mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
evals new rebase
This commit is contained in:
parent
89d24a07f0
commit
31c046dcdf
28 changed files with 1141 additions and 87 deletions
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
# from enum import Enum
|
||||
from typing import Any, Dict, Optional, Protocol
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
@ -14,22 +14,12 @@ from llama_models.schema_utils import json_schema_type, webmethod
|
|||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainEvalDatasetColumnType(Enum):
|
||||
dialog = "dialog"
|
||||
text = "text"
|
||||
media = "media"
|
||||
number = "number"
|
||||
json = "json"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainEvalDataset(BaseModel):
|
||||
"""Dataset to be used for training or evaluating language models."""
|
||||
|
||||
# TODO(ashwin): figure out if we need to add an enum for a "dataset type"
|
||||
|
||||
columns: Dict[str, TrainEvalDatasetColumnType]
|
||||
# unique identifier associated with the dataset
|
||||
dataset_id: str
|
||||
content_url: URL
|
||||
metadata: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
|
85
llama_stack/apis/evals/client.py
Normal file
85
llama_stack/apis/evals/client.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
import fire
|
||||
import httpx
|
||||
from termcolor import cprint
|
||||
|
||||
from .evals import * # noqa: F403
|
||||
|
||||
|
||||
class EvaluationClient(Evals):
|
||||
def __init__(self, base_url: str):
|
||||
self.base_url = base_url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def run_evals(
|
||||
self,
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
) -> EvaluateResponse:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/evals/run",
|
||||
json={
|
||||
"model": model,
|
||||
"task": task,
|
||||
"dataset": dataset,
|
||||
"eval_task_config": (
|
||||
json.loads(eval_task_config.json())
|
||||
if eval_task_config
|
||||
else None
|
||||
),
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=3600,
|
||||
)
|
||||
response.raise_for_status()
|
||||
return EvaluateResponse(**response.json())
|
||||
|
||||
|
||||
async def run_main(host: str, port: int):
|
||||
client = EvaluationClient(f"http://{host}:{port}")
|
||||
|
||||
# CustomDataset
|
||||
response = await client.run_evals(
|
||||
model="Llama3.1-8B-Instruct",
|
||||
dataset="mmlu-simple-eval-en",
|
||||
task="mmlu",
|
||||
eval_task_config=EvaluateTaskConfig(
|
||||
n_samples=2,
|
||||
),
|
||||
)
|
||||
cprint(f"evaluate response={response}", "green")
|
||||
|
||||
# Eleuther Eval Task
|
||||
# response = await client.run_evals(
|
||||
# model="Llama3.1-8B-Instruct",
|
||||
# task="meta_mmlu_pro_instruct",
|
||||
# # task="meta_ifeval",
|
||||
# eval_task_config=EvaluateTaskConfig(
|
||||
# n_samples=2,
|
||||
# )
|
||||
# )
|
||||
# cprint(response.metrics["metrics_table"], "red")
|
||||
|
||||
|
||||
def main(host: str, port: int):
|
||||
asyncio.run(run_main(host, port))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
|
@ -4,8 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import List, Protocol
|
||||
from typing import Protocol
|
||||
|
||||
from llama_models.schema_utils import webmethod
|
||||
|
||||
|
@ -13,23 +12,6 @@ from pydantic import BaseModel
|
|||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.dataset import * # noqa: F403
|
||||
from llama_stack.apis.common.training_types import * # noqa: F403
|
||||
|
||||
|
||||
class TextGenerationMetric(Enum):
|
||||
perplexity = "perplexity"
|
||||
rouge = "rouge"
|
||||
bleu = "bleu"
|
||||
|
||||
|
||||
class QuestionAnsweringMetric(Enum):
|
||||
em = "em"
|
||||
f1 = "f1"
|
||||
|
||||
|
||||
class SummarizationMetric(Enum):
|
||||
rouge = "rouge"
|
||||
bleu = "bleu"
|
||||
|
||||
|
||||
class EvaluationJob(BaseModel):
|
||||
|
@ -40,37 +22,21 @@ class EvaluationJobLogStream(BaseModel):
|
|||
job_uuid: str
|
||||
|
||||
|
||||
class EvaluateTaskRequestCommon(BaseModel):
|
||||
job_uuid: str
|
||||
dataset: TrainEvalDataset
|
||||
|
||||
checkpoint: Checkpoint
|
||||
|
||||
# generation params
|
||||
class EvaluateTaskConfig(BaseModel):
|
||||
# num examples to evaluate, evaluate all if None
|
||||
n_samples: Optional[int] = None
|
||||
# model evaluation params
|
||||
sampling_params: SamplingParams = SamplingParams()
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateTextGenerationRequest(EvaluateTaskRequestCommon):
|
||||
"""Request to evaluate text generation."""
|
||||
class EvaluateResponse(BaseModel):
|
||||
"""Scores for evaluation."""
|
||||
|
||||
metrics: List[TextGenerationMetric]
|
||||
metrics: Dict[str, str]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateQuestionAnsweringRequest(EvaluateTaskRequestCommon):
|
||||
"""Request to evaluate question answering."""
|
||||
|
||||
metrics: List[QuestionAnsweringMetric]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateSummarizationRequest(EvaluateTaskRequestCommon):
|
||||
"""Request to evaluate summarization."""
|
||||
|
||||
metrics: List[SummarizationMetric]
|
||||
|
||||
|
||||
class EvaluationJobStatusResponse(BaseModel):
|
||||
job_uuid: str
|
||||
|
||||
|
@ -82,41 +48,44 @@ class EvaluationJobArtifactsResponse(BaseModel):
|
|||
job_uuid: str
|
||||
|
||||
|
||||
class Evaluations(Protocol):
|
||||
@webmethod(route="/evaluate/text_generation/")
|
||||
def evaluate_text_generation(
|
||||
@json_schema_type
|
||||
class EvaluationJobCreateResponse(BaseModel):
|
||||
"""Response to create a evaluation job."""
|
||||
|
||||
job_uuid: str
|
||||
|
||||
|
||||
class Evals(Protocol):
|
||||
@webmethod(route="/evals/run")
|
||||
async def run_evals(
|
||||
self,
|
||||
metrics: List[TextGenerationMetric],
|
||||
) -> EvaluationJob: ...
