Merge branch 'main' into fix-vector

This commit is contained in:
Francisco Arceo 2025-11-08 23:43:14 -05:00 committed by GitHub
commit 33950adaf2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
1730 changed files with 121537 additions and 382737 deletions

View file

@ -5,7 +5,7 @@ omit =
*/llama_stack/templates/*
.venv/*
*/llama_stack/cli/scripts/*
*/llama_stack/ui/*
*/llama_stack_ui/*
*/llama_stack/distribution/ui/*
*/llama_stack/strong_typing/*
*/llama_stack/env.py

View file

@ -72,7 +72,8 @@ runs:
echo "New recordings detected, committing and pushing"
git add tests/integration/
git commit -m "Recordings update from CI (suite: ${{ inputs.suite }})"
git commit -m "Recordings update from CI (setup: ${{ inputs.setup }}, suite: ${{ inputs.suite }})"
git fetch origin ${{ github.ref_name }}
git rebase origin/${{ github.ref_name }}
echo "Rebased successfully"
@ -88,6 +89,8 @@ runs:
run: |
# Ollama logs (if ollama container exists)
sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log 2>&1 || true
# vllm logs (if vllm container exists)
sudo docker logs vllm > vllm-${{ inputs.inference-mode }}.log 2>&1 || true
# Note: distro container logs are now dumped in integration-tests.sh before container is removed
- name: Upload logs

View file

@ -11,13 +11,14 @@ runs:
--name vllm \
-p 8000:8000 \
--privileged=true \
quay.io/higginsd/vllm-cpu:65393ee064 \
quay.io/higginsd/vllm-cpu:65393ee064-qwen3 \
--host 0.0.0.0 \
--port 8000 \
--enable-auto-tool-choice \
--tool-call-parser llama3_json \
--model /root/.cache/Llama-3.2-1B-Instruct \
--served-model-name meta-llama/Llama-3.2-1B-Instruct
--tool-call-parser hermes \
--model /root/.cache/Qwen3-0.6B \
--served-model-name Qwen/Qwen3-0.6B \
--max-model-len 8192
# Wait for vllm to be ready
echo "Waiting for vllm to be ready..."

View file

@ -22,7 +22,7 @@ updates:
prefix: chore(python-deps)
- package-ecosystem: npm
directory: "/llama_stack/ui"
directory: "/llama_stack_ui"
schedule:
interval: "weekly"
day: "saturday"

View file

@ -18,6 +18,7 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl
| Python Package Build Test | [python-build-test.yml](python-build-test.yml) | Test building the llama-stack PyPI project |
| Integration Tests (Record) | [record-integration-tests.yml](record-integration-tests.yml) | Run the integration test suite from tests/integration |
| Check semantic PR titles | [semantic-pr.yml](semantic-pr.yml) | Ensure that PR titles follow the conventional commit spec |
| Stainless SDK Builds | [stainless-builds.yml](stainless-builds.yml) | Build Stainless SDK from OpenAPI spec changes |
| Close stale issues and PRs | [stale_bot.yml](stale_bot.yml) | Run the Stale Bot action |
| Test External Providers Installed via Module | [test-external-provider-module.yml](test-external-provider-module.yml) | Test External Provider installation via Python module |
| Test External API and Providers | [test-external.yml](test-external.yml) | Test the External API and Provider mechanisms |

View file

@ -14,7 +14,7 @@ on:
paths:
- 'distributions/**'
- 'src/llama_stack/**'
- '!src/llama_stack/ui/**'
- '!src/llama_stack_ui/**'
- 'tests/integration/**'
- 'uv.lock'
- 'pyproject.toml'

