mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-10 19:43:16 +00:00
evals new rebase
This commit is contained in:
parent
89d24a07f0
commit
31c046dcdf
28 changed files with 1141 additions and 87 deletions
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
|
@ -0,0 +1,150 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.distribution.registry.tasks.task import BaseTask
|
||||
|
||||
QUERY_TEMPLATE_MULTICHOICE = """
|
||||
Answer the following multiple choice question and make the answer very simple. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD.
|
||||
|
||||
{Question}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
MULTILINGUAL_ANSWER_REGEXES = [
|
||||
r"Answer\s*:",
|
||||
r"Answer\s*:", # Korean invisible character
|
||||
r"উত্তর\s*:",
|
||||
r"उत्तर\s*:",
|
||||
r"উত্তরঃ",
|
||||
r"উত্তর\s*:",
|
||||
r"Antwort\s*:",
|
||||
r"답변\s*:",
|
||||
r"정답\s*:",
|
||||
r"답\s*:",
|
||||
r"答案\s*:",
|
||||
r"答案\s*:",
|
||||
r"答\s*:",
|
||||
r"答\s*:",
|
||||
r"答复\s*:",
|
||||
r"答曰\s*:",
|
||||
r"الإجابة:",
|
||||
r"الجواب:",
|
||||
r"إجابة:",
|
||||
r"الإجابة النهائية:",
|
||||
r"الإجابة الصحيحة:",
|
||||
r"الإجابة الصحيحة هي:",
|
||||
r"الإجابة هي:",
|
||||
r"Respuesta\s*:",
|
||||
r"Risposta\s*:",
|
||||
r"答え\s*:",
|
||||
r"答え\s*:",
|
||||
r"回答\s*:",
|
||||
r"回答\s*:",
|
||||
r"解答\s*:",
|
||||
r"Jawaban\s*:",
|
||||
r"Réponse\s*:",
|
||||
r"Resposta\s*:",
|
||||
r"Jibu\s*:",
|
||||
r"Idahun\s*:",
|
||||
r"Ìdáhùn\s*:",
|
||||
r"Idáhùn\s*:",
|
||||
r"Àmọ̀nà\s*:",
|
||||
r"Àdáhùn\s*:",
|
||||
r"Ànúgọ\s*:",
|
||||
r"Àṣàyàn\s*:",
|
||||
]
|
||||
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
|
||||
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
)
|
||||
|
||||
|
||||
def normalize_response(response: str) -> str:
|
||||
"""
|
||||
Normalize the response by removing markdown and LaTeX formatting that may prevent a match.
|
||||
"""
|
||||
|
||||
return (
|
||||
response.replace("**", "")
|
||||
.replace("$\\boxed{", "")
|
||||
.replace("}$", "")
|
||||
.replace("\\$", "")
|
||||
.replace("$\\text{", "")
|
||||
.replace("$", "")
|
||||
.replace("\\mathrm{", "")
|
||||
.replace("\\{", "")
|
||||
.replace("\\text", "")
|
||||
.replace("\\(", "")
|
||||
.replace("\\mathbf{", "")
|
||||
.replace("{", "")
|
||||
.replace("\\boxed", "")
|
||||
)
|
||||
|
||||
|
||||
def normalize_extracted_answer(extracted_answer: str) -> str:
|
||||
return (
|
||||
# In arabic these are the letters used for A-D in multiple choice questions
|
||||
extracted_answer.replace("أ", " A")
|
||||
.replace("ب", " B")
|
||||
.replace("ج", " C")
|
||||
.replace("د", " D")
|
||||
# In Bengali these are the letters used for A-D in multiple choice questions
|
||||
.replace("অ", " A")
|
||||
.replace("ব", " B")
|
||||
.replace("ড", " C")
|
||||
.replace("ঢ", " D")
|
||||
# In Japanese these are the letters sometimes used for A-D in multiple choice questions
|
||||
.replace("A", " A")
|
||||
.replace("B", " B")
|
||||
.replace("C", " C")
|
||||
.replace("D", " D")
|
||||
.strip()
|
||||
)
|
||||
|
||||
|
||||
class MMLUTask(BaseTask):
|
||||
"""
|
||||
MMLU Task.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, *args, **kwargs):
|
||||
super().__init__(dataset, *args, **kwargs)
|
||||
|
||||
def preprocess_sample(self, sample):
|
||||
content = QUERY_TEMPLATE_MULTICHOICE.format(**sample)
|
||||
return {
|
||||
"role": "user",
|
||||
"content": content,
|
||||
}
|
||||
|
||||
def postprocess_sample(self, sample):
|
||||
normalized = normalize_response(sample)
|
||||
return normalized
|
||||
|
||||
def score_sample(self, sample, expected):
|
||||
extracted_answer = None
|
||||
for answer_regex in MULTILINGUAL_ANSWER_REGEXES:
|
||||
regex = MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(answer_regex)
|
||||
match = re.search(regex, sample)
|
||||
if match:
|
||||
extracted_answer = normalize_extracted_answer(match.group(1))
|
||||
break
|
||||
score = (
|
||||
1.0 if extracted_answer and extracted_answer == expected["Answer"] else 0.0
|
||||
)
|
||||
# TODO: generalize this into SingleEvalResult
|
||||
return score
|
||||
|
||||
def aggregate_results(self, eval_results):
|
||||
return EvaluateResponse(
|
||||
metrics={"score": str(sum(eval_results) / len(eval_results))}
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue