address comments

This commit is contained in:
Botao Chen 2024-12-12 14:05:40 -08:00
parent d7d19dc0e5
commit 3378c100f6

View file

@ -16,6 +16,7 @@ from typing import Any, Callable, Dict, List
import torch
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.common.type_system import * # noqa
from llama_models.datatypes import Model
from llama_models.sku_list import resolve_model
from llama_stack.apis.common.type_system import ParamType
@ -31,18 +32,29 @@ class ColumnName(Enum):
text = "text"
MODEL_CONFIGS: Dict[str, Dict[str, Any]] = {
"Llama3.2-3B-Instruct": {
"model_definition": lora_llama3_2_3b,
"tokenizer_type": llama3_tokenizer,
"checkpoint_type": "LLAMA3_2",
},
"Llama-3-8B-Instruct": {
"model_definition": lora_llama3_8b,
"tokenizer_type": llama3_tokenizer,
"checkpoint_type": "LLAMA3",
},
}
class ModelConfig(BaseModel):
model_definition: Any
tokenizer_type: Any
checkpoint_type: str
class ModelConfigs(BaseModel):
Llama3_2_3B_Instruct: ModelConfig
Llama_3_8B_Instruct: ModelConfig
MODEL_CONFIGS = ModelConfigs(
Llama3_2_3B_Instruct=ModelConfig(
model_definition=lora_llama3_2_3b,
tokenizer_type=llama3_tokenizer,
checkpoint_type="LLAMA3_2",
),
Llama_3_8B_Instruct=ModelConfig(
model_definition=lora_llama3_8b,
tokenizer_type=llama3_tokenizer,
checkpoint_type="LLAMA3",
),
)
EXPECTED_DATASET_SCHEMA: Dict[str, List[Dict[str, ParamType]]] = {
"alpaca": [
@ -68,20 +80,38 @@ BuildLoraModelCallable = Callable[..., torch.nn.Module]
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
def _modify_model_id(model_id: str) -> str:
return model_id.replace("-", "_").replace(".", "_")
def _validate_model_id(model_id: str) -> Model:
model = resolve_model(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
if model is None or not hasattr(MODEL_CONFIGS, modified_model_id):
raise ValueError(f"Model {model_id} is not supported.")
return model
async def get_model_definition(
model_id: str,
) -> BuildLoraModelCallable:
model = resolve_model(model_id)
if model is None or model.core_model_id.value not in MODEL_CONFIGS:
raise ValueError(f"Model {model_id} is not supported.")
return MODEL_CONFIGS[model.core_model_id.value]["model_definition"]
model = _validate_model_id(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
model_config = getattr(MODEL_CONFIGS, modified_model_id)
if not hasattr(model_config, "model_definition"):
raise ValueError(f"Model {model_id} does not have model definition.")
return model_config.model_definition
async def get_tokenizer_type(
model_id: str,
) -> BuildTokenizerCallable:
model = resolve_model(model_id)
return MODEL_CONFIGS[model.core_model_id.value]["tokenizer_type"]
model = _validate_model_id(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
model_config = getattr(MODEL_CONFIGS, modified_model_id)
if not hasattr(model_config, "tokenizer_type"):
raise ValueError(f"Model {model_id} does not have tokenizer_type.")
return model_config.tokenizer_type
async def get_checkpointer_model_type(
@ -91,8 +121,12 @@ async def get_checkpointer_model_type(
checkpointer model type is used in checkpointer for some special treatment on some specific model types
For example, llama3.2 model tied weights (https://github.com/pytorch/torchtune/blob/main/torchtune/training/checkpointing/_checkpointer.py#L1041)
"""
model = resolve_model(model_id)
return MODEL_CONFIGS[model.core_model_id.value]["checkpoint_type"]
model = _validate_model_id(model_id)
modified_model_id = _modify_model_id(model.core_model_id.value)
model_config = getattr(MODEL_CONFIGS, modified_model_id)
if not hasattr(model_config, "checkpoint_type"):
raise ValueError(f"Model {model_id} does not have checkpoint_type.")
return model_config.checkpoint_type
async def validate_input_dataset_schema(