View file

@ -14,7 +14,7 @@ on:
types: [opened, synchronize, reopened]
paths:
- 'src/llama_stack/**'
- '!src/llama_stack/ui/**'
- '!src/llama_stack_ui/**'
- 'tests/**'
- 'uv.lock'
- 'pyproject.toml'
@ -23,10 +23,10 @@ on:
- '.github/actions/setup-test-environment/action.yml'
- '.github/actions/run-and-record-tests/action.yml'
- 'scripts/integration-tests.sh'
- 'scripts/generate_ci_matrix.py'
schedule:
# If changing the cron schedule, update the provider in the test-matrix job
- cron: '0 0 * * *' # (test latest client) Daily at 12 AM UTC
- cron: '1 0 * * 0' # (test vllm) Weekly on Sunday at 1 AM UTC
workflow_dispatch:
inputs:
test-all-client-versions:
@ -44,8 +44,27 @@ concurrency:
cancel-in-progress: true
jobs:
generate-matrix:
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
- name: Generate test matrix
id: set-matrix
run: |
# Generate matrix from CI_MATRIX in tests/integration/suites.py
# Supports schedule-based and manual input overrides
MATRIX=$(PYTHONPATH=. python3 scripts/generate_ci_matrix.py \
--schedule "${{ github.event.schedule }}" \
--test-setup "${{ github.event.inputs.test-setup }}")
echo "matrix=$MATRIX" >> $GITHUB_OUTPUT
echo "Generated matrix: $MATRIX"
run-replay-mode-tests:
needs: generate-matrix
runs-on: ubuntu-latest
name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client-type, matrix.config.setup, matrix.python-version, matrix.client-version, matrix.config.suite) }}
@ -56,18 +75,9 @@ jobs:
# Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }}
# Define (setup, suite) pairs - they are always matched and cannot be independent
# Weekly schedule (Sun 1 AM): vllm+base
# Input test-setup=ollama-vision: ollama-vision+vision
# Default (including test-setup=ollama): ollama+base, ollama-vision+vision, gpt+responses
config: >-
${{
github.event.schedule == '1 0 * * 0'
&& fromJSON('[{"setup": "vllm", "suite": "base"}]')
|| github.event.inputs.test-setup == 'ollama-vision'
&& fromJSON('[{"setup": "ollama-vision", "suite": "vision"}]')
|| fromJSON('[{"setup": "ollama", "suite": "base"}, {"setup": "ollama-vision", "suite": "vision"}, {"setup": "gpt", "suite": "responses"}]')
}}
# Test configurations: Generated from CI_MATRIX in tests/integration/suites.py
# See scripts/generate_ci_matrix.py for generation logic
config: ${{ fromJSON(needs.generate-matrix.outputs.matrix).include }}
steps:
- name: Checkout repository

View file

@ -13,7 +13,7 @@ on:
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'src/llama_stack/**'
- '!src/llama_stack/ui/**'
- '!src/llama_stack_ui/**'
- 'tests/integration/vector_io/**'
- 'uv.lock'
- 'pyproject.toml'

View file

@ -43,14 +43,14 @@ jobs:
with:
node-version: '20'
cache: 'npm'
cache-dependency-path: 'src/llama_stack/ui/'
cache-dependency-path: 'src/llama_stack_ui/'
- name: Set up uv
uses: astral-sh/setup-uv@85856786d1ce8acfbcc2f13a5f3fbd6b938f9f41 # v7.1.2
- name: Install npm dependencies
run: npm ci
working-directory: src/llama_stack/ui
working-directory: src/llama_stack_ui
- name: Install pre-commit
run: python -m pip install pre-commit
@ -165,3 +165,14 @@ jobs:
echo "::error::Full mypy failed. Reproduce locally with 'uv run pre-commit run mypy-full --hook-stage manual --all-files'."
fi
exit $status
- name: Check if any unused recordings
run: |
set -e
PYTHONPATH=$PWD uv run ./scripts/cleanup_recordings.py --delete
changes=$(git status --short tests/integration | grep 'recordings' || true)
if [ -n "$changes" ]; then
echo "::error::Unused integration recordings detected. Run 'PYTHONPATH=$(pwd) uv run ./scripts/cleanup_recordings.py --delete' locally and commit the deletions."
echo "$changes"
exit 1
fi

View file

@ -10,7 +10,7 @@ on:
branches:
- main
paths-ignore:
- 'src/llama_stack/ui/**'
- 'src/llama_stack_ui/**'
jobs:
build:

110
.github/workflows/stainless-builds.yml vendored Normal file
View file

@ -0,0 +1,110 @@
name: Stainless SDK Builds
run-name: Build Stainless SDK from OpenAPI spec changes
# This workflow uses pull_request_target, which allows it to run on pull requests
# from forks with access to secrets. This is safe because the workflow definition
# comes from the base branch (trusted), and the action only reads OpenAPI spec
# files without executing any code from the PR.
on:
pull_request_target:
types:
- opened
- synchronize
- reopened
- closed
paths:
- "client-sdks/stainless/**"
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number }}
cancel-in-progress: true
env:
# Stainless organization name.
STAINLESS_ORG: llamastack
# Stainless project name.
STAINLESS_PROJECT: llama-stack-client
# Path to your OpenAPI spec.
OAS_PATH: ./client-sdks/stainless/openapi.yml
# Path to your Stainless config. Optional; only provide this if you prefer
# to maintain the ground truth Stainless config in your own repo.
CONFIG_PATH: ./client-sdks/stainless/config.yml
# When to fail the job based on build conclusion.
# Options: "never" | "note" | "warning" | "error" | "fatal".
FAIL_ON: error
# In your repo secrets, configure:
# - STAINLESS_API_KEY: a Stainless API key, which you can generate on the
# Stainless organization dashboard
jobs:
preview:
if: github.event.action != 'closed'
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
# Checkout the PR's code to access the OpenAPI spec and config files.
# This is necessary to read the spec/config from the PR (including from forks).
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
with:
repository: ${{ github.event.pull_request.head.repo.full_name }}
ref: ${{ github.event.pull_request.head.sha }}
fetch-depth: 2
# This action builds preview SDKs from the OpenAPI spec changes and
# posts/updates a comment on the PR with build results and links to the preview.
- name: Run preview builds
uses: stainless-api/upload-openapi-spec-action/preview@32823b096b4319c53ee948d702d9052873af485f # 1.6.0
with:
stainless_api_key: ${{ secrets.STAINLESS_API_KEY }}
org: ${{ env.STAINLESS_ORG }}
project: ${{ env.STAINLESS_PROJECT }}
oas_path: ${{ env.OAS_PATH }}
config_path: ${{ env.CONFIG_PATH }}
fail_on: ${{ env.FAIL_ON }}
base_sha: ${{ github.event.pull_request.base.sha }}
base_ref: ${{ github.event.pull_request.base.ref }}
head_sha: ${{ github.event.pull_request.head.sha }}
merge:
if: github.event.action == 'closed' && github.event.pull_request.merged == true
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
# Checkout the PR's code to access the OpenAPI spec and config files.
# This is necessary to read the spec/config from the PR (including from forks).
- name: Checkout repository
uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0
with:
repository: ${{ github.event.pull_request.head.repo.full_name }}
ref: ${{ github.event.pull_request.head.sha }}
fetch-depth: 2
# Note that this only merges in changes that happened on the last build on
# preview/${{ github.head_ref }}. It's possible that there are OAS/config
# changes that haven't been built, if the preview-sdk job didn't finish
# before this step starts. In theory we want to wait for all builds
# against preview/${{ github.head_ref }} to complete, but assuming that
# the preview-sdk job happens before the PR merge, it should be fine.
- name: Run merge build
uses: stainless-api/upload-openapi-spec-action/merge@32823b096b4319c53ee948d702d9052873af485f # 1.6.0
with:
stainless_api_key: ${{ secrets.STAINLESS_API_KEY }}
org: ${{ env.STAINLESS_ORG }}
project: ${{ env.STAINLESS_PROJECT }}
oas_path: ${{ env.OAS_PATH }}
config_path: ${{ env.CONFIG_PATH }}
fail_on: ${{ env.FAIL_ON }}
base_sha: ${{ github.event.pull_request.base.sha }}
base_ref: ${{ github.event.pull_request.base.ref }}
head_sha: ${{ github.event.pull_request.head.sha }}

View file

@ -9,7 +9,7 @@ on:
branches: [ main ]
paths:
- 'src/llama_stack/**'
- '!src/llama_stack/ui/**'
- '!src/llama_stack_ui/**'
- 'tests/integration/**'
- 'uv.lock'
- 'pyproject.toml'

View file

@ -8,7 +8,7 @@ on:
pull_request:
branches: [ main ]
paths:
- 'src/llama_stack/ui/**'
- 'src/llama_stack_ui/**'
- '.github/workflows/ui-unit-tests.yml' # This workflow
workflow_dispatch:
@ -33,22 +33,22 @@ jobs:
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: 'src/llama_stack/ui/package-lock.json'
cache-dependency-path: 'src/llama_stack_ui/package-lock.json'
- name: Install dependencies
working-directory: src/llama_stack/ui
working-directory: src/llama_stack_ui
run: npm ci
- name: Run linting
working-directory: src/llama_stack/ui
working-directory: src/llama_stack_ui
run: npm run lint
- name: Run format check
working-directory: src/llama_stack/ui
working-directory: src/llama_stack_ui
run: npm run format:check
- name: Run unit tests
working-directory: src/llama_stack/ui
working-directory: src/llama_stack_ui
env:
CI: true

View file

@ -13,7 +13,7 @@ on:
- 'release-[0-9]+.[0-9]+.x'
paths:
- 'src/llama_stack/**'
- '!src/llama_stack/ui/**'
- '!src/llama_stack_ui/**'
- 'tests/unit/**'
- 'uv.lock'
- 'pyproject.toml'

View file

@ -161,7 +161,7 @@ repos:
name: Format & Lint UI
entry: bash ./scripts/run-ui-linter.sh
language: system
files: ^src/llama_stack/ui/.*\.(ts|tsx)$
files: ^src/llama_stack_ui/.*\.(ts|tsx)$
pass_filenames: false
require_serial: true

View file

@ -1,8 +1,8 @@
These are the source-of-truth configuration files used to generate the Stainless client SDKs via Stainless.
- `openapi.yml`: this is the OpenAPI specification for the Llama Stack API.
- `openapi.stainless.yml`: this is the Stainless _configuration_ which instructs Stainless how to generate the client SDKs.
- `config.yml`: this is the Stainless _configuration_ which instructs Stainless how to generate the client SDKs.
A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files.
These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `run_openapi_generator.sh` script.
These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `run_openapi_generator.sh` script.

View file

@ -0,0 +1,521 @@
# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json
organization:
# Name of your organization or company, used to determine the name of the client
# and headings.
name: llama-stack-client
docs: https://llama-stack.readthedocs.io/en/latest/
contact: llamastack@meta.com
security:
- {}
- BearerAuth: []
security_schemes:
BearerAuth:
type: http
scheme: bearer
# `targets` define the output targets and their customization options, such as
# whether to emit the Node SDK and what it's package name should be.
targets:
node:
package_name: llama-stack-client
production_repo: llamastack/llama-stack-client-typescript
publish:
npm: false
python:
package_name: llama_stack_client
production_repo: llamastack/llama-stack-client-python
options:
use_uv: true
publish:
pypi: true
project_name: llama_stack_client
kotlin:
reverse_domain: com.llama_stack_client.api
production_repo: null
publish:
maven: false
go:
package_name: llama-stack-client
production_repo: llamastack/llama-stack-client-go
options:
enable_v2: true
back_compat_use_shared_package: false
# `client_settings` define settings for the API client, such as extra constructor
# arguments (used for authentication), retry behavior, idempotency, etc.
client_settings:
default_env_prefix: LLAMA_STACK_CLIENT
opts:
api_key:
type: string
read_env: LLAMA_STACK_CLIENT_API_KEY
auth: { security_scheme: BearerAuth }
nullable: true
# `environments` are a map of the name of the environment (e.g. "sandbox",
# "production") to the corresponding url to use.
environments:
production: http://any-hosted-llama-stack.com
# `pagination` defines [pagination schemes] which provides a template to match
# endpoints and generate next-page and auto-pagination helpers in the SDKs.
pagination:
- name: datasets_iterrows
type: offset
request:
dataset_id:
type: string
start_index:
type: integer
x-stainless-pagination-property:
purpose: offset_count_param
limit:
type: integer
response:
data:
type: array
items:
type: object
next_index:
type: integer
x-stainless-pagination-property:
purpose: offset_count_start_field
- name: openai_cursor_page
type: cursor
request:
limit:
type: integer
after:
type: string
x-stainless-pagination-property:
purpose: next_cursor_param
response:
data:
type: array
items: {}
has_more:
type: boolean
last_id:
type: string
x-stainless-pagination-property:
purpose: next_cursor_field
# `resources` define the structure and organziation for your API, such as how
# methods and models are grouped together and accessed. See the [configuration
# guide] for more information.
#
# [configuration guide]:
# https://app.stainlessapi.com/docs/guides/configure#resources
resources:
$shared:
models:
interleaved_content_item: InterleavedContentItem
interleaved_content: InterleavedContent
param_type: ParamType
safety_violation: SafetyViolation
sampling_params: SamplingParams
scoring_result: ScoringResult
system_message: SystemMessage
query_result: RAGQueryResult
document: RAGDocument
query_config: RAGQueryConfig
toolgroups:
models:
tool_group: ToolGroup
list_tool_groups_response: ListToolGroupsResponse
methods:
register: post /v1/toolgroups
get: get /v1/toolgroups/{toolgroup_id}
list: get /v1/toolgroups
unregister: delete /v1/toolgroups/{toolgroup_id}
tools:
methods:
get: get /v1/tools/{tool_name}
list:
endpoint: get /v1/tools
paginated: false
tool_runtime:
models:
tool_def: ToolDef
tool_invocation_result: ToolInvocationResult
methods:
list_tools:
endpoint: get /v1/tool-runtime/list-tools
paginated: false
invoke_tool: post /v1/tool-runtime/invoke
subresources:
rag_tool:
methods:
insert: post /v1/tool-runtime/rag-tool/insert
query: post /v1/tool-runtime/rag-tool/query
responses:
models:
response_object_stream: OpenAIResponseObjectStream
response_object: OpenAIResponseObject
methods:
create:
type: http
endpoint: post /v1/responses
streaming:
stream_event_model: responses.response_object_stream
param_discriminator: stream
retrieve: get /v1/responses/{response_id}
list:
type: http
endpoint: get /v1/responses
delete:
type: http
endpoint: delete /v1/responses/{response_id}
subresources:
input_items:
methods:
list:
type: http
endpoint: get /v1/responses/{response_id}/input_items
prompts:
models:
prompt: Prompt
list_prompts_response: ListPromptsResponse
methods:
create: post /v1/prompts
list:
endpoint: get /v1/prompts
paginated: false
retrieve: get /v1/prompts/{prompt_id}
update: post /v1/prompts/{prompt_id}
delete: delete /v1/prompts/{prompt_id}
set_default_version: post /v1/prompts/{prompt_id}/set-default-version
subresources:
versions:
methods:
list:
endpoint: get /v1/prompts/{prompt_id}/versions
paginated: false
conversations:
models:
conversation_object: Conversation
methods:
create:
type: http
endpoint: post /v1/conversations
retrieve: get /v1/conversations/{conversation_id}
update:
type: http
endpoint: post /v1/conversations/{conversation_id}
delete:
type: http
endpoint: delete /v1/conversations/{conversation_id}
subresources:
items:
methods:
get:
type: http
endpoint: get /v1/conversations/{conversation_id}/items/{item_id}
list:
type: http
endpoint: get /v1/conversations/{conversation_id}/items
create:
type: http
endpoint: post /v1/conversations/{conversation_id}/items
inspect:
models:
healthInfo: HealthInfo
providerInfo: ProviderInfo
routeInfo: RouteInfo
versionInfo: VersionInfo
methods:
health: get /v1/health
version: get /v1/version
embeddings:
models:
create_embeddings_response: OpenAIEmbeddingsResponse
methods:
create: post /v1/embeddings
chat:
models:
chat_completion_chunk: OpenAIChatCompletionChunk
subresources:
completions:
methods:
create:
type: http
endpoint: post /v1/chat/completions
streaming:
stream_event_model: chat.chat_completion_chunk
param_discriminator: stream
list:
type: http
endpoint: get /v1/chat/completions
retrieve:
type: http
endpoint: get /v1/chat/completions/{completion_id}
completions:
methods:
create:
type: http
endpoint: post /v1/completions
streaming:
param_discriminator: stream
vector_io:
models:
queryChunksResponse: QueryChunksResponse
methods:
insert: post /v1/vector-io/insert
query: post /v1/vector-io/query
vector_stores:
models:
vector_store: VectorStoreObject
list_vector_stores_response: VectorStoreListResponse
vector_store_delete_response: VectorStoreDeleteResponse
vector_store_search_response: VectorStoreSearchResponsePage
methods:
create: post /v1/vector_stores
list:
endpoint: get /v1/vector_stores
retrieve: get /v1/vector_stores/{vector_store_id}
update: post /v1/vector_stores/{vector_store_id}
delete: delete /v1/vector_stores/{vector_store_id}
search: post /v1/vector_stores/{vector_store_id}/search
subresources:
files:
models:
vector_store_file: VectorStoreFileObject
methods:
list: get /v1/vector_stores/{vector_store_id}/files
retrieve: get /v1/vector_stores/{vector_store_id}/files/{file_id}
update: post /v1/vector_stores/{vector_store_id}/files/{file_id}
delete: delete /v1/vector_stores/{vector_store_id}/files/{file_id}
create: post /v1/vector_stores/{vector_store_id}/files
content: get /v1/vector_stores/{vector_store_id}/files/{file_id}/content
file_batches:
models:
vector_store_file_batches: VectorStoreFileBatchObject
list_vector_store_files_in_batch_response: VectorStoreFilesListInBatchResponse
methods:
create: post /v1/vector_stores/{vector_store_id}/file_batches
retrieve: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}
list_files: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files
cancel: post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel
models:
models:
model: OpenAIModel
list_models_response: OpenAIListModelsResponse
methods:
list:
endpoint: get /v1/models
paginated: false
retrieve: get /v1/models/{model_id}
register: post /v1/models
unregister: delete /v1/models/{model_id}
subresources:
openai:
methods:
list:
endpoint: get /v1/models
paginated: false
providers:
models:
list_providers_response: ListProvidersResponse
methods:
