evals new rebase

This commit is contained in:
Xi Yan 2024-10-10 11:35:26 -07:00
parent 89d24a07f0
commit 31c046dcdf
28 changed files with 1141 additions and 87 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import EleutherEvalsImplConfig # noqa
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.datatypes import Api, ProviderSpec
async def get_provider_impl(
config: EleutherEvalsImplConfig, deps: Dict[Api, ProviderSpec]
):
from .eleuther import EleutherEvalsAdapter
impl = EleutherEvalsAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -0,0 +1,10 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
class EleutherEvalsImplConfig(BaseModel): ...

View file

@ -0,0 +1,168 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
import os
import random
import threading
from pathlib import Path
import lm_eval
import tqdm
from lm_eval.api.model import LM
from lm_eval.evaluator import evaluate, get_task_list
from lm_eval.tasks import get_task_dict, TaskManager
from termcolor import cprint
from .config import EleutherEvalsImplConfig
# https://stackoverflow.com/questions/74703727/how-to-call-async-function-from-sync-funcion-and-get-result-while-a-loop-is-alr
# We will use another thread wih its own event loop to run the async api within sync function
_loop = asyncio.new_event_loop()
_thr = threading.Thread(target=_loop.run_forever, name="Async Runner", daemon=True)
class EleutherEvalsWrapper(LM):
def __init__(
self,
inference_api: Inference,
model: str,
**kwargs,
):
super().__init__(**kwargs)
self.inference_api = inference_api
self.model = model
self.tokenizer = None
self.tokenized_requests = False
self.kwargs = kwargs
@property
def eot_token_id(self):
raise NotImplementedError("Not implemented")
@property
def max_length(self) -> int:
return NotImplementedError("Not implemented")
@property
def max_gen_toks(self) -> int:
return NotImplementedError("Not implemented")
@property
def batch_size(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError("No support for logits.")
@property
def device(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError("No support for logits.")
@property
def world_size(self):
return 1
def tok_encode(self, string: str) -> List[int]:
return NotImplementedError("Not implemented")
def tok_decode(self, tokens: List[int]) -> str:
return NotImplementedError("Not implemented")
def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
raise NotImplementedError("No support for logits.")
def _model_call(self, inps):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
def _model_generate(self, context, max_length, eos_token_id):
# Isn't used because we override generate_until
raise NotImplementedError()
def loglikelihood(self, requests, disable_tqdm: bool = False):
# TODO: implement inference completion with loglikelihood
res = []
for req in requests:
res.append((-random.random(), False))
return res
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
raise NotImplementedError("No support for logits.")
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
res = []
if not _thr.is_alive():
_thr.start()
for req in tqdm.tqdm(requests):
chat_completion_coro_fn = self.inference_api.chat_completion(
model=self.model,
messages=[
{
"role": "user",
"content": req.args[0],
}
],
stream=False,
)
future = asyncio.run_coroutine_threadsafe(chat_completion_coro_fn, _loop)
response = future.result()
res.append(response.completion_message.content)
return res
class EleutherEvalsAdapter(Evals):
def __init__(self, config: EleutherEvalsImplConfig, inference_api: Inference):
self.inference_api = inference_api
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_evals(
self,
model: str,
task: str,
dataset: Optional[str] = None,
eval_task_config: Optional[EvaluateTaskConfig] = None,
) -> EvaluateResponse:
cprint(f"Eleuther Evals: {model} {dataset} {task}", "red")
eluther_wrapper = EleutherEvalsWrapper(self.inference_api, model)
current_dir = Path(os.path.dirname(os.path.abspath(__file__)))
# custom registry of harness tasks
task_manager = TaskManager(
include_path=str(current_dir / "tasks"),
)
task_dict = get_task_dict(task, task_manager)
cprint(task_dict, "blue")
task_types = set([t.task.OUTPUT_TYPE for t in get_task_list(task_dict)])
cprint(task_types, "cyan")
output = evaluate(
eluther_wrapper,
task_dict,
limit=eval_task_config.n_samples,
)
formatted_output = lm_eval.utils.make_table(output)
cprint(formatted_output, "green")
return EvaluateResponse(
metrics={
"metrics_table": formatted_output,
},
)

View file

@ -0,0 +1,32 @@
task: meta_ifeval
dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
dataset_name: Llama-3.1-8B-Instruct-evals__ifeval__strict__details
output_type: generate_until
test_split: latest
process_docs: !function utils.process_docs
num_fewshot: 0
doc_to_text: prompt
doc_to_target: 0
generation_kwargs:
until: []
do_sample: false
temperature: 0.0
max_gen_toks: 1280
process_results: !function utils.process_results
metric_list:
- metric: prompt_level_strict_acc
aggregation: mean
higher_is_better: true
- metric: inst_level_strict_acc
aggregation: !function utils.agg_inst_level_acc
higher_is_better: true
- metric: prompt_level_loose_acc
aggregation: mean
higher_is_better: true
- metric: inst_level_loose_acc
aggregation: !function utils.agg_inst_level_acc
higher_is_better: true
metadata:
version: 2.0
fewshot_config:
sampler: first_n

View file

@ -0,0 +1,191 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import dataclasses
from typing import Dict, Optional, Union
import datasets
from lm_eval.tasks.ifeval import instructions_registry
@dataclasses.dataclass
class InputExample:
key: int
instruction_id_list: list[str]
prompt: str
kwargs: list[Dict[str, Optional[Union[str, int]]]]
@dataclasses.dataclass
class OutputExample:
instruction_id_list: list[str]
prompt: str
response: str
follow_all_instructions: bool
follow_instruction_list: list[bool]
def test_instruction_following_strict(
inp,
response,
):
"""Tests response to see if instructions are followed."""
instruction_list = inp.instruction_id_list
is_following_list = []
for index, instruction_id in enumerate(instruction_list):
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
instruction.build_description(**kwargs)
args = instruction.get_instruction_args()
if args and "prompt" in args:
instruction.build_description(prompt=inp.prompt)
if response.strip() and instruction.check_following(response):
is_following_list.append(True)
else:
is_following_list.append(False)
return OutputExample(
instruction_id_list=inp.instruction_id_list,
prompt=inp.prompt,
response=response,
follow_all_instructions=all(is_following_list),
follow_instruction_list=is_following_list,
)
def test_instruction_following_loose(
inp,
response,
):
"""Tests response for an upper bound for following instructions."""
r = response.split("\n")
response_remove_first = "\n".join(r[1:]).strip()
response_remove_last = "\n".join(r[:-1]).strip()
response_remove_both = "\n".join(r[1:-1]).strip()
revised_response = response.replace("*", "")
revised_response_remove_first = response_remove_first.replace("*", "")
revised_response_remove_last = response_remove_last.replace("*", "")
revised_response_remove_both = response_remove_both.replace("*", "")
all_responses = [
response,
revised_response,
response_remove_first,
response_remove_last,
response_remove_both,
revised_response_remove_first,
revised_response_remove_last,
revised_response_remove_both,
]
instruction_list = inp.instruction_id_list
is_following_list = []
for index, instruction_id in enumerate(instruction_list):
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
instruction.build_description(**kwargs)
args = instruction.get_instruction_args()
if args and "prompt" in args:
instruction.build_description(prompt=inp.prompt)
is_following = False
for r in all_responses:
if r.strip() and instruction.check_following(r):
is_following = True
break
is_following_list.append(is_following)
return OutputExample(
instruction_id_list=inp.instruction_id_list,
prompt=inp.prompt,
response=response,
follow_all_instructions=all(is_following_list),
follow_instruction_list=is_following_list,
)
def process_results(doc, results):
new_kwargs = []
for item in doc["kwargs"]:
if item["nth_paragraph"]:
item["nth_paragraph"] = int(item["nth_paragraph"])
new_kwargs.append(item)
inp = InputExample(
key=doc["key"],
instruction_id_list=doc["instruction_id_list"],
prompt=doc["prompt"],
kwargs=new_kwargs,
)
response = results[0]
out_strict = test_instruction_following_strict(inp, response)
out_loose = test_instruction_following_loose(inp, response)
return {
"prompt_level_strict_acc": out_strict.follow_all_instructions,
"inst_level_strict_acc": out_strict.follow_instruction_list,
"prompt_level_loose_acc": out_loose.follow_all_instructions,
"inst_level_loose_acc": out_loose.follow_instruction_list,
}
def agg_inst_level_acc(items):
flat_items = [item for sublist in items for item in sublist]
inst_level_acc = sum(flat_items) / len(flat_items)
return inst_level_acc
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
def _get_question(example: dict) -> dict:
# get the question from the ifeval dataset
example["input_question"] = (
eval(
example["input_question"]
.replace("null", "None")
.replace("true", "True")
.replace("false", "False")
)["dialog"][0]["body"]
.replace("Is it True that the first song", "Is it true that the first song")
.replace("Is the following True", "Is the following true")
)
example["input_final_prompts"] = example["input_final_prompts"][0]
return example
original_dataset_name = "wis-k/instruction-following-eval"
ifeval_data = datasets.load_dataset(original_dataset_name, split="train")
ifeval_df = ifeval_data.to_pandas()
ifeval_df = ifeval_df.rename(columns={"prompt": "input_question"})
meta_dataset = dataset.map(_get_question)
meta_df = meta_dataset.to_pandas()
# join the two datasets on the input_question column
joined = meta_df.join(ifeval_df.set_index("input_question"), on="input_question")
joined = joined.rename(columns={"input_final_prompts": "prompt"})
joined = joined.rename(columns={"is_correct": "previous_is_correct"})
joined = datasets.Dataset.from_pandas(joined)
joined = joined.select_columns(
[
"input_question",
"prompt",
"previous_is_correct",
"instruction_id_list",
"kwargs",
"output_prediction_text",
"key",
]
)
joined.rename_column("output_prediction_text", "previous_output_prediction_text")
return joined

View file

@ -0,0 +1,29 @@
task: meta_mmlu_pro_instruct
dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
dataset_name: Llama-3.1-8B-Instruct-evals__mmlu_pro__details
test_split: latest
output_type: generate_until
process_docs: !function utils.process_docs
doc_to_text: !function utils.doc_to_text
doc_to_target: gold
filter_list:
- name: "strict-match"
filter:
- function: "regex"
group_select: -1
regex_pattern: 'best answer is ([A-Z])'
- function: "take_first"
generation_kwargs:
until: []
do_sample: false
temperature: 0
max_gen_toks: 1024
num_fewshot: 0
metric_list:
- metric: exact_match
aggregation: mean
higher_is_better: true
ignore_case: true
ignore_punctuation: true
metadata:
version: 1.0

View file

@ -0,0 +1,35 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import datasets
def doc_to_text(doc: dict) -> str:
return doc["input_final_prompts"][0]
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
def _process_doc(doc: dict) -> dict:
out_doc = {
"problem": doc["input_question"],
"gold": doc["input_correct_responses"][0],
}
return out_doc
dataset = dataset.select_columns(
[
"input_question",
"input_correct_responses",
"input_final_prompts",
"is_correct",
"input_question_hash",
"input_choice_list",
"output_prediction_text",
],
)
dataset = dataset.rename_column("is_correct", "previously_is_correct")
dataset = dataset.map(_process_doc)
return dataset