mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
mmlu scoring fn
This commit is contained in:
parent
b946afddc0
commit
3322aa9ee4
5 changed files with 138 additions and 14 deletions
|
@ -13,21 +13,14 @@ from llama_stack.apis.datasetio import * # noqa: F403
|
||||||
from llama_stack.apis.datasets import * # noqa: F403
|
from llama_stack.apis.datasets import * # noqa: F403
|
||||||
from llama_stack.apis.inference.inference import Inference
|
from llama_stack.apis.inference.inference import Inference
|
||||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||||
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.equality_scoring_fn import (
|
|
||||||
EqualityScoringFn,
|
|
||||||
)
|
|
||||||
|
|
||||||
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.llm_as_judge_scoring_fn import (
|
|
||||||
LlmAsJudgeScoringFn,
|
|
||||||
)
|
|
||||||
|
|
||||||
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.subset_of_scoring_fn import (
|
|
||||||
SubsetOfScoringFn,
|
|
||||||
)
|
|
||||||
|
|
||||||
from .config import MetaReferenceScoringConfig
|
from .config import MetaReferenceScoringConfig
|
||||||
|
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
|
||||||
|
from .scoring_fn.llm_as_judge_scoring_fn import LlmAsJudgeScoringFn
|
||||||
|
from .scoring_fn.regex_parser_scoring_fn import RegexParserScoringFn
|
||||||
|
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
|
||||||
|
|
||||||
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn]
|
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn]
|
||||||
|
|
||||||
LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
|
LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
|
||||||
|
|
||||||
|
@ -65,6 +58,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||||
for impl in self.scoring_fn_id_impls.values()
|
for impl in self.scoring_fn_id_impls.values()
|
||||||
for fn_def in impl.get_supported_scoring_fn_defs()
|
for fn_def in impl.get_supported_scoring_fn_defs()
|
||||||
]
|
]
|
||||||
|
print("!!!", scoring_fn_defs_list)
|
||||||
|
|
||||||
for f in scoring_fn_defs_list:
|
for f in scoring_fn_defs_list:
|
||||||
assert f.identifier.startswith(
|
assert f.identifier.startswith(
|
||||||
|
|
|
@ -11,6 +11,5 @@ from llama_stack.apis.scoring_functions import ScoringFnDef
|
||||||
equality = ScoringFnDef(
|
equality = ScoringFnDef(
|
||||||
identifier="meta-reference::equality",
|
identifier="meta-reference::equality",
|
||||||
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
|
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
|
||||||
parameters=[],
|
|
||||||
return_type=NumberType(),
|
return_type=NumberType(),
|
||||||
)
|
)
|
||||||
|
|
|
@ -26,7 +26,6 @@ Total rating:
|
||||||
llm_as_judge_8b_correctness = ScoringFnDef(
|
llm_as_judge_8b_correctness = ScoringFnDef(
|
||||||
identifier="meta-reference::llm_as_judge_8b_correctness",
|
identifier="meta-reference::llm_as_judge_8b_correctness",
|
||||||
description="Llm As Judge Scoring Function",
|
description="Llm As Judge Scoring Function",
|
||||||
parameters=[],
|
|
||||||
return_type=NumberType(),
|
return_type=NumberType(),
|
||||||
params=LLMAsJudgeScoringFnParams(
|
params=LLMAsJudgeScoringFnParams(
|
||||||
prompt_template=JUDGE_PROMPT,
|
prompt_template=JUDGE_PROMPT,
|
||||||
|
|
|
@ -0,0 +1,69 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||||
|
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||||
|
from llama_stack.apis.common.type_system import NumberType
|
||||||
|
|
||||||
|
MULTILINGUAL_ANSWER_REGEXES = [
|
||||||
|
r"Answer\s*:",
|
||||||
|
r"Answer\s*:", # Korean invisible character
|
||||||
|
r"উত্তর\s*:",
|
||||||
|
r"उत्तर\s*:",
|
||||||
|
r"উত্তরঃ",
|
||||||
|
r"উত্তর\s*:",
|
||||||
|
r"Antwort\s*:",
|
||||||
|
r"답변\s*:",
|
||||||
|
r"정답\s*:",
|
||||||
|
r"답\s*:",
|
||||||
|
r"答案\s*:",
|
||||||
|
r"答案\s*:",
|
||||||
|
r"答\s*:",
|
||||||
|
r"答\s*:",
|
||||||
|
r"答复\s*:",
|
||||||
|
r"答曰\s*:",
|
||||||
|
r"الإجابة:",
|
||||||
|
r"الجواب:",
|
||||||
|
r"إجابة:",
|
||||||
|
r"الإجابة النهائية:",
|
||||||
|
r"الإجابة الصحيحة:",
|
||||||
|
r"الإجابة الصحيحة هي:",
|
||||||
|
r"الإجابة هي:",
|
||||||
|
r"Respuesta\s*:",
|
||||||
|
r"Risposta\s*:",
|
||||||
|
r"答え\s*:",
|
||||||
|
r"答え\s*:",
|
||||||
|
r"回答\s*:",
|
||||||
|
r"回答\s*:",
|
||||||
|
r"解答\s*:",
|
||||||
|
r"Jawaban\s*:",
|
||||||
|
r"Réponse\s*:",
|
||||||
|
r"Resposta\s*:",
|
||||||
|
r"Jibu\s*:",
|
||||||
|
r"Idahun\s*:",
|
||||||
|
r"Ìdáhùn\s*:",
|
||||||
|
r"Idáhùn\s*:",
|
||||||
|
r"Àmọ̀nà\s*:",
|
||||||
|
r"Àdáhùn\s*:",
|
||||||
|
r"Ànúgọ\s*:",
|
||||||
|
r"Àṣàyàn\s*:",
|
||||||
|
]
|
||||||
|
|
||||||
|
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
|
||||||
|
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||||
|
)
|
||||||
|
|
||||||
|
regex_parser_multiple_choice_answer = ScoringFnDef(
|
||||||
|
identifier="meta-reference::regex_parser_multiple_choice_answer",
|
||||||
|
description="Extract answer from response matching Answer: [the_answer_letter], and compare with expected result",
|
||||||
|
return_type=NumberType(),
|
||||||
|
params=RegexParserScoringFnParams(
|
||||||
|
parsing_regexes=[
|
||||||
|
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
|
||||||
|
for x in MULTILINGUAL_ANSWER_REGEXES
|
||||||
|
],
|
||||||
|
),
|
||||||
|
)
|
|
@ -0,0 +1,63 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
import re
|
||||||
|
|
||||||
|
from .base_scoring_fn import BaseScoringFn
|
||||||
|
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||||
|
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||||
|
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||||
|
from .common import aggregate_accuracy
|
||||||
|
|
||||||
|
from .fn_defs.regex_parser_multiple_choice_answer import (
|
||||||
|
regex_parser_multiple_choice_answer,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class RegexParserScoringFn(BaseScoringFn):
|
||||||
|
"""
|
||||||
|
A scoring_fn that parses answer from generated response according to context and check match with expected_answer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs) -> None:
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.supported_fn_defs_registry = {
|
||||||
|
regex_parser_multiple_choice_answer.identifier: regex_parser_multiple_choice_answer,
|
||||||
|
}
|
||||||
|
|
||||||
|
async def score_row(
|
||||||
|
self,
|
||||||
|
input_row: Dict[str, Any],
|
||||||
|
scoring_fn_identifier: Optional[str] = None,
|
||||||
|
) -> ScoringResultRow:
|
||||||
|
assert (
|
||||||
|
scoring_fn_identifier is not None
|
||||||
|
), "Scoring function identifier not found."
|
||||||
|
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||||
|
assert (
|
||||||
|
fn_def.params is not None
|
||||||
|
and fn_def.params.type == ScoringConfigType.regex_parser.value
|
||||||
|
), f"RegexParserScoringFnParams not found for {fn_def}."
|
||||||
|
|
||||||
|
expected_answer = input_row["expected_answer"]
|
||||||
|
generated_answer = input_row["generated_answer"]
|
||||||
|
|
||||||
|
# parse answer according to regex
|
||||||
|
parsed_answer = None
|
||||||
|
for regex in fn_def.params.parsing_regex:
|
||||||
|
match = re.search(regex, generated_answer)
|
||||||
|
if match:
|
||||||
|
parsed_answer = match.group(1)
|
||||||
|
break
|
||||||
|
|
||||||
|
score = 1.0 if parsed_answer and parsed_answer == expected_answer else 0.0
|
||||||
|
return {
|
||||||
|
"score": score,
|
||||||
|
}
|
||||||
|
|
||||||
|
async def aggregate(
|
||||||
|
self, scoring_results: List[ScoringResultRow]
|
||||||
|
) -> Dict[str, Any]:
|
||||||
|
return aggregate_accuracy(scoring_results)
|
Loading…
Add table
Add a link
Reference in a new issue