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
) -> EvaluateResponse: ...
|
||||
|
||||
@webmethod(route="/evaluate/question_answering/")
|
||||
def evaluate_question_answering(
|
||||
self,
|
||||
metrics: List[QuestionAnsweringMetric],
|
||||
) -> EvaluationJob: ...
|
||||
# @webmethod(route="/evals/jobs")
|
||||
# def get_evaluation_jobs(self) -> List[EvaluationJob]: ...
|
||||
|
||||
@webmethod(route="/evaluate/summarization/")
|
||||
def evaluate_summarization(
|
||||
self,
|
||||
metrics: List[SummarizationMetric],
|
||||
) -> EvaluationJob: ...
|
||||
# @webmethod(route="/evals/job/create")
|
||||
# async def create_evaluation_job(
|
||||
# self, model: str, dataset: str, task: str
|
||||
# ) -> EvaluationJob: ...
|
||||
|
||||
@webmethod(route="/evaluate/jobs")
|
||||
def get_evaluation_jobs(self) -> List[EvaluationJob]: ...
|
||||
# @webmethod(route="/evals/job/status")
|
||||
# def get_evaluation_job_status(
|
||||
# self, job_uuid: str
|
||||
# ) -> EvaluationJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/evaluate/job/status")
|
||||
def get_evaluation_job_status(
|
||||
self, job_uuid: str
|
||||
) -> EvaluationJobStatusResponse: ...
|
||||
# # sends SSE stream of logs
|
||||
# @webmethod(route="/evals/job/logs")
|
||||
# def get_evaluation_job_logstream(self, job_uuid: str) -> EvaluationJobLogStream: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/evaluate/job/logs")
|
||||
def get_evaluation_job_logstream(self, job_uuid: str) -> EvaluationJobLogStream: ...
|
||||
# @webmethod(route="/evals/job/cancel")
|
||||
# def cancel_evaluation_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/evaluate/job/cancel")
|
||||
def cancel_evaluation_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/evaluate/job/artifacts")
|
||||
def get_evaluation_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> EvaluationJobArtifactsResponse: ...
|
||||
# @webmethod(route="/evals/job/artifacts")
|
||||
# def get_evaluation_job_artifacts(
|
||||
# self, job_uuid: str
|
||||
# ) -> EvaluationJobArtifactsResponse: ...
|
||||
|
|
5
llama_stack/distribution/registry/__init__.py
Normal file
5
llama_stack/distribution/registry/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
23
llama_stack/distribution/registry/datasets/__init__.py
Normal file
23
llama_stack/distribution/registry/datasets/__init__.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# TODO: make these import config based
|
||||
from .dataset import CustomDataset, HFDataset
|
||||
from .dataset_registry import DatasetRegistry
|
||||
|
||||
DATASETS_REGISTRY = {
|
||||
"mmlu-simple-eval-en": CustomDataset(
|
||||
name="mmlu_eval",
|
||||
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
),
|
||||
"hellaswag": HFDataset(
|
||||
name="hellaswag",
|
||||
url="hf://hellaswag?split=validation&trust_remote_code=True",
|
||||
),
|
||||
}
|
||||
|
||||
for k, v in DATASETS_REGISTRY.items():
|
||||
DatasetRegistry.register(k, v)
|
62
llama_stack/distribution/registry/datasets/dataset.py
Normal file
62
llama_stack/distribution/registry/datasets/dataset.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from urllib.parse import parse_qs, urlparse
|
||||
|
||||
import pandas
|
||||
from datasets import Dataset, load_dataset
|
||||
|
||||
|
||||
class BaseDataset(ABC):
|
||||
def __init__(self, name: str):
|
||||
self.dataset = None
|
||||
self.dataset_id = name
|
||||
self.type = self.__class__.__name__
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.dataset)
|
||||
|
||||
@abstractmethod
|
||||
def load(self):
|
||||
pass
|
||||
|
||||
|
||||
class CustomDataset(BaseDataset):
|
||||
def __init__(self, name, url):
|
||||
super().__init__(name)
|
||||
self.url = url
|
||||
|
||||
def load(self):
|
||||
if self.dataset:
|
||||
return
|
||||
# TODO: better support w/ data url
|
||||
if self.url.endswith(".csv"):
|
||||
df = pandas.read_csv(self.url)
|
||||
elif self.url.endswith(".xlsx"):
|
||||
df = pandas.read_excel(self.url)
|
||||
|
||||
self.dataset = Dataset.from_pandas(df)
|
||||
|
||||
|
||||
class HFDataset(BaseDataset):
|
||||
def __init__(self, name, url):
|
||||
super().__init__(name)
|
||||
self.url = url
|
||||
|
||||
def load(self):
|
||||
if self.dataset:
|
||||
return
|
||||
|
||||
parsed = urlparse(self.url)
|
||||
|
||||
if parsed.scheme != "hf":
|
||||
raise ValueError(f"Unknown HF dataset: {self.url}")
|
||||
|
||||
query = parse_qs(parsed.query)
|
||||
query = {k: v[0] for k, v in query.items()}
|
||||
path = parsed.netloc
|
||||
self.dataset = load_dataset(path, **query)
|
|
@ -0,0 +1,32 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import AbstractSet, Dict
|
||||
|
||||
from .dataset import BaseDataset
|
||||
|
||||
|
||||
class DatasetRegistry:
|
||||
_REGISTRY: Dict[str, BaseDataset] = {}
|
||||
|
||||
@staticmethod
|
||||
def names() -> AbstractSet[str]:
|
||||
return DatasetRegistry._REGISTRY.keys()
|
||||
|
||||
@staticmethod
|
||||
def register(name: str, task: BaseDataset) -> None:
|
||||
if name in DatasetRegistry._REGISTRY:
|
||||
raise ValueError(f"Dataset {name} already exists.")
|
||||
DatasetRegistry._REGISTRY[name] = task
|
||||
|
||||
@staticmethod
|
||||
def get_dataset(name: str) -> BaseDataset:
|
||||
if name not in DatasetRegistry._REGISTRY:
|
||||
raise ValueError(f"Dataset {name} not found.")
|
||||
return DatasetRegistry._REGISTRY[name]
|
||||
|
||||
@staticmethod
|
||||
def reset() -> None:
|
||||
DatasetRegistry._REGISTRY = {}
|
13
llama_stack/distribution/registry/tasks/__init__.py
Normal file
13
llama_stack/distribution/registry/tasks/__init__.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
# TODO: make these import config based
|
||||
from llama_stack.providers.impls.meta_reference.evals.tasks.mmlu_task import MMLUTask
|
||||
from .task_registry import TaskRegistry
|
||||
|
||||
TaskRegistry.register(
|
||||
"mmlu",
|
||||
MMLUTask,
|
||||
)
|
49
llama_stack/distribution/registry/tasks/task.py
Normal file
49
llama_stack/distribution/registry/tasks/task.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class BaseTask(ABC):
|
||||
"""
|
||||
A task represents a single evaluation benchmark, including it's dataset, preprocessing, postprocessing and scoring methods.
|
||||
Base class for all evaluation tasks. Each task needs to implement the following methods:
|
||||
- F1: preprocess_sample(self)
|
||||
- F2: postprocess_sample(self)
|
||||
- F3: score_sample(self)
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._name = self.__class__.__name__
|
||||
self.dataset = dataset
|
||||
|
||||
@abstractmethod
|
||||
def preprocess_sample(self, sample):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def postprocess_sample(self, sample):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def score_sample(self, sample, ground_truth):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def aggregate_results(self, eval_results):
|
||||
raise NotImplementedError()
|
||||
|
||||
def preprocess(self):
|
||||
return [self.preprocess_sample(sample) for sample in self.dataset]
|
||||
|
||||
def postprocess(self, generation):
|
||||
return [self.postprocess_sample(sample) for sample in generation]
|
||||
|
||||
def score(self, postprocessed):
|
||||
return [
|
||||
self.score_sample(sample, ground_truth)
|
||||
for sample, ground_truth in zip(postprocessed, self.dataset)
|
||||
]
|
32
llama_stack/distribution/registry/tasks/task_registry.py
Normal file
32
llama_stack/distribution/registry/tasks/task_registry.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import AbstractSet, Dict
|
||||
|
||||
from .task import BaseTask
|
||||
|
||||
|
||||
class TaskRegistry:
|
||||
_REGISTRY: Dict[str, BaseTask] = {}
|
||||
|
||||
@staticmethod
|
||||
def names() -> AbstractSet[str]:
|
||||
return TaskRegistry._REGISTRY.keys()
|
||||
|
||||
@staticmethod
|
||||
def register(name: str, task: BaseTask) -> None:
|
||||
if name in TaskRegistry._REGISTRY:
|
||||
raise ValueError(f"Task {name} already exists.")
|
||||
TaskRegistry._REGISTRY[name] = task
|
||||
|
||||
@staticmethod
|
||||
def get_task(name: str) -> BaseTask:
|
||||
if name not in TaskRegistry._REGISTRY:
|
||||
raise ValueError(f"Task {name} not found.")
|
||||
return TaskRegistry._REGISTRY[name]
|
||||
|
||||
@staticmethod
|
||||
def reset() -> None:
|
||||
TaskRegistry._REGISTRY = {}
|
|
@ -12,6 +12,7 @@ from llama_stack.providers.datatypes import * # noqa: F403
|
|||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.evals import Evals
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.inspect import Inspect
|
||||
from llama_stack.apis.memory import Memory
|
||||
|
@ -38,6 +39,7 @@ def api_protocol_map() -> Dict[Api, Any]:
|
|||
Api.safety: Safety,
|
||||
Api.shields: Shields,
|
||||
Api.telemetry: Telemetry,
|
||||
Api.evals: Evals,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ class Api(Enum):
|
|||
models = "models"
|
||||
shields = "shields"
|
||||
memory_banks = "memory_banks"
|
||||
evals = "evals"
|
||||
|
||||
# built-in API
|
||||
inspect = "inspect"
|
||||
|
|
19
llama_stack/providers/impls/meta_reference/evals/__init__.py
Normal file
19
llama_stack/providers/impls/meta_reference/evals/__init__.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import MetaReferenceEvalsImplConfig # noqa
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.datatypes import Api, ProviderSpec
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: MetaReferenceEvalsImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
from .evals import MetaReferenceEvalsImpl
|
||||
|
||||
impl = MetaReferenceEvalsImpl(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
10
llama_stack/providers/impls/meta_reference/evals/config.py
Normal file
10
llama_stack/providers/impls/meta_reference/evals/config.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class MetaReferenceEvalsImplConfig(BaseModel): ...
|
71
llama_stack/providers/impls/meta_reference/evals/evals.py
Normal file
71
llama_stack/providers/impls/meta_reference/evals/evals.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.registry.datasets.dataset_registry import DatasetRegistry
|
||||
|
||||
from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
|
||||
|
||||
from .config import MetaReferenceEvalsImplConfig
|
||||
|
||||
|
||||
class MetaReferenceEvalsImpl(Evals):
|
||||
def __init__(self, config: MetaReferenceEvalsImplConfig, inference_api: Inference):
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def run_evals(
|
||||
self,
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
) -> EvaluateResponse:
|
||||
cprint(
|
||||
f"model={model}, dataset={dataset}, task={task}, eval_task_config={eval_task_config}",
|
||||
"red",
|
||||
)
|
||||
if not dataset:
|
||||
raise ValueError("dataset must be specified for mete-reference evals")
|
||||
|
||||
dataset = DatasetRegistry.get_dataset(dataset)
|
||||
dataset.load()
|
||||
|
||||
task_impl = TaskRegistry.get_task(task)(dataset)
|
||||
x1 = task_impl.preprocess()
|
||||
|
||||
# TODO: replace w/ batch inference & async return eval job
|
||||
generation_outputs = []
|
||||
if eval_task_config is None:
|
||||
eval_task_config = EvaluateTaskConfig(n_samples=len(x1))
|
||||
if eval_task_config.n_samples is None or eval_task_config.n_samples > len(x1):
|
||||
eval_task_config.n_samples = len(x1)
|
||||
|
||||
print(
|
||||
f"Eval generation start, generate on {eval_task_config.n_samples} samples"
|
||||
)
|
||||
|
||||
for msg in x1[: eval_task_config.n_samples]:
|
||||
print("generation for msg: ", msg)
|
||||
response = await self.inference_api.chat_completion(
|
||||
model=model,
|
||||
messages=[msg],
|
||||
stream=False,
|
||||
)
|
||||
generation_outputs.append(response.completion_message.content)
|
||||
|
||||
x2 = task_impl.postprocess(generation_outputs)
|
||||
eval_results = task_impl.score(x2)
|
||||
eval_response = task_impl.aggregate_results(eval_results)
|
||||
return eval_response
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -0,0 +1,150 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.distribution.registry.tasks.task import BaseTask
|
||||
|
||||
QUERY_TEMPLATE_MULTICHOICE = """
|
||||
Answer the following multiple choice question and make the answer very simple. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD.
|
||||
|
||||
{Question}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
""".strip()
|
||||
|
||||
MULTILINGUAL_ANSWER_REGEXES = [
|
||||
r"Answer\s*:",
|
||||
r"Answer\s*:", # Korean invisible character
|
||||
r"উত্তর\s*:",
|
||||
r"उत्तर\s*:",
|
||||
r"উত্তরঃ",
|
||||
r"উত্তর\s*:",
|
||||
r"Antwort\s*:",
|
||||
r"답변\s*:",
|
||||
r"정답\s*:",
|
||||
r"답\s*:",
|
||||
r"答案\s*:",
|
||||
r"答案\s*:",
|
||||
r"答\s*:",
|
||||
r"答\s*:",
|
||||
r"答复\s*:",
|
||||
r"答曰\s*:",
|
||||
r"الإجابة:",
|
||||
r"الجواب:",
|
||||
r"إجابة:",
|
||||
r"الإجابة النهائية:",
|
||||
r"الإجابة الصحيحة:",
|
||||
r"الإجابة الصحيحة هي:",
|
||||
r"الإجابة هي:",
|
||||
r"Respuesta\s*:",
|
||||
r"Risposta\s*:",
|
||||
r"答え\s*:",
|
||||
r"答え\s*:",
|
||||
r"回答\s*:",
|
||||
r"回答\s*:",
|
||||
r"解答\s*:",
|
||||
r"Jawaban\s*:",
|
||||
r"Réponse\s*:",
|
||||
r"Resposta\s*:",
|
||||
r"Jibu\s*:",
|
||||
r"Idahun\s*:",
|
||||
r"Ìdáhùn\s*:",
|
||||
r"Idáhùn\s*:",
|
||||
r"Àmọ̀nà\s*:",
|
||||
r"Àdáhùn\s*:",
|
||||
r"Ànúgọ\s*:",
|
||||
r"Àṣàyàn\s*:",
|
||||
]
|
||||
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
|
||||
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
)
|
||||
|
||||
|
||||
def normalize_response(response: str) -> str:
|
||||
"""
|
||||
Normalize the response by removing markdown and LaTeX formatting that may prevent a match.
|
||||
"""
|
||||
|
||||
return (
|
||||
response.replace("**", "")
|
||||
.replace("$\\boxed{", "")
|
||||
.replace("}$", "")
|
||||
.replace("\\$", "")
|
||||
.replace("$\\text{", "")
|
||||
.replace("$", "")
|
||||
.replace("\\mathrm{", "")
|
||||
.replace("\\{", "")
|
||||
.replace("\\text", "")
|
||||
.replace("\\(", "")
|
||||
.replace("\\mathbf{", "")
|
||||
.replace("{", "")
|
||||
.replace("\\boxed", "")
|
||||
)
|
||||
|
||||
|
||||
def normalize_extracted_answer(extracted_answer: str) -> str:
|
||||
return (
|
||||
# In arabic these are the letters used for A-D in multiple choice questions
|
||||
extracted_answer.replace("أ", " A")
|
||||
.replace("ب", " B")
|
||||
.replace("ج", " C")
|
||||
.replace("د", " D")
|
||||
# In Bengali these are the letters used for A-D in multiple choice questions
|
||||
.replace("অ", " A")
|
||||
.replace("ব", " B")
|
||||
.replace("ড", " C")
|
||||
.replace("ঢ", " D")
|
||||
# In Japanese these are the letters sometimes used for A-D in multiple choice questions
|
||||
.replace("A", " A")
|
||||
.replace("B", " B")
|
||||
.replace("C", " C")
|
||||
.replace("D", " D")
|
||||
.strip()
|
||||
)
|
||||
|
||||
|
||||
class MMLUTask(BaseTask):
|
||||
"""
|
||||
MMLU Task.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, *args, **kwargs):
|
||||
super().__init__(dataset, *args, **kwargs)
|
||||
|
||||
def preprocess_sample(self, sample):
|
||||
content = QUERY_TEMPLATE_MULTICHOICE.format(**sample)
|
||||
return {
|
||||
"role": "user",
|
||||
"content": content,
|
||||
}
|
||||
|
||||
def postprocess_sample(self, sample):
|
||||
normalized = normalize_response(sample)
|
||||
return normalized
|
||||
|
||||
def score_sample(self, sample, expected):
|
||||
extracted_answer = None
|
||||
for answer_regex in MULTILINGUAL_ANSWER_REGEXES:
|
||||
regex = MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(answer_regex)
|
||||
match = re.search(regex, sample)
|
||||
if match:
|
||||
extracted_answer = normalize_extracted_answer(match.group(1))
|
||||
break
|
||||
score = (
|
||||
1.0 if extracted_answer and extracted_answer == expected["Answer"] else 0.0
|
||||
)
|
||||
# TODO: generalize this into SingleEvalResult
|
||||
return score
|
||||
|
||||
def aggregate_results(self, eval_results):
|
||||
return EvaluateResponse(
|
||||
metrics={"score": str(sum(eval_results) / len(eval_results))}
|
||||
)
|
5
llama_stack/providers/impls/third_party/evals/__init__.py
vendored
Normal file
5
llama_stack/providers/impls/third_party/evals/__init__.py
vendored
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
19
llama_stack/providers/impls/third_party/evals/eleuther/__init__.py
vendored
Normal file
19
llama_stack/providers/impls/third_party/evals/eleuther/__init__.py
vendored
Normal file
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import EleutherEvalsImplConfig # noqa
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.datatypes import Api, ProviderSpec
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: EleutherEvalsImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
from .eleuther import EleutherEvalsAdapter
|
||||
|
||||
impl = EleutherEvalsAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
10
llama_stack/providers/impls/third_party/evals/eleuther/config.py
vendored
Normal file
10
llama_stack/providers/impls/third_party/evals/eleuther/config.py
vendored
Normal file
|
@ -0,0 +1,10 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class EleutherEvalsImplConfig(BaseModel): ...
|
168
llama_stack/providers/impls/third_party/evals/eleuther/eleuther.py
vendored
Normal file
168
llama_stack/providers/impls/third_party/evals/eleuther/eleuther.py
vendored
Normal file
|
@ -0,0 +1,168 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
import os
|
||||
import random
|
||||
import threading
|
||||
from pathlib import Path
|
||||
|
||||
import lm_eval
|
||||
import tqdm
|
||||
from lm_eval.api.model import LM
|
||||
from lm_eval.evaluator import evaluate, get_task_list
|
||||
from lm_eval.tasks import get_task_dict, TaskManager
|
||||
from termcolor import cprint
|
||||
|
||||
from .config import EleutherEvalsImplConfig
|
||||
|
||||
|
||||
# https://stackoverflow.com/questions/74703727/how-to-call-async-function-from-sync-funcion-and-get-result-while-a-loop-is-alr
|
||||
# We will use another thread wih its own event loop to run the async api within sync function
|
||||
_loop = asyncio.new_event_loop()
|
||||
_thr = threading.Thread(target=_loop.run_forever, name="Async Runner", daemon=True)
|
||||
|
||||
|
||||
class EleutherEvalsWrapper(LM):
|
||||
def __init__(
|
||||
self,
|
||||
inference_api: Inference,
|
||||
model: str,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.inference_api = inference_api
|
||||
self.model = model
|
||||
self.tokenizer = None
|
||||
self.tokenized_requests = False
|
||||
self.kwargs = kwargs
|
||||
|
||||
@property
|
||||
def eot_token_id(self):
|
||||
raise NotImplementedError("Not implemented")
|
||||
|
||||
@property
|
||||
def max_length(self) -> int:
|
||||
return NotImplementedError("Not implemented")
|
||||
|
||||
@property
|
||||
def max_gen_toks(self) -> int:
|
||||
return NotImplementedError("Not implemented")
|
||||
|
||||
@property
|
||||
def batch_size(self):
|
||||
# Isn't used because we override _loglikelihood_tokens
|
||||
raise NotImplementedError("No support for logits.")
