mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
[LlamaStack][Fireworks] Update client and add unittest (#390)
This commit is contained in:
parent
cfcc0a871c
commit
31c5fbda5e
2 changed files with 73 additions and 48 deletions
|
@ -4,6 +4,8 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
from llama_models.schema_utils import json_schema_type
|
from llama_models.schema_utils import json_schema_type
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
@ -14,7 +16,7 @@ class FireworksImplConfig(BaseModel):
|
||||||
default="https://api.fireworks.ai/inference",
|
default="https://api.fireworks.ai/inference",
|
||||||
description="The URL for the Fireworks server",
|
description="The URL for the Fireworks server",
|
||||||
)
|
)
|
||||||
api_key: str = Field(
|
api_key: Optional[str] = Field(
|
||||||
default="",
|
default=None,
|
||||||
description="The Fireworks.ai API Key",
|
description="The Fireworks.ai API Key",
|
||||||
)
|
)
|
||||||
|
|
|
@ -9,12 +9,11 @@ from typing import AsyncGenerator
|
||||||
from fireworks.client import Fireworks
|
from fireworks.client import Fireworks
|
||||||
|
|
||||||
from llama_models.llama3.api.chat_format import ChatFormat
|
from llama_models.llama3.api.chat_format import ChatFormat
|
||||||
|
|
||||||
from llama_models.llama3.api.datatypes import Message
|
from llama_models.llama3.api.datatypes import Message
|
||||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||||
|
|
||||||
from llama_stack.apis.inference import * # noqa: F403
|
from llama_stack.apis.inference import * # noqa: F403
|
||||||
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||||
from llama_stack.providers.utils.inference.openai_compat import (
|
from llama_stack.providers.utils.inference.openai_compat import (
|
||||||
get_sampling_options,
|
get_sampling_options,
|
||||||
|
@ -32,7 +31,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||||
|
|
||||||
from .config import FireworksImplConfig
|
from .config import FireworksImplConfig
|
||||||
|
|
||||||
|
|
||||||
FIREWORKS_SUPPORTED_MODELS = {
|
FIREWORKS_SUPPORTED_MODELS = {
|
||||||
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
|
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
|
||||||
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
|
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
|
||||||
|
@ -41,10 +39,13 @@ FIREWORKS_SUPPORTED_MODELS = {
|
||||||
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
|
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
|
||||||
"Llama3.2-11B-Vision-Instruct": "fireworks/llama-v3p2-11b-vision-instruct",
|
"Llama3.2-11B-Vision-Instruct": "fireworks/llama-v3p2-11b-vision-instruct",
|
||||||
"Llama3.2-90B-Vision-Instruct": "fireworks/llama-v3p2-90b-vision-instruct",
|
"Llama3.2-90B-Vision-Instruct": "fireworks/llama-v3p2-90b-vision-instruct",
|
||||||
|
"Llama-Guard-3-8B": "fireworks/llama-guard-3-8b",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
class FireworksInferenceAdapter(
|
||||||
|
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||||
|
):
|
||||||
def __init__(self, config: FireworksImplConfig) -> None:
|
def __init__(self, config: FireworksImplConfig) -> None:
|
||||||
ModelRegistryHelper.__init__(
|
ModelRegistryHelper.__init__(
|
||||||
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
|
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
|
||||||
|
@ -53,11 +54,24 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
return
|
pass
|
||||||
|
|
||||||
async def shutdown(self) -> None:
|
async def shutdown(self) -> None:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def _get_client(self) -> Fireworks:
|
||||||
|
fireworks_api_key = None
|
||||||
|
if self.config.api_key is not None:
|
||||||
|
fireworks_api_key = self.config.api_key
|
||||||
|
else:
|
||||||
|
provider_data = self.get_request_provider_data()
|
||||||
|
if provider_data is None or not provider_data.fireworks_api_key:
|
||||||
|
raise ValueError(
|
||||||
|
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
|
||||||
|
)
|
||||||
|
fireworks_api_key = provider_data.fireworks_api_key
|
||||||
|
return Fireworks(api_key=fireworks_api_key)
|
||||||
|
|
||||||
async def completion(
|
async def completion(
|
||||||
self,
|
self,
|
||||||
model: str,
|
model: str,
|
||||||
|
@ -75,28 +89,53 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||||
stream=stream,
|
stream=stream,
|
||||||
logprobs=logprobs,
|
logprobs=logprobs,
|
||||||
)
|
)
|
||||||
client = Fireworks(api_key=self.config.api_key)
|
|
||||||
if stream:
|
if stream:
|
||||||
return self._stream_completion(request, client)
|
return self._stream_completion(request)
|
||||||
else:
|
else:
|
||||||
return await self._nonstream_completion(request, client)
|
return await self._nonstream_completion(request)
|
||||||
|
|
||||||
async def _nonstream_completion(
|
async def _nonstream_completion(
|
||||||
self, request: CompletionRequest, client: Fireworks
|
self, request: CompletionRequest
|
||||||
) -> CompletionResponse:
|
) -> CompletionResponse:
|
||||||
params = await self._get_params(request)
|
params = await self._get_params(request)
|
||||||
r = await client.completion.acreate(**params)
|
r = await self._get_client().completion.acreate(**params)
|
||||||
return process_completion_response(r, self.formatter)
|
return process_completion_response(r, self.formatter)
|
||||||
|
|
||||||
async def _stream_completion(
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
self, request: CompletionRequest, client: Fireworks
|
|
||||||
) -> AsyncGenerator:
|
|
||||||
params = await self._get_params(request)
|
params = await self._get_params(request)
|
||||||
|
|
||||||
stream = client.completion.acreate(**params)
|
# Wrapper for async generator similar
|
||||||
|
async def _to_async_generator():
|
||||||
|
stream = self._get_client().completion.create(**params)
|
||||||
|
for chunk in stream:
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
stream = _to_async_generator()
|
||||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||||
yield chunk
|
yield chunk
|
||||||
|
|
||||||
|
def _build_options(
|
||||||
|
self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat
|
||||||
|
) -> dict:
|
||||||
|
options = get_sampling_options(sampling_params)
|
||||||
|
options.setdefault("max_tokens", 512)
|
||||||
|
|
||||||
|
if fmt:
|
||||||
|
if fmt.type == ResponseFormatType.json_schema.value:
|
||||||
|
options["response_format"] = {
|
||||||
|
"type": "json_object",
|
||||||
|
"schema": fmt.json_schema,
|
||||||
|
}
|
||||||
|
elif fmt.type == ResponseFormatType.grammar.value:
|
||||||
|
options["response_format"] = {
|
||||||
|
"type": "grammar",
|
||||||
|
"grammar": fmt.bnf,
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown response format {fmt.type}")
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
async def chat_completion(
|
async def chat_completion(
|
||||||
self,
|
self,
|
||||||
model: str,
|
model: str,
|
||||||
|
@ -121,32 +160,35 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||||
logprobs=logprobs,
|
logprobs=logprobs,
|
||||||
)
|
)
|
||||||
|
|
||||||
client = Fireworks(api_key=self.config.api_key)
|
|
||||||
if stream:
|
if stream:
|
||||||
return self._stream_chat_completion(request, client)
|
return self._stream_chat_completion(request)
|
||||||
else:
|
else:
|
||||||
return await self._nonstream_chat_completion(request, client)
|
return await self._nonstream_chat_completion(request)
|
||||||
|
|
||||||
async def _nonstream_chat_completion(
|
async def _nonstream_chat_completion(
|
||||||
self, request: ChatCompletionRequest, client: Fireworks
|
self, request: ChatCompletionRequest
|
||||||
) -> ChatCompletionResponse:
|
) -> ChatCompletionResponse:
|
||||||
params = await self._get_params(request)
|
params = await self._get_params(request)
|
||||||
if "messages" in params:
|
if "messages" in params:
|
||||||
r = await client.chat.completions.acreate(**params)
|
r = await self._get_client().chat.completions.acreate(**params)
|
||||||
else:
|
else:
|
||||||
r = await client.completion.acreate(**params)
|
r = await self._get_client().completion.acreate(**params)
|
||||||
return process_chat_completion_response(r, self.formatter)
|
return process_chat_completion_response(r, self.formatter)
|
||||||
|
|
||||||
async def _stream_chat_completion(
|
async def _stream_chat_completion(
|
||||||
self, request: ChatCompletionRequest, client: Fireworks
|
self, request: ChatCompletionRequest
|
||||||
) -> AsyncGenerator:
|
) -> AsyncGenerator:
|
||||||
params = await self._get_params(request)
|
params = await self._get_params(request)
|
||||||
|
|
||||||
|
async def _to_async_generator():
|
||||||
if "messages" in params:
|
if "messages" in params:
|
||||||
stream = client.chat.completions.acreate(**params)
|
stream = await self._get_client().chat.completions.acreate(**params)
|
||||||
else:
|
else:
|
||||||
stream = client.completion.acreate(**params)
|
stream = self._get_client().completion.create(**params)
|
||||||
|
for chunk in stream:
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
stream = _to_async_generator()
|
||||||
async for chunk in process_chat_completion_stream_response(
|
async for chunk in process_chat_completion_stream_response(
|
||||||
stream, self.formatter
|
stream, self.formatter
|
||||||
):
|
):
|
||||||
|
@ -167,41 +209,22 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||||
request, self.formatter
|
request, self.formatter
|
||||||
)
|
)
|
||||||
elif isinstance(request, CompletionRequest):
|
else:
|
||||||
assert (
|
assert (
|
||||||
not media_present
|
not media_present
|
||||||
), "Fireworks does not support media for Completion requests"
|
), "Fireworks does not support media for Completion requests"
|
||||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown request type {type(request)}")
|
|
||||||
|
|
||||||
# Fireworks always prepends with BOS
|
# Fireworks always prepends with BOS
|
||||||
if "prompt" in input_dict:
|
if "prompt" in input_dict:
|
||||||
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
||||||
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
||||||
|
|
||||||
options = get_sampling_options(request.sampling_params)
|
|
||||||
options.setdefault("max_tokens", 512)
|
|
||||||
|
|
||||||
if fmt := request.response_format:
|
|
||||||
if fmt.type == ResponseFormatType.json_schema.value:
|
|
||||||
options["response_format"] = {
|
|
||||||
"type": "json_object",
|
|
||||||
"schema": fmt.json_schema,
|
|
||||||
}
|
|
||||||
elif fmt.type == ResponseFormatType.grammar.value:
|
|
||||||
options["response_format"] = {
|
|
||||||
"type": "grammar",
|
|
||||||
"grammar": fmt.bnf,
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown response format {fmt.type}")
|
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"model": self.map_to_provider_model(request.model),
|
"model": self.map_to_provider_model(request.model),
|
||||||
**input_dict,
|
**input_dict,
|
||||||
"stream": request.stream,
|
"stream": request.stream,
|
||||||
**options,
|
**self._build_options(request.sampling_params, request.response_format),
|
||||||
}
|
}
|
||||||
|
|
||||||
async def embeddings(
|
async def embeddings(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue