combine datatypes.py and endpoints.py into api.py

This commit is contained in:
Ashwin Bharambe 2024-08-26 12:55:28 -07:00
parent c1078a60e7
commit 3230af4910
30 changed files with 436 additions and 546 deletions

View file

@ -4,5 +4,4 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .datatypes import * # noqa: F401 F403
from .endpoints import * # noqa: F401 F403
from .api import * # noqa: F401 F403

View file

@ -4,13 +4,34 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Protocol
from enum import Enum
from typing import Any, Dict, Optional, Protocol
from llama_models.llama3.api.datatypes import URL
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from .datatypes import * # noqa: F403
@json_schema_type
class TrainEvalDatasetColumnType(Enum):
dialog = "dialog"
text = "text"
media = "media"
number = "number"
json = "json"
@json_schema_type
class TrainEvalDataset(BaseModel):
"""Dataset to be used for training or evaluating language models."""
# TODO(ashwin): figure out if we need to add an enum for a "dataset type"
columns: Dict[str, TrainEvalDatasetColumnType]
content_url: URL
metadata: Optional[Dict[str, Any]] = None
@json_schema_type

View file

@ -1,34 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, Optional
from llama_models.llama3.api.datatypes import URL
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel
@json_schema_type
class TrainEvalDatasetColumnType(Enum):
dialog = "dialog"
text = "text"
media = "media"
number = "number"
json = "json"
@json_schema_type
class TrainEvalDataset(BaseModel):
"""Dataset to be used for training or evaluating language models."""
# TODO(ashwin): figure out if we need to add an enum for a "dataset type"
columns: Dict[str, TrainEvalDatasetColumnType]
content_url: URL
metadata: Optional[Dict[str, Any]] = None