mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat(agents): add agent naming functionality (#1922)
# What does this PR do? Allow users to name an agent and use the name in telemetry instead of relying on randomly generated agent_ids. This improves the developer experience by making it easier to find specific agents in telemetry logs. Closes #1832 ## Test Plan - Added tests to verify the agent name is properly stored and retrieved - Ran `uv run -- pytest -v tests/integration/telemetry/test_telemetry.py::test_agent_name_filtering` from the root of the project and made sure the tests pass - Ran `uv run -- pytest -v tests/integration/telemetry/test_telemetry.py::test_agent_query_spans` to verify existing code without agent names still works correctly ## Use Example ``` agent = Agent( llama_stack_client, model=text_model_id, name="CustomerSupportAgent", # New parameter instructions="You are a helpful customer support assistant" ) session_id = agent.create_session(f"test-session-{uuid4()}") ``` ## Implementation Notes - Agent names are optional string parameters with no additional validation - Names are not required to be unique - multiple agents can have the same name - The agent_id remains the unique identifier for an agent --------- Co-authored-by: raghotham <raghotham@gmail.com>
This commit is contained in:
parent
5b8e75b392
commit
326cbba579
5 changed files with 104 additions and 5 deletions
19
docs/_static/llama-stack-spec.html
vendored
19
docs/_static/llama-stack-spec.html
vendored
|
@ -5221,17 +5221,25 @@
|
|||
"default": 10
|
||||
},
|
||||
"model": {
|
||||
"type": "string"
|
||||
"type": "string",
|
||||
"description": "The model identifier to use for the agent"
|
||||
},
|
||||
"instructions": {
|
||||
"type": "string"
|
||||
"type": "string",
|
||||
"description": "The system instructions for the agent"
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Optional name for the agent, used in telemetry and identification"
|
||||
},
|
||||
"enable_session_persistence": {
|
||||
"type": "boolean",
|
||||
"default": false
|
||||
"default": false,
|
||||
"description": "Whether to persist session data"
|
||||
},
|
||||
"response_format": {
|
||||
"$ref": "#/components/schemas/ResponseFormat"
|
||||
"$ref": "#/components/schemas/ResponseFormat",
|
||||
"description": "Optional response format configuration"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -5239,7 +5247,8 @@
|
|||
"model",
|
||||
"instructions"
|
||||
],
|
||||
"title": "AgentConfig"
|
||||
"title": "AgentConfig",
|
||||
"description": "Configuration for an agent."
|
||||
},
|
||||
"AgentTool": {
|
||||
"oneOf": [
|
||||
|
|
10
docs/_static/llama-stack-spec.yaml
vendored
10
docs/_static/llama-stack-spec.yaml
vendored
|
@ -3686,18 +3686,28 @@ components:
|
|||
default: 10
|
||||
model:
|
||||
type: string
|
||||
description: >-
|
||||
The model identifier to use for the agent
|
||||
instructions:
|
||||
type: string
|
||||
description: The system instructions for the agent
|
||||
name:
|
||||
type: string
|
||||
description: >-
|
||||
Optional name for the agent, used in telemetry and identification
|
||||
enable_session_persistence:
|
||||
type: boolean
|
||||
default: false
|
||||
description: Whether to persist session data
|
||||
response_format:
|
||||
$ref: '#/components/schemas/ResponseFormat'
|
||||
description: Optional response format configuration
|
||||
additionalProperties: false
|
||||
required:
|
||||
- model
|
||||
- instructions
|
||||
title: AgentConfig
|
||||
description: Configuration for an agent.
|
||||
AgentTool:
|
||||
oneOf:
|
||||
- type: string
|
||||
|
|
|
@ -225,8 +225,18 @@ class AgentConfigCommon(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AgentConfig(AgentConfigCommon):
|
||||
"""Configuration for an agent.
|
||||
|
||||
:param model: The model identifier to use for the agent
|
||||
:param instructions: The system instructions for the agent
|
||||
:param name: Optional name for the agent, used in telemetry and identification
|
||||
:param enable_session_persistence: Optional flag indicating whether session data has to be persisted
|
||||
:param response_format: Optional response format configuration
|
||||
"""
|
||||
|
||||
model: str
|
||||
instructions: str
|
||||
name: Optional[str] = None
|
||||
enable_session_persistence: Optional[bool] = False
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
|
||||
|
|
|
@ -178,6 +178,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
span.set_attribute("request", request.model_dump_json())
|
||||
turn_id = str(uuid.uuid4())
|
||||
span.set_attribute("turn_id", turn_id)
|
||||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
|
||||
await self._initialize_tools(request.toolgroups)
|
||||
async for chunk in self._run_turn(request, turn_id):
|
||||
|
@ -190,6 +192,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("request", request.model_dump_json())
|
||||
span.set_attribute("turn_id", request.turn_id)
|
||||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
|
||||
await self._initialize_tools()
|
||||
async for chunk in self._run_turn(request):
|
||||
|
@ -498,6 +502,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
stop_reason = None
|
||||
|
||||
async with tracing.span("inference") as span:
|
||||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
async for chunk in await self.inference_api.chat_completion(
|
||||
self.agent_config.model,
|
||||
input_messages,
|
||||
|
|
|
@ -115,6 +115,70 @@ def test_agent_simple(llama_stack_client_with_mocked_inference, agent_config):
|
|||
assert "I can't" in logs_str
|
||||
|
||||
|
||||
def test_agent_name(llama_stack_client, text_model_id):
|
||||
agent_name = f"test-agent-{uuid4()}"
|
||||
|
||||
try:
|
||||
agent = Agent(
|
||||
llama_stack_client,
|
||||
model=text_model_id,
|
||||
instructions="You are a helpful assistant",
|
||||
name=agent_name,
|
||||
)
|
||||
except TypeError:
|
||||
agent = Agent(
|
||||
llama_stack_client,
|
||||
model=text_model_id,
|
||||
instructions="You are a helpful assistant",
|
||||
)
|
||||
return
|
||||
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
agent.create_turn(
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Give me a sentence that contains the word: hello",
|
||||
}
|
||||
],
|
||||
session_id=session_id,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
all_spans = []
|
||||
for span in llama_stack_client.telemetry.query_spans(
|
||||
attribute_filters=[
|
||||
{"key": "session_id", "op": "eq", "value": session_id},
|
||||
],
|
||||
attributes_to_return=["input", "output", "agent_name", "agent_id", "session_id"],
|
||||
):
|
||||
all_spans.append(span.attributes)
|
||||
|
||||
agent_name_spans = []
|
||||
for span in llama_stack_client.telemetry.query_spans(
|
||||
attribute_filters=[],
|
||||
attributes_to_return=["agent_name"],
|
||||
):
|
||||
if "agent_name" in span.attributes:
|
||||
agent_name_spans.append(span.attributes)
|
||||
|
||||
agent_logs = []
|
||||
for span in llama_stack_client.telemetry.query_spans(
|
||||
attribute_filters=[
|
||||
{"key": "agent_name", "op": "eq", "value": agent_name},
|
||||
],
|
||||
attributes_to_return=["input", "output", "agent_name"],
|
||||
):
|
||||
if "output" in span.attributes and span.attributes["output"] != "no shields":
|
||||
agent_logs.append(span.attributes)
|
||||
|
||||
assert len(agent_logs) == 1
|
||||
assert agent_logs[0]["agent_name"] == agent_name
|
||||
assert "Give me a sentence that contains the word: hello" in agent_logs[0]["input"]
|
||||
assert "hello" in agent_logs[0]["output"].lower()
|
||||
|
||||
|
||||
def test_tool_config(llama_stack_client_with_mocked_inference, agent_config):
|
||||
common_params = dict(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue