Stable update

This commit is contained in:
Justin 2025-10-01 14:33:15 -07:00
parent 064602bc97
commit 3236f82223

View file

@ -5,14 +5,21 @@
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from openai import OpenAI
import asyncio
from typing import Any
from openai import AsyncOpenAI
from llama_stack.apis.inference import *
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
from llama_stack.apis.inference import (
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.common.content_types import InterleavedContentItem
from llama_stack.apis.models import Model, ModelType
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
convert_message_to_openai_dict,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -23,16 +30,16 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
completion_request_to_prompt,
interleaved_content_as_str,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import RunpodImplConfig
MODEL_ENTRIES = []
class RunpodInferenceAdapter(
OpenAIMixin,
ModelRegistryHelper,
Inference,
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
):
"""
Adapter for RunPod's OpenAI-compatible API endpoints.
@ -41,44 +48,96 @@ class RunpodInferenceAdapter(
"""
def __init__(self, config: RunpodImplConfig) -> None:
OpenAIMixin.__init__(self)
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
self.config = config
def get_api_key(self) -> str:
"""Get API key for OpenAI client."""
return self.config.api_token
def get_base_url(self) -> str:
"""Get base URL for OpenAI client."""
return self.config.url
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
def get_extra_client_params(self) -> dict[str, Any]:
"""Override to add RunPod-specific client parameters if needed."""
return {}
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
):
"""Override to add RunPod-specific stream_options requirement."""
if stream and not stream_options:
stream_options = {"include_usage": True}
return await super().openai_chat_completion(
model=model,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
async def register_model(self, model: Model) -> Model:
"""
Register any model with the runpod provider_id.
Pass-through registration - accepts any model string that the RunPod endpoint serves.
No static model validation since RunPod endpoints can serve arbitrary vLLM models.
YAML Configuration Example:
models:
Pass-through registration - accepts any model that the RunPod endpoint serves.
In the .yaml file the model: can be defined as example
models:
- metadata: {}
model_id: runpod/qwen/qwen3-8b
model_type: llm
provider_id: runpod
provider_model_id: qwen/qwen3-8b
- metadata: {}
model_id: runpod/deepcogito/cogito-v2-preview-llama-70B
model_type: llm
provider_id: runpod
provider_model_id: deepcogito/cogito-v2-preview-llama-70B
The provider strips 'runpod/' prefix before API calls:
"runpod/qwen/qwen3-8b" -> "qwen/qwen3-8b"
model_id: qwen3-32b-awq
model_type: llm
provider_id: runpod
provider_model_id: Qwen/Qwen3-32B-AWQ
"""
if model.provider_id == "runpod":
logger.info(
f"Registering model: {model.identifier} -> {model.provider_resource_id}"
)
return model
return await super().register_model(model)
return model
async def completion(
self,
@ -88,12 +147,16 @@ class RunpodInferenceAdapter(
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
# Resolve model_id to provider_resource_id
model = await self.model_store.get_model(model_id)
provider_model_id = model.provider_resource_id or model_id
request = CompletionRequest(
model=model_id,
model=provider_model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
@ -101,12 +164,10 @@ class RunpodInferenceAdapter(
logprobs=logprobs,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream:
return self._stream_completion(request, client)
return self._stream_completion(request, self.client)
else:
return await self._nonstream_completion(request, client)
return await self._nonstream_completion(request, self.client)
async def chat_completion(
self,
@ -120,13 +181,17 @@ class RunpodInferenceAdapter(
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
"""Process chat completion requests using RunPod's OpenAI-compatible API."""
if sampling_params is None:
sampling_params = SamplingParams()
# Resolve model_id to provider_resource_id
model = await self.model_store.get_model(model_id)
provider_model_id = model.provider_resource_id or model_id
request = ChatCompletionRequest(
model=model_id,
model=provider_model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
@ -135,49 +200,34 @@ class RunpodInferenceAdapter(
tool_config=tool_config,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream:
return self._stream_chat_completion(request, client)
return self._stream_chat_completion(request, self.client)
else:
return await self._nonstream_chat_completion(request, client)
return await self._nonstream_chat_completion(request, self.client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> ChatCompletionResponse:
params = await self._get_chat_params(request)
r = client.chat.completions.create(**params)
# Make actual RunPod API call
r = await client.chat.completions.create(**params)
return process_chat_completion_response(r, request)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> AsyncGenerator:
self, request: ChatCompletionRequest, client: AsyncOpenAI
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
params = await self._get_chat_params(request)
async def _to_async_generator():
s = client.chat.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
# Make actual RunPod API call for streaming
stream = await client.chat.completions.create(**params)
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_chat_params(self, request: ChatCompletionRequest) -> dict:
"""Convert Llama Stack request to RunPod API parameters."""
messages = [
{"role": msg.role, "content": msg.content} for msg in request.messages
]
# Resolve model_id to provider_resource_id
model_obj = await self.model_store.get_model(request.model)
model = model_obj.provider_resource_id or request.model
if model.startswith("runpod/"):
model = model.replace("runpod/", "", 1)
messages = [await convert_message_to_openai_dict(m, download=False) for m in request.messages]
params = {
"model": model,
"model": request.model,
"messages": messages,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
@ -189,37 +239,27 @@ class RunpodInferenceAdapter(
return params
async def _nonstream_completion(
self, request: CompletionRequest, client: OpenAI
self, request: CompletionRequest, client: AsyncOpenAI
) -> CompletionResponse:
params = await self._get_completion_params(request)
r = client.completions.create(**params)
# Make actual RunPod API call
r = await client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(
self, request: CompletionRequest, client: OpenAI
self, request: CompletionRequest, client: AsyncOpenAI
) -> AsyncGenerator:
params = await self._get_completion_params(request)
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
# Make actual RunPod API call for streaming
stream = await client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
async def _get_completion_params(self, request: CompletionRequest) -> dict:
# Resolve model_id to provider_resource_id
model_obj = await self.model_store.get_model(request.model)
model = model_obj.provider_resource_id or request.model
if model.startswith("runpod/"):
model = model.replace("runpod/", "", 1)
"""Convert Llama Stack request to RunPod API parameters."""
params = {
"model": model,
"prompt": completion_request_to_prompt(request),
"model": request.model,
"prompt": await completion_request_to_prompt(request),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
@ -241,16 +281,11 @@ class RunpodInferenceAdapter(
model_obj = await self.model_store.get_model(model_id)
model = model_obj.provider_resource_id or model_id
if model.startswith("runpod/"):
model = model.replace("runpod/", "", 1)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
kwargs = {}
if output_dimension:
kwargs["dimensions"] = output_dimension
response = client.embeddings.create(
response = await self.client.embeddings.create(
model=model,
input=[interleaved_content_as_str(content) for content in contents],
**kwargs,
@ -269,19 +304,14 @@ class RunpodInferenceAdapter(
) -> OpenAIEmbeddingsResponse:
# Resolve model_id to provider_resource_id
model_obj = await self.model_store.get_model(model)
model_stripped = model_obj.provider_resource_id or model
provider_model_id = model_obj.provider_resource_id or model
if model_stripped.startswith("runpod/"):
model_stripped = model_stripped.replace("runpod/", "", 1)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
response = client.embeddings.create(
model=model_stripped,
response = await self.client.embeddings.create(
model=provider_model_id,
input=input,
encoding_format=encoding_format,
dimensions=dimensions,
user=user,
)
return response
return response