||||
"""
|
||||
Get the OpenAI client.
|
||||
|
||||
:return: The OpenAI client
|
||||
"""
|
||||
self._lazy_initialize_client()
|
||||
return self._client
|
||||
|
||||
def _lazy_initialize_client(self):
|
||||
"""
|
||||
Initialize the OpenAI client if it hasn't been initialized yet.
|
||||
"""
|
||||
if self._client is not None:
|
||||
return
|
||||
|
||||
logger.info(f"Initializing NVIDIA client with base_url={self.get_base_url()}")
|
||||
self._client = AsyncOpenAI(
|
||||
base_url=self.get_base_url(),
|
||||
api_key=self.get_api_key(),
|
||||
)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""
|
||||
Initialize the NVIDIA adapter.
|
||||
"""
|
||||
if not self._config.url:
|
||||
raise ValueError(
|
||||
"You must provide a URL in run.yaml (or via the NVIDIA_BASE_URL environment variable) to use NVIDIA NIM."
|
||||
)
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
"""
|
||||
Determine if models should be refreshed.
|
||||
|
||||
:return: True if models should be refreshed, False otherwise
|
||||
"""
|
||||
# Always refresh models to ensure we have the latest available models
|
||||
return True
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
"""
|
||||
List all models available from the NVIDIA API.
|
||||
|
||||
:return: A list of available models
|
||||
"""
|
||||
self._lazy_initialize_client()
|
||||
models = []
|
||||
try:
|
||||
async for m in self.client.models.list():
|
||||
# Determine model type based on model ID or capabilities
|
||||
# This is a simple heuristic and might need refinement
|
||||
model_type = ModelType.llm
|
||||
if "embed" in m.id.lower():
|
||||
model_type = ModelType.embedding
|
||||
|
||||
models.append(
|
||||
Model(
|
||||
identifier=m.id,
|
||||
provider_resource_id=m.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=model_type,
|
||||
)
|
||||
)
|
||||
return models
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to list models from NVIDIA API: {e}")
|
||||
return None
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
"""
|
||||
Register a model with the NVIDIA adapter.
|
||||
|
||||
:param model: The model to register
|
||||
:return: The registered model
|
||||
"""
|
||||
self._lazy_initialize_client()
|
||||
try:
|
||||
# First try to register using the static model entries
|
||||
model = await ModelRegistryHelper.register_model(self, model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
|
||||
try:
|
||||
# Check if the model is available on the NVIDIA server
|
||||
available_models = [m.id async for m in self.client.models.list()]
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} is not being served by NVIDIA NIM. "
|
||||
f"Available models: {', '.join(available_models)}"
|
||||
)
|
||||
except APIConnectionError as e:
|
||||
raise ValueError(
|
||||
f"Failed to connect to NVIDIA NIM at {self._config.url}. Please check if NVIDIA NIM is running and accessible at that URL."
|
||||
) from e
|
||||
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
"""
|
||||
Unregister a model from the NVIDIA adapter.
|
||||
|
||||
:param model_id: The ID of the model to unregister
|
||||
"""
|
||||
pass
|
||||
|
||||
async def health(self) -> HealthResponse:
|
||||
"""
|
||||
Performs a health check by verifying connectivity to the remote NVIDIA NIM server.
|
||||
This method is used by the Provider API to verify
|
||||
that the service is running correctly.
|
||||
|
||||
:return: A HealthResponse object indicating the health status
|
||||
"""
|
||||
try:
|
||||
client = AsyncOpenAI(
|
||||
base_url=self.get_base_url(),
|
||||
api_key=self.get_api_key(),
|
||||
) if self._client is None else self._client
|
||||
_ = [m async for m in client.models.list()] # Ensure the client is initialized
|
||||
return HealthResponse(status=HealthStatus.OK)
|
||||
except Exception as e:
|
||||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
||||
async def _get_model(self, model_id: str) -> Model:
|
||||
"""
|
||||
Get a model by ID.
|
||||
|
||||
:param model_id: The ID of the model to get
|
||||
:return: The model
|
||||
"""
|
||||
if not self.model_store:
|
||||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
"""
|
||||
Shutdown the NVIDIA adapter.
|
||||
"""
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -128,6 +283,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
# removing this health check as NeMo customizer endpoint health check is returning 404
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
self._lazy_initialize_client()
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = convert_completion_request(
|
||||
request=CompletionRequest(
|
||||
|
@ -170,6 +326,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
#
|
||||
# we can ignore str and always pass list[str] to OpenAI
|
||||
#
|
||||
self._lazy_initialize_client()
|
||||
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
||||
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
|
@ -230,6 +387,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
self._lazy_initialize_client()
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = await convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue