mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
codegen updates
This commit is contained in:
parent
293d40f91c
commit
334a05071c
2 changed files with 18 additions and 8 deletions
|
@ -49,22 +49,22 @@ The deployed platform includes the NIM Proxy microservice, which is the service
|
|||
### Datasetio API: NeMo Data Store
|
||||
The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint.
|
||||
|
||||
See the {repopath}`NVIDIA Datasetio docs::llama_stack/providers/remote/datasetio/nvidia/README.md` for supported features and example usage.
|
||||
See the [NVIDIA Datasetio docs](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/datasetio/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Eval API: NeMo Evaluator
|
||||
The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the {repopath}`NVIDIA Eval docs::llama_stack/providers/remote/eval/nvidia/README.md` for supported features and example usage.
|
||||
See the [NVIDIA Eval docs](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/eval/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Post-Training API: NeMo Customizer
|
||||
The NeMo Customizer microservice supports fine-tuning models. You can reference {repopath}`this list of supported models::llama_stack/providers/remote/post_training/nvidia/models.py` that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
The NeMo Customizer microservice supports fine-tuning models. You can reference [this list of supported models](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/post_training/nvidia/models.py) that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the {repopath}`NVIDIA Post-Training docs::llama_stack/providers/remote/post_training/nvidia/README.md` for supported features and example usage.
|
||||
See the [NVIDIA Post-Training docs](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/post_training/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Safety API: NeMo Guardrails
|
||||
The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the {repopath}`NVIDIA Safety docs::llama_stack/providers/remote/safety/nvidia/README.md` for supported features and example usage.
|
||||
See the [NVIDIA Safety docs](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/safety/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
## Deploying models
|
||||
In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`.
|
||||
|
@ -138,4 +138,4 @@ llama stack run ./run.yaml \
|
|||
```
|
||||
|
||||
## Example Notebooks
|
||||
For examples of how to use the NVIDIA Distribution to run inference, fine-tune, evaluate, and run safety checks on your LLMs, you can reference the example notebooks in {repopath}`docs/notebooks/nvidia`.
|
||||
For examples of how to use the NVIDIA Distribution to run inference, fine-tune, evaluate, and run safety checks on your LLMs, you can reference the example notebooks in [docs/notebooks/nvidia](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks/nvidia).
|
||||
|
|
|
@ -229,11 +229,21 @@ def generate_provider_docs(progress, provider_spec: Any, api_name: str) -> str:
|
|||
|
||||
# Handle multiline default values and escape problematic characters for MDX
|
||||
if "\n" in default:
|
||||
default = default.replace("\n", "<br/>").replace("<", "<").replace(">", ">").replace("{", "{").replace("}", "}")
|
||||
default = (
|
||||
default.replace("\n", "<br/>")
|
||||
.replace("<", "<")
|
||||
.replace(">", ">")
|
||||
.replace("{", "{")
|
||||
.replace("}", "}")
|
||||
)
|
||||
else:
|
||||
default = default.replace("<", "<").replace(">", ">").replace("{", "{").replace("}", "}")
|
||||
default = (
|
||||
default.replace("<", "<").replace(">", ">").replace("{", "{").replace("}", "}")
|
||||
)
|
||||
|
||||
description_text = field_info["description"] or ""
|
||||
# Escape curly braces in description text for MDX compatibility
|
||||
description_text = description_text.replace("{", "{").replace("}", "}")
|
||||
|
||||
md_lines.append(f"| `{field_name}` | `{field_type}` | {required} | {default} | {description_text} |")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue