diff --git a/docs/_static/llama-stack-spec.html b/docs/_static/llama-stack-spec.html index 6794d1fbb..db5c57821 100644 --- a/docs/_static/llama-stack-spec.html +++ b/docs/_static/llama-stack-spec.html @@ -11340,6 +11340,9 @@ }, "embedding_dimension": { "type": "integer" + }, + "vector_db_name": { + "type": "string" } }, "additionalProperties": false, @@ -13590,10 +13593,6 @@ "provider_id": { "type": "string", "description": "The ID of the provider to use for this vector store." - }, - "provider_vector_db_id": { - "type": "string", - "description": "The provider-specific vector database ID." } }, "additionalProperties": false, @@ -15634,6 +15633,10 @@ "type": "string", "description": "The identifier of the provider." }, + "vector_db_name": { + "type": "string", + "description": "The name of the vector database." + }, "provider_vector_db_id": { "type": "string", "description": "The identifier of the vector database in the provider." diff --git a/docs/_static/llama-stack-spec.yaml b/docs/_static/llama-stack-spec.yaml index 548c5a988..29ba9dede 100644 --- a/docs/_static/llama-stack-spec.yaml +++ b/docs/_static/llama-stack-spec.yaml @@ -7984,6 +7984,8 @@ components: type: string embedding_dimension: type: integer + vector_db_name: + type: string additionalProperties: false required: - identifier @@ -9494,10 +9496,6 @@ components: type: string description: >- The ID of the provider to use for this vector store. - provider_vector_db_id: - type: string - description: >- - The provider-specific vector database ID. additionalProperties: false required: - name @@ -10945,6 +10943,9 @@ components: provider_id: type: string description: The identifier of the provider. + vector_db_name: + type: string + description: The name of the vector database. provider_vector_db_id: type: string description: >- diff --git a/llama_stack/apis/vector_dbs/vector_dbs.py b/llama_stack/apis/vector_dbs/vector_dbs.py index 405852476..0d160737a 100644 --- a/llama_stack/apis/vector_dbs/vector_dbs.py +++ b/llama_stack/apis/vector_dbs/vector_dbs.py @@ -19,6 +19,7 @@ class VectorDB(Resource): embedding_model: str embedding_dimension: int + vector_db_name: str | None = None @property def vector_db_id(self) -> str: @@ -70,6 +71,7 @@ class VectorDBs(Protocol): embedding_model: str, embedding_dimension: int | None = 384, provider_id: str | None = None, + vector_db_name: str | None = None, provider_vector_db_id: str | None = None, ) -> VectorDB: """Register a vector database. @@ -78,6 +80,7 @@ class VectorDBs(Protocol): :param embedding_model: The embedding model to use. :param embedding_dimension: The dimension of the embedding model. :param provider_id: The identifier of the provider. + :param vector_db_name: The name of the vector database. :param provider_vector_db_id: The identifier of the vector database in the provider. :returns: A VectorDB. """ diff --git a/llama_stack/apis/vector_io/vector_io.py b/llama_stack/apis/vector_io/vector_io.py index 2d4131315..618ac2a95 100644 --- a/llama_stack/apis/vector_io/vector_io.py +++ b/llama_stack/apis/vector_io/vector_io.py @@ -346,7 +346,6 @@ class VectorIO(Protocol): embedding_model: str | None = None, embedding_dimension: int | None = 384, provider_id: str | None = None, - provider_vector_db_id: str | None = None, ) -> VectorStoreObject: """Creates a vector store. @@ -358,7 +357,6 @@ class VectorIO(Protocol): :param embedding_model: The embedding model to use for this vector store. :param embedding_dimension: The dimension of the embedding vectors (default: 384). :param provider_id: The ID of the provider to use for this vector store. - :param provider_vector_db_id: The provider-specific vector database ID. :returns: A VectorStoreObject representing the created vector store. """ ... diff --git a/llama_stack/distribution/routers/vector_io.py b/llama_stack/distribution/routers/vector_io.py index 4bd5952dc..cd56ada7b 100644 --- a/llama_stack/distribution/routers/vector_io.py +++ b/llama_stack/distribution/routers/vector_io.py @@ -5,6 +5,7 @@ # the root directory of this source tree. import asyncio +import uuid from typing import Any from llama_stack.apis.common.content_types import ( @@ -81,6 +82,7 @@ class VectorIORouter(VectorIO): embedding_model: str, embedding_dimension: int | None = 384, provider_id: str | None = None, + vector_db_name: str | None = None, provider_vector_db_id: str | None = None, ) -> None: logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}") @@ -89,6 +91,7 @@ class VectorIORouter(VectorIO): embedding_model, embedding_dimension, provider_id, + vector_db_name, provider_vector_db_id, ) @@ -123,7 +126,6 @@ class VectorIORouter(VectorIO): embedding_model: str | None = None, embedding_dimension: int | None = None, provider_id: str | None = None, - provider_vector_db_id: str | None = None, ) -> VectorStoreObject: logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}") @@ -135,17 +137,17 @@ class VectorIORouter(VectorIO): embedding_model, embedding_dimension = embedding_model_info logger.info(f"No embedding model specified, using first available: {embedding_model}") - vector_db_id = name + vector_db_id = f"vs_{uuid.uuid4()}" registered_vector_db = await self.routing_table.register_vector_db( - vector_db_id, - embedding_model, - embedding_dimension, - provider_id, - provider_vector_db_id, + vector_db_id=vector_db_id, + embedding_model=embedding_model, + embedding_dimension=embedding_dimension, + provider_id=provider_id, + provider_vector_db_id=vector_db_id, + vector_db_name=name, ) - return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store( - vector_db_id, + name=name, file_ids=file_ids, expires_after=expires_after, chunking_strategy=chunking_strategy, diff --git a/llama_stack/distribution/routing_tables/vector_dbs.py b/llama_stack/distribution/routing_tables/vector_dbs.py index 542e965f8..f861102c8 100644 --- a/llama_stack/distribution/routing_tables/vector_dbs.py +++ b/llama_stack/distribution/routing_tables/vector_dbs.py @@ -36,6 +36,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs): embedding_dimension: int | None = 384, provider_id: str | None = None, provider_vector_db_id: str | None = None, + vector_db_name: str | None = None, ) -> VectorDB: if provider_vector_db_id is None: provider_vector_db_id = vector_db_id @@ -62,6 +63,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs): "provider_resource_id": provider_vector_db_id, "embedding_model": embedding_model, "embedding_dimension": model.metadata["embedding_dimension"], + "vector_db_name": vector_db_name, } vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data) await self.register_object(vector_db) diff --git a/llama_stack/providers/remote/vector_io/chroma/chroma.py b/llama_stack/providers/remote/vector_io/chroma/chroma.py index 3bef39e9c..ffe2cba44 100644 --- a/llama_stack/providers/remote/vector_io/chroma/chroma.py +++ b/llama_stack/providers/remote/vector_io/chroma/chroma.py @@ -217,7 +217,6 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate): embedding_model: str | None = None, embedding_dimension: int | None = 384, provider_id: str | None = None, - provider_vector_db_id: str | None = None, ) -> VectorStoreObject: raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma") diff --git a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py index 09ea08fa0..5bdea0ce8 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py +++ b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py @@ -214,7 +214,6 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate): embedding_model: str | None = None, embedding_dimension: int | None = 384, provider_id: str | None = None, - provider_vector_db_id: str | None = None, ) -> VectorStoreObject: raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant") diff --git a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py index 27bb1c997..e5328bc59 100644 --- a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py +++ b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py @@ -172,8 +172,9 @@ class OpenAIVectorStoreMixin(ABC): provider_vector_db_id: str | None = None, ) -> VectorStoreObject: """Creates a vector store.""" - store_id = name or str(uuid.uuid4()) created_at = int(time.time()) + # Derive the canonical vector_db_id (allow override, else generate) + vector_db_id = provider_vector_db_id or f"vs_{uuid.uuid4()}" if provider_id is None: raise ValueError("Provider ID is required") @@ -181,19 +182,19 @@ class OpenAIVectorStoreMixin(ABC): if embedding_model is None: raise ValueError("Embedding model is required") - # Use provided embedding dimension or default to 384 + # Embedding dimension is required (defaulted to 384 if not provided) if embedding_dimension is None: raise ValueError("Embedding dimension is required") - provider_vector_db_id = provider_vector_db_id or store_id + # Register the VectorDB backing this vector store vector_db = VectorDB( - identifier=store_id, + identifier=vector_db_id, embedding_dimension=embedding_dimension, embedding_model=embedding_model, provider_id=provider_id, - provider_resource_id=provider_vector_db_id, + provider_resource_id=vector_db_id, + vector_db_name=name, ) - # Register the vector DB await self.register_vector_db(vector_db) # Create OpenAI vector store metadata @@ -207,11 +208,11 @@ class OpenAIVectorStoreMixin(ABC): in_progress=0, total=0, ) - store_info = { - "id": store_id, + store_info: dict[str, Any] = { + "id": vector_db_id, "object": "vector_store", "created_at": created_at, - "name": store_id, + "name": name, "usage_bytes": 0, "file_counts": file_counts.model_dump(), "status": status, @@ -231,18 +232,18 @@ class OpenAIVectorStoreMixin(ABC): store_info["metadata"] = metadata # Save to persistent storage (provider-specific) - await self._save_openai_vector_store(store_id, store_info) + await self._save_openai_vector_store(vector_db_id, store_info) # Store in memory cache - self.openai_vector_stores[store_id] = store_info + self.openai_vector_stores[vector_db_id] = store_info # Now that our vector store is created, attach any files that were provided file_ids = file_ids or [] - tasks = [self.openai_attach_file_to_vector_store(store_id, file_id) for file_id in file_ids] + tasks = [self.openai_attach_file_to_vector_store(vector_db_id, file_id) for file_id in file_ids] await asyncio.gather(*tasks) # Get the updated store info and return it - store_info = self.openai_vector_stores[store_id] + store_info = self.openai_vector_stores[vector_db_id] return VectorStoreObject.model_validate(store_info) async def openai_list_vector_stores( diff --git a/tests/integration/vector_io/test_openai_vector_stores.py b/tests/integration/vector_io/test_openai_vector_stores.py index cc2860e26..7f947be30 100644 --- a/tests/integration/vector_io/test_openai_vector_stores.py +++ b/tests/integration/vector_io/test_openai_vector_stores.py @@ -821,6 +821,59 @@ def test_openai_vector_store_update_file(compat_client_with_empty_stores, client assert retrieved_file.attributes["foo"] == "baz" +def test_create_vector_store_files_duplicate_vector_store_name(compat_client_with_empty_stores, client_with_models): + """ + This test confirms that client.vector_stores.create() creates a unique ID + """ + skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) + skip_if_provider_doesnt_support_openai_vector_store_files_api(client_with_models) + + if isinstance(compat_client_with_empty_stores, LlamaStackClient): + pytest.skip("Vector Store Files create is not yet supported with LlamaStackClient") + + compat_client = compat_client_with_empty_stores + + # Create a vector store with files + file_ids = [] + for i in range(3): + with BytesIO(f"This is a test file {i}".encode()) as file_buffer: + file_buffer.name = f"openai_test_{i}.txt" + file = compat_client.files.create(file=file_buffer, purpose="assistants") + file_ids.append(file.id) + + vector_store = compat_client.vector_stores.create( + name="test_store_with_files", + ) + assert vector_store.file_counts.completed == 0 + assert vector_store.file_counts.total == 0 + assert vector_store.file_counts.cancelled == 0 + assert vector_store.file_counts.failed == 0 + assert vector_store.file_counts.in_progress == 0 + + vector_store2 = compat_client.vector_stores.create( + name="test_store_with_files", + ) + + vector_stores_list = compat_client.vector_stores.list() + assert len(vector_stores_list.data) == 2 + + created_file = compat_client.vector_stores.files.create( + vector_store_id=vector_store.id, + file_id=file_ids[0], + ) + assert created_file.status == "completed" + + _ = compat_client.vector_stores.delete(vector_store2.id) + created_file_from_non_deleted_vector_store = compat_client.vector_stores.files.create( + vector_store_id=vector_store.id, + file_id=file_ids[1], + ) + assert created_file_from_non_deleted_vector_store.status == "completed" + + vector_stores_list_post_delete = compat_client.vector_stores.list() + assert len(vector_stores_list_post_delete.data) == 1 + + @pytest.mark.skip(reason="Client library needs to be scaffolded to support search_mode parameter") def test_openai_vector_store_search_modes(): """Test OpenAI vector store search with different search modes.