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
# Isn't used because we override _loglikelihood_tokens
|
||||
raise NotImplementedError("No support for logits.")
|
||||
|
||||
@property
|
||||
def world_size(self):
|
||||
return 1
|
||||
|
||||
def tok_encode(self, string: str) -> List[int]:
|
||||
return NotImplementedError("Not implemented")
|
||||
|
||||
def tok_decode(self, tokens: List[int]) -> str:
|
||||
return NotImplementedError("Not implemented")
|
||||
|
||||
def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
|
||||
raise NotImplementedError("No support for logits.")
|
||||
|
||||
def _model_call(self, inps):
|
||||
# Isn't used because we override _loglikelihood_tokens
|
||||
raise NotImplementedError()
|
||||
|
||||
def _model_generate(self, context, max_length, eos_token_id):
|
||||
# Isn't used because we override generate_until
|
||||
raise NotImplementedError()
|
||||
|
||||
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
||||
# TODO: implement inference completion with loglikelihood
|
||||
res = []
|
||||
for req in requests:
|
||||
res.append((-random.random(), False))
|
||||
|
||||
return res
|
||||
|
||||
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
||||
raise NotImplementedError("No support for logits.")
|
||||
|
||||
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
||||
res = []
|
||||
if not _thr.is_alive():
|
||||
_thr.start()
|
||||
for req in tqdm.tqdm(requests):
|
||||
chat_completion_coro_fn = self.inference_api.chat_completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": req.args[0],
|
||||
}
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
future = asyncio.run_coroutine_threadsafe(chat_completion_coro_fn, _loop)
|
||||
response = future.result()
|
||||
res.append(response.completion_message.content)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
class EleutherEvalsAdapter(Evals):
|
||||
def __init__(self, config: EleutherEvalsImplConfig, inference_api: Inference):
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def run_evals(
|
||||
self,
|
||||
model: str,
|
||||
task: str,
|
||||
dataset: Optional[str] = None,
|
||||
eval_task_config: Optional[EvaluateTaskConfig] = None,
|
||||
) -> EvaluateResponse:
|
||||
cprint(f"Eleuther Evals: {model} {dataset} {task}", "red")
|
||||
|
||||
eluther_wrapper = EleutherEvalsWrapper(self.inference_api, model)
|
||||
current_dir = Path(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
# custom registry of harness tasks
|
||||
task_manager = TaskManager(
|
||||
include_path=str(current_dir / "tasks"),
|
||||
)
|
||||
|
||||
task_dict = get_task_dict(task, task_manager)
|
||||
cprint(task_dict, "blue")
|
||||
|
||||
task_types = set([t.task.OUTPUT_TYPE for t in get_task_list(task_dict)])
|
||||
cprint(task_types, "cyan")
|
||||
|
||||
output = evaluate(
|
||||
eluther_wrapper,
|
||||
task_dict,
|
||||
limit=eval_task_config.n_samples,
|
||||
)
|
||||
|
||||
formatted_output = lm_eval.utils.make_table(output)
|
||||
|
||||
cprint(formatted_output, "green")
|
||||
|
||||
return EvaluateResponse(
|
||||
metrics={
|
||||
"metrics_table": formatted_output,
|
||||
},
|
||||
)
|
32
llama_stack/providers/impls/third_party/evals/eleuther/tasks/meta_ifeval/ifeval.yaml
vendored
Normal file
32
llama_stack/providers/impls/third_party/evals/eleuther/tasks/meta_ifeval/ifeval.yaml
vendored
Normal file
|
@ -0,0 +1,32 @@
|
|||
task: meta_ifeval
|
||||
dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
|
||||
dataset_name: Llama-3.1-8B-Instruct-evals__ifeval__strict__details
|
||||
output_type: generate_until
|
||||
test_split: latest
|
||||
process_docs: !function utils.process_docs
|
||||
num_fewshot: 0
|
||||
doc_to_text: prompt
|
||||
doc_to_target: 0
|
||||
generation_kwargs:
|
||||
until: []
|
||||
do_sample: false
|
||||
temperature: 0.0
|
||||
max_gen_toks: 1280
|
||||
process_results: !function utils.process_results
|
||||
metric_list:
|
||||
- metric: prompt_level_strict_acc
|
||||
aggregation: mean
|
||||
higher_is_better: true
|
||||
- metric: inst_level_strict_acc
|
||||
aggregation: !function utils.agg_inst_level_acc
|
||||
higher_is_better: true
|
||||
- metric: prompt_level_loose_acc
|
||||
aggregation: mean
|
||||
higher_is_better: true
|
||||
- metric: inst_level_loose_acc
|
||||
aggregation: !function utils.agg_inst_level_acc
|
||||
higher_is_better: true
|
||||
metadata:
|
||||
version: 2.0
|
||||
fewshot_config:
|
||||
sampler: first_n
|
191
llama_stack/providers/impls/third_party/evals/eleuther/tasks/meta_ifeval/utils.py
vendored
Normal file
191
llama_stack/providers/impls/third_party/evals/eleuther/tasks/meta_ifeval/utils.py
vendored
Normal file
|
@ -0,0 +1,191 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import dataclasses
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
import datasets
|
||||
|
||||
from lm_eval.tasks.ifeval import instructions_registry
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class InputExample:
|
||||
key: int
|
||||
instruction_id_list: list[str]
|
||||
prompt: str
|
||||
kwargs: list[Dict[str, Optional[Union[str, int]]]]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class OutputExample:
|
||||
instruction_id_list: list[str]
|
||||
prompt: str
|
||||
response: str
|
||||
follow_all_instructions: bool
|
||||
follow_instruction_list: list[bool]
|
||||
|
||||
|
||||
def test_instruction_following_strict(
|
||||
inp,
|
||||
response,
|
||||
):
|
||||
"""Tests response to see if instructions are followed."""
|
||||
instruction_list = inp.instruction_id_list
|
||||
is_following_list = []
|
||||
|
||||
for index, instruction_id in enumerate(instruction_list):
|
||||
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
|
||||
instruction = instruction_cls(instruction_id)
|
||||
|
||||
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
|
||||
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
|
||||
instruction.build_description(**kwargs)
|
||||
args = instruction.get_instruction_args()
|
||||
if args and "prompt" in args:
|
||||
instruction.build_description(prompt=inp.prompt)
|
||||
|
||||
if response.strip() and instruction.check_following(response):
|
||||
is_following_list.append(True)
|
||||
else:
|
||||
is_following_list.append(False)
|
||||
|
||||
return OutputExample(
|
||||
instruction_id_list=inp.instruction_id_list,
|
||||
prompt=inp.prompt,
|
||||
response=response,
|
||||
follow_all_instructions=all(is_following_list),
|
||||
follow_instruction_list=is_following_list,
|
||||
)
|
||||
|
||||
|
||||
def test_instruction_following_loose(
|
||||
inp,
|
||||
response,
|
||||
):
|
||||
"""Tests response for an upper bound for following instructions."""
|
||||
r = response.split("\n")
|
||||
response_remove_first = "\n".join(r[1:]).strip()
|
||||
response_remove_last = "\n".join(r[:-1]).strip()
|
||||
response_remove_both = "\n".join(r[1:-1]).strip()
|
||||
revised_response = response.replace("*", "")
|
||||
revised_response_remove_first = response_remove_first.replace("*", "")
|
||||
revised_response_remove_last = response_remove_last.replace("*", "")
|
||||
revised_response_remove_both = response_remove_both.replace("*", "")
|
||||
all_responses = [
|
||||
response,
|
||||
revised_response,
|
||||
response_remove_first,
|
||||
response_remove_last,
|
||||
response_remove_both,
|
||||
revised_response_remove_first,
|
||||
revised_response_remove_last,
|
||||
revised_response_remove_both,
|
||||
]
|
||||
instruction_list = inp.instruction_id_list
|
||||
is_following_list = []
|
||||
|
||||
for index, instruction_id in enumerate(instruction_list):
|
||||
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
|
||||
instruction = instruction_cls(instruction_id)
|
||||
|
||||
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
|
||||
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
|
||||
instruction.build_description(**kwargs)
|
||||
args = instruction.get_instruction_args()
|
||||
if args and "prompt" in args:
|
||||
instruction.build_description(prompt=inp.prompt)
|
||||
|
||||
is_following = False
|
||||
for r in all_responses:
|
||||
if r.strip() and instruction.check_following(r):
|
||||
is_following = True
|
||||
break
|
||||
|
||||
is_following_list.append(is_following)
|
||||
|
||||
return OutputExample(
|
||||
instruction_id_list=inp.instruction_id_list,
|
||||
prompt=inp.prompt,
|
||||
response=response,
|
||||
follow_all_instructions=all(is_following_list),
|
||||
follow_instruction_list=is_following_list,
|
||||
)
|
||||
|
||||
|
||||
def process_results(doc, results):
|
||||
new_kwargs = []
|
||||
for item in doc["kwargs"]:
|
||||
if item["nth_paragraph"]:
|
||||
item["nth_paragraph"] = int(item["nth_paragraph"])
|
||||
new_kwargs.append(item)
|
||||
inp = InputExample(
|
||||
key=doc["key"],
|
||||
instruction_id_list=doc["instruction_id_list"],
|
||||
prompt=doc["prompt"],
|
||||
kwargs=new_kwargs,
|
||||
)
|
||||
response = results[0]
|
||||
|
||||
out_strict = test_instruction_following_strict(inp, response)
|
||||
out_loose = test_instruction_following_loose(inp, response)
|
||||
|
||||
return {
|
||||
"prompt_level_strict_acc": out_strict.follow_all_instructions,
|
||||
"inst_level_strict_acc": out_strict.follow_instruction_list,
|
||||
"prompt_level_loose_acc": out_loose.follow_all_instructions,
|
||||
"inst_level_loose_acc": out_loose.follow_instruction_list,
|
||||
}
|
||||
|
||||
|
||||
def agg_inst_level_acc(items):
|
||||
flat_items = [item for sublist in items for item in sublist]
|
||||
inst_level_acc = sum(flat_items) / len(flat_items)
|
||||
return inst_level_acc
|
||||
|
||||
|
||||
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
def _get_question(example: dict) -> dict:
|
||||
# get the question from the ifeval dataset
|
||||
example["input_question"] = (
|
||||
eval(
|
||||
example["input_question"]
|
||||
.replace("null", "None")
|
||||
.replace("true", "True")
|
||||
.replace("false", "False")
|
||||
)["dialog"][0]["body"]
|
||||
.replace("Is it True that the first song", "Is it true that the first song")
|
||||
.replace("Is the following True", "Is the following true")
|
||||
)
|
||||
example["input_final_prompts"] = example["input_final_prompts"][0]
|
||||
return example
|
||||
|
||||
original_dataset_name = "wis-k/instruction-following-eval"
|
||||
ifeval_data = datasets.load_dataset(original_dataset_name, split="train")
|
||||
ifeval_df = ifeval_data.to_pandas()
|
||||
ifeval_df = ifeval_df.rename(columns={"prompt": "input_question"})
|
||||
|
||||
meta_dataset = dataset.map(_get_question)
|
||||
meta_df = meta_dataset.to_pandas()
|
||||
|
||||
# join the two datasets on the input_question column
|
||||
joined = meta_df.join(ifeval_df.set_index("input_question"), on="input_question")
|
||||
joined = joined.rename(columns={"input_final_prompts": "prompt"})
|
||||
joined = joined.rename(columns={"is_correct": "previous_is_correct"})
|
||||
joined = datasets.Dataset.from_pandas(joined)
|
||||
joined = joined.select_columns(
|
||||
[
|
||||
"input_question",
|
||||
"prompt",
|
||||
"previous_is_correct",
|
||||
"instruction_id_list",
|
||||
"kwargs",
|
||||
"output_prediction_text",
|
||||
"key",
|
||||
]
|
||||
)
|
||||
joined.rename_column("output_prediction_text", "previous_output_prediction_text")
|
||||
return joined
|
|
@ -0,0 +1,29 @@
|
|||
task: meta_mmlu_pro_instruct
|
||||
dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
|
||||
dataset_name: Llama-3.1-8B-Instruct-evals__mmlu_pro__details
|
||||
test_split: latest
|
||||
output_type: generate_until
|
||||
process_docs: !function utils.process_docs
|
||||
doc_to_text: !function utils.doc_to_text
|
||||
doc_to_target: gold
|
||||
filter_list:
|
||||
- name: "strict-match"
|
||||
filter:
|
||||
- function: "regex"
|
||||
group_select: -1
|
||||
regex_pattern: 'best answer is ([A-Z])'
|
||||
- function: "take_first"
|
||||
generation_kwargs:
|
||||
until: []
|
||||
do_sample: false
|
||||
temperature: 0
|
||||
max_gen_toks: 1024
|
||||
num_fewshot: 0
|
||||
metric_list:
|
||||
- metric: exact_match
|
||||
aggregation: mean
|
||||
higher_is_better: true
|
||||
ignore_case: true
|
||||
ignore_punctuation: true
|
||||
metadata:
|
||||
version: 1.0
|
35
llama_stack/providers/impls/third_party/evals/eleuther/tasks/meta_mmlu_pro/utils.py
vendored
Normal file
35
llama_stack/providers/impls/third_party/evals/eleuther/tasks/meta_mmlu_pro/utils.py
vendored
Normal file
|
@ -0,0 +1,35 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import datasets
|
||||
|
||||
|
||||
def doc_to_text(doc: dict) -> str:
|
||||
return doc["input_final_prompts"][0]
|
||||
|
||||
|
||||
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
def _process_doc(doc: dict) -> dict:
|
||||
out_doc = {
|
||||
"problem": doc["input_question"],
|
||||
"gold": doc["input_correct_responses"][0],
|
||||
}
|
||||
return out_doc
|
||||
|
||||
dataset = dataset.select_columns(
|
||||
[
|
||||
"input_question",
|
||||
"input_correct_responses",
|
||||
"input_final_prompts",
|
||||
"is_correct",
|
||||
"input_question_hash",
|
||||
"input_choice_list",
|
||||
"output_prediction_text",
|
||||
],
|
||||
)
|
||||
dataset = dataset.rename_column("is_correct", "previously_is_correct")
|
||||
dataset = dataset.map(_process_doc)
|
||||
return dataset
|
42
llama_stack/providers/registry/evals.py
Normal file
42
llama_stack/providers/registry/evals.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.evals,
|
||||
provider_type="meta-reference",
|
||||
pip_packages=[
|
||||
"matplotlib",
|
||||
"pillow",
|
||||
"pandas",
|
||||
"scikit-learn",
|
||||
"datasets",
|
||||
],
|
||||
module="llama_stack.providers.impls.meta_reference.evals",
|
||||
config_class="llama_stack.providers.impls.meta_reference.evals.MetaReferenceEvalsImplConfig",
|
||||
api_dependencies=[
|
||||
Api.inference,
|
||||
],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.evals,
|
||||
provider_type="eleuther",
|
||||
pip_packages=[
|
||||
"lm-eval",
|
||||
],
|
||||
module="llama_stack.providers.impls.third_party.evals.eleuther",
|
||||
config_class="llama_stack.providers.impls.third_party.evals.eleuther.EleutherEvalsImplConfig",
|
||||
api_dependencies=[
|
||||
Api.inference,
|
||||
],
|
||||
),
|
||||
]
|
|
@ -152,7 +152,7 @@ def severity(levelname: str) -> LogSeverity:
|
|||
elif levelname == "INFO":
|
||||
return LogSeverity.INFO
|
||||
elif levelname == "WARNING":
|
||||
return LogSeverity.WARNING
|
||||
return LogSeverity.WARN
|
||||
elif levelname == "ERROR":
|
||||
return LogSeverity.ERROR
|
||||
elif levelname == "CRITICAL":
|
||||
|
|
|
@ -11,7 +11,12 @@ apis:
|
|||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
- evals
|
||||
providers:
|
||||
evals:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
inference:
|
||||
- provider_id: meta-reference
|
||||
provider_type: meta-reference
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue