evals new rebase

This commit is contained in:
Xi Yan 2024-10-10 11:35:26 -07:00
parent 89d24a07f0
commit 31c046dcdf
28 changed files with 1141 additions and 87 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# TODO: make these import config based
from .dataset import CustomDataset, HFDataset
from .dataset_registry import DatasetRegistry
DATASETS_REGISTRY = {
"mmlu-simple-eval-en": CustomDataset(
name="mmlu_eval",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
),
"hellaswag": HFDataset(
name="hellaswag",
url="hf://hellaswag?split=validation&trust_remote_code=True",
),
}
for k, v in DATASETS_REGISTRY.items():
DatasetRegistry.register(k, v)

View file

@ -0,0 +1,62 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import ABC, abstractmethod
from urllib.parse import parse_qs, urlparse
import pandas
from datasets import Dataset, load_dataset
class BaseDataset(ABC):
def __init__(self, name: str):
self.dataset = None
self.dataset_id = name
self.type = self.__class__.__name__
def __iter__(self):
return iter(self.dataset)
@abstractmethod
def load(self):
pass
class CustomDataset(BaseDataset):
def __init__(self, name, url):
super().__init__(name)
self.url = url
def load(self):
if self.dataset:
return
# TODO: better support w/ data url
if self.url.endswith(".csv"):
df = pandas.read_csv(self.url)
elif self.url.endswith(".xlsx"):
df = pandas.read_excel(self.url)
self.dataset = Dataset.from_pandas(df)
class HFDataset(BaseDataset):
def __init__(self, name, url):
super().__init__(name)
self.url = url
def load(self):
if self.dataset:
return
parsed = urlparse(self.url)
if parsed.scheme != "hf":
raise ValueError(f"Unknown HF dataset: {self.url}")
query = parse_qs(parsed.query)
query = {k: v[0] for k, v in query.items()}
path = parsed.netloc
self.dataset = load_dataset(path, **query)

View file

@ -0,0 +1,32 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AbstractSet, Dict
from .dataset import BaseDataset
class DatasetRegistry:
_REGISTRY: Dict[str, BaseDataset] = {}
@staticmethod
def names() -> AbstractSet[str]:
return DatasetRegistry._REGISTRY.keys()
@staticmethod
def register(name: str, task: BaseDataset) -> None:
if name in DatasetRegistry._REGISTRY:
raise ValueError(f"Dataset {name} already exists.")
DatasetRegistry._REGISTRY[name] = task
@staticmethod
def get_dataset(name: str) -> BaseDataset:
if name not in DatasetRegistry._REGISTRY:
raise ValueError(f"Dataset {name} not found.")
return DatasetRegistry._REGISTRY[name]
@staticmethod
def reset() -> None:
DatasetRegistry._REGISTRY = {}

View file

@ -0,0 +1,13 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# TODO: make these import config based
from llama_stack.providers.impls.meta_reference.evals.tasks.mmlu_task import MMLUTask
from .task_registry import TaskRegistry
TaskRegistry.register(
"mmlu",
MMLUTask,
)

View file

@ -0,0 +1,49 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import ABC, abstractmethod
class BaseTask(ABC):
"""
A task represents a single evaluation benchmark, including it's dataset, preprocessing, postprocessing and scoring methods.
Base class for all evaluation tasks. Each task needs to implement the following methods:
- F1: preprocess_sample(self)
- F2: postprocess_sample(self)
- F3: score_sample(self)
"""
def __init__(self, dataset, *args, **kwargs):
super().__init__(*args, **kwargs)
self._name = self.__class__.__name__
self.dataset = dataset
@abstractmethod
def preprocess_sample(self, sample):
raise NotImplementedError()
@abstractmethod
def postprocess_sample(self, sample):
raise NotImplementedError()
@abstractmethod
def score_sample(self, sample, ground_truth):
raise NotImplementedError()
@abstractmethod
def aggregate_results(self, eval_results):
raise NotImplementedError()
def preprocess(self):
return [self.preprocess_sample(sample) for sample in self.dataset]
def postprocess(self, generation):
return [self.postprocess_sample(sample) for sample in generation]
def score(self, postprocessed):
return [
self.score_sample(sample, ground_truth)
for sample, ground_truth in zip(postprocessed, self.dataset)
]

View file

@ -0,0 +1,32 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AbstractSet, Dict
from .task import BaseTask
class TaskRegistry:
_REGISTRY: Dict[str, BaseTask] = {}
@staticmethod
def names() -> AbstractSet[str]:
return TaskRegistry._REGISTRY.keys()
@staticmethod
def register(name: str, task: BaseTask) -> None:
if name in TaskRegistry._REGISTRY:
raise ValueError(f"Task {name} already exists.")
TaskRegistry._REGISTRY[name] = task
@staticmethod
def get_task(name: str) -> BaseTask:
if name not in TaskRegistry._REGISTRY:
raise ValueError(f"Task {name} not found.")
return TaskRegistry._REGISTRY[name]
@staticmethod
def reset() -> None:
TaskRegistry._REGISTRY = {}