list:
endpoint: get /v1/providers
paginated: false
retrieve: get /v1/providers/{provider_id}
routes:
models:
list_routes_response: ListRoutesResponse
methods:
list:
endpoint: get /v1/inspect/routes
paginated: false
moderations:
models:
create_response: ModerationObject
methods:
create: post /v1/moderations
safety:
models:
run_shield_response: RunShieldResponse
methods:
run_shield: post /v1/safety/run-shield
shields:
models:
shield: Shield
list_shields_response: ListShieldsResponse
methods:
retrieve: get /v1/shields/{identifier}
list:
endpoint: get /v1/shields
paginated: false
register: post /v1/shields
delete: delete /v1/shields/{identifier}
scoring:
methods:
score: post /v1/scoring/score
score_batch: post /v1/scoring/score-batch
scoring_functions:
methods:
retrieve: get /v1/scoring-functions/{scoring_fn_id}
list:
endpoint: get /v1/scoring-functions
paginated: false
register: post /v1/scoring-functions
models:
scoring_fn: ScoringFn
scoring_fn_params: ScoringFnParams
list_scoring_functions_response: ListScoringFunctionsResponse
files:
methods:
create: post /v1/files
list: get /v1/files
retrieve: get /v1/files/{file_id}
delete: delete /v1/files/{file_id}
content: get /v1/files/{file_id}/content
models:
file: OpenAIFileObject
list_files_response: ListOpenAIFileResponse
delete_file_response: OpenAIFileDeleteResponse
alpha:
subresources:
inference:
methods:
rerank: post /v1alpha/inference/rerank
post_training:
models:
algorithm_config: AlgorithmConfig
post_training_job: PostTrainingJob
list_post_training_jobs_response: ListPostTrainingJobsResponse
methods:
preference_optimize: post /v1alpha/post-training/preference-optimize
supervised_fine_tune: post /v1alpha/post-training/supervised-fine-tune
subresources:
job:
methods:
artifacts: get /v1alpha/post-training/job/artifacts
cancel: post /v1alpha/post-training/job/cancel
status: get /v1alpha/post-training/job/status
list:
endpoint: get /v1alpha/post-training/jobs
paginated: false
benchmarks:
methods:
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}
list:
endpoint: get /v1alpha/eval/benchmarks
paginated: false
register: post /v1alpha/eval/benchmarks
models:
benchmark: Benchmark
list_benchmarks_response: ListBenchmarksResponse
eval:
methods:
evaluate_rows: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
evaluate_rows_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations
run_eval_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs
subresources:
jobs:
methods:
cancel: delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
status: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}
retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result
models:
evaluate_response: EvaluateResponse
benchmark_config: BenchmarkConfig
job: Job
beta:
subresources:
datasets:
models:
list_datasets_response: ListDatasetsResponse
methods:
register: post /v1beta/datasets
retrieve: get /v1beta/datasets/{dataset_id}
list:
endpoint: get /v1beta/datasets
paginated: false
unregister: delete /v1beta/datasets/{dataset_id}
iterrows: get /v1beta/datasetio/iterrows/{dataset_id}
appendrows: post /v1beta/datasetio/append-rows/{dataset_id}
settings:
license: MIT
unwrap_response_fields: [data]
openapi:
transformations:
- command: mergeObject
reason: Better return_type using enum
args:
target:
- "$.components.schemas"
object:
ReturnType:
additionalProperties: false
properties:
type:
enum:
- string
- number
- boolean
- array
- object
- json
- union
- chat_completion_input
- completion_input
- agent_turn_input
required:
- type
type: object
- command: replaceProperties
reason: Replace return type properties with better model (see above)
args:
filter:
only:
- "$.components.schemas.ScoringFn.properties.return_type"
- "$.components.schemas.RegisterScoringFunctionRequest.properties.return_type"
value:
$ref: "#/components/schemas/ReturnType"
- command: oneOfToAnyOf
reason: Prism (mock server) doesn't like one of our requests as it technically matches multiple variants
# `readme` is used to configure the code snippets that will be rendered in the
# README.md of various SDKs. In particular, you can change the `headline`
# snippet's endpoint and the arguments to call it with.
readme:
example_requests:
default:
type: request
endpoint: post /v1/chat/completions
params: &ref_0 {}
headline:
type: request
endpoint: post /v1/models
params: *ref_0
pagination:
type: request
endpoint: post /v1/chat/completions
params: {}

View file

@ -2055,69 +2055,6 @@ paths:
schema:
$ref: '#/components/schemas/URL'
deprecated: false
/v1/tool-runtime/rag-tool/insert:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
summary: >-
Index documents so they can be used by the RAG system.
description: >-
Index documents so they can be used by the RAG system.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/InsertRequest'
required: true
deprecated: false
/v1/tool-runtime/rag-tool/query:
post:
responses:
'200':
description: >-
RAGQueryResult containing the retrieved content and metadata
content:
application/json:
schema:
$ref: '#/components/schemas/RAGQueryResult'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
summary: >-
Query the RAG system for context; typically invoked by the agent.
description: >-
Query the RAG system for context; typically invoked by the agent.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryRequest'
required: true
deprecated: false
/v1/toolgroups:
get:
responses:
@ -6854,6 +6791,8 @@ components:
const: web_search_preview
- type: string
const: web_search_preview_2025_03_11
- type: string
const: web_search_2025_08_26
default: web_search
description: Web search tool type variant to use
search_context_size:
@ -9633,274 +9572,6 @@ components:
title: ListToolDefsResponse
description: >-
Response containing a list of tool definitions.
RAGDocument:
type: object
properties:
document_id:
type: string
description: The unique identifier for the document.
content:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
- $ref: '#/components/schemas/URL'
description: The content of the document.
mime_type:
type: string
description: The MIME type of the document.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Additional metadata for the document.
additionalProperties: false
required:
- document_id
- content
- metadata
title: RAGDocument
description: >-
A document to be used for document ingestion in the RAG Tool.
InsertRequest:
type: object
properties:
documents:
type: array
items:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_store_id:
type: string
description: >-
ID of the vector database to store the document embeddings
chunk_size_in_tokens:
type: integer
description: >-
(Optional) Size in tokens for document chunking during indexing
additionalProperties: false
required:
- documents
- vector_store_id
- chunk_size_in_tokens
title: InsertRequest
DefaultRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: default
default: default
description: >-
Type of query generator, always 'default'
separator:
type: string
default: ' '
description: >-
String separator used to join query terms
additionalProperties: false
required:
- type
- separator
title: DefaultRAGQueryGeneratorConfig
description: >-
Configuration for the default RAG query generator.
LLMRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: llm
default: llm
description: Type of query generator, always 'llm'
model:
type: string
description: >-
Name of the language model to use for query generation
template:
type: string
description: >-
Template string for formatting the query generation prompt
additionalProperties: false
required:
- type
- model
- template
title: LLMRAGQueryGeneratorConfig
description: >-
Configuration for the LLM-based RAG query generator.
RAGQueryConfig:
type: object
properties:
query_generator_config:
oneOf:
- $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
- $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig'
discriminator:
propertyName: type
mapping:
default: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
llm: '#/components/schemas/LLMRAGQueryGeneratorConfig'
description: Configuration for the query generator.
max_tokens_in_context:
type: integer
default: 4096
description: Maximum number of tokens in the context.
max_chunks:
type: integer
default: 5
description: Maximum number of chunks to retrieve.
chunk_template:
type: string
default: >
Result {index}
Content: {chunk.content}
Metadata: {metadata}
description: >-
Template for formatting each retrieved chunk in the context. Available
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
{chunk.content}\nMetadata: {metadata}\n"
mode:
$ref: '#/components/schemas/RAGSearchMode'
default: vector
description: >-
Search mode for retrieval—either "vector", "keyword", or "hybrid". Default
"vector".
ranker:
$ref: '#/components/schemas/Ranker'
description: >-
Configuration for the ranker to use in hybrid search. Defaults to RRF
ranker.
additionalProperties: false
required:
- query_generator_config
- max_tokens_in_context
- max_chunks
- chunk_template
title: RAGQueryConfig
description: >-
Configuration for the RAG query generation.
RAGSearchMode:
type: string
enum:
- vector
- keyword
- hybrid
title: RAGSearchMode
description: >-
Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search
for semantic matching - KEYWORD: Uses keyword-based search for exact matching
- HYBRID: Combines both vector and keyword search for better results
RRFRanker:
type: object
properties:
type:
type: string
const: rrf
default: rrf
description: The type of ranker, always "rrf"
impact_factor:
type: number
default: 60.0
description: >-
The impact factor for RRF scoring. Higher values give more weight to higher-ranked
results. Must be greater than 0
additionalProperties: false
required:
- type
- impact_factor
title: RRFRanker
description: >-
Reciprocal Rank Fusion (RRF) ranker configuration.
Ranker:
oneOf:
- $ref: '#/components/schemas/RRFRanker'
- $ref: '#/components/schemas/WeightedRanker'
discriminator:
propertyName: type
mapping:
rrf: '#/components/schemas/RRFRanker'
weighted: '#/components/schemas/WeightedRanker'
WeightedRanker:
type: object
properties:
type:
type: string
const: weighted
default: weighted
description: The type of ranker, always "weighted"
alpha:
type: number
default: 0.5
description: >-
Weight factor between 0 and 1. 0 means only use keyword scores, 1 means
only use vector scores, values in between blend both scores.
additionalProperties: false
required:
- type
- alpha
title: WeightedRanker
description: >-
Weighted ranker configuration that combines vector and keyword scores.
QueryRequest:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_store_ids:
type: array
items:
type: string
description: >-
List of vector database IDs to search within
query_config:
$ref: '#/components/schemas/RAGQueryConfig'
description: >-
(Optional) Configuration parameters for the query operation
additionalProperties: false
required:
- content
- vector_store_ids
title: QueryRequest
RAGQueryResult:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
(Optional) The retrieved content from the query
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Additional metadata about the query result
additionalProperties: false
required:
- metadata
title: RAGQueryResult
description: >-
Result of a RAG query containing retrieved content and metadata.
ToolGroup:
type: object
properties:
@ -10307,6 +9978,70 @@ components:
- metadata
title: VectorStoreObject
description: OpenAI Vector Store object.
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
"OpenAICreateVectorStoreRequestWithExtraBody":
type: object
properties:
@ -10332,15 +10067,7 @@ components:
description: >-
(Optional) Expiration policy for the vector store
chunking_strategy:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
description: >-
(Optional) Strategy for splitting files into chunks
metadata:
@ -10416,70 +10143,6 @@ components:
- deleted
title: VectorStoreDeleteResponse
description: Response from deleting a vector store.
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
"OpenAICreateVectorStoreFileBatchRequestWithExtraBody":
type: object
properties:
@ -10937,7 +10600,9 @@ components:
description: >-
Object type identifier for the search results page
search_query:
type: string
type: array
items:
type: string
description: >-
The original search query that was executed
data:

View file

@ -47,7 +47,7 @@ RUN set -eux; \
exit 1; \
fi
RUN pip install --no-cache-dir uv
RUN pip install --no-cache uv
ENV UV_SYSTEM_PYTHON=1
ENV INSTALL_MODE=${INSTALL_MODE}
@ -72,7 +72,7 @@ RUN set -eux; \
echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \
exit 1; \
fi; \
uv pip install --no-cache-dir -e "$LLAMA_STACK_CLIENT_DIR"; \
uv pip install --no-cache -e "$LLAMA_STACK_CLIENT_DIR"; \
fi;
# Install llama-stack
@ -88,22 +88,22 @@ RUN set -eux; \
fi; \
if [ -n "$SAVED_UV_EXTRA_INDEX_URL" ] && [ -n "$SAVED_UV_INDEX_STRATEGY" ]; then \
UV_EXTRA_INDEX_URL="$SAVED_UV_EXTRA_INDEX_URL" UV_INDEX_STRATEGY="$SAVED_UV_INDEX_STRATEGY" \
uv pip install --no-cache-dir -e "$LLAMA_STACK_DIR"; \
uv pip install --no-cache -e "$LLAMA_STACK_DIR"; \
else \
uv pip install --no-cache-dir -e "$LLAMA_STACK_DIR"; \
uv pip install --no-cache -e "$LLAMA_STACK_DIR"; \
fi; \
elif [ "$INSTALL_MODE" = "test-pypi" ]; then \
uv pip install --no-cache-dir fastapi libcst; \
uv pip install --no-cache fastapi libcst; \
if [ -n "$TEST_PYPI_VERSION" ]; then \
uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \
uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \
else \
uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \
uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \
fi; \
else \
if [ -n "$PYPI_VERSION" ]; then \
uv pip install --no-cache-dir "llama-stack==$PYPI_VERSION"; \
uv pip install --no-cache "llama-stack==$PYPI_VERSION"; \
else \
uv pip install --no-cache-dir llama-stack; \
uv pip install --no-cache llama-stack; \
fi; \
fi;
@ -117,7 +117,7 @@ RUN set -eux; \
fi; \
deps="$(llama stack list-deps "$DISTRO_NAME")"; \
if [ -n "$deps" ]; then \
printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache-dir; \
printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache; \
fi
# Cleanup

View file

@ -35,9 +35,6 @@ Here are the key topics that will help you build effective AI applications:
- **[Telemetry](./telemetry.mdx)** - Monitor and analyze your agents' performance and behavior
- **[Safety](./safety.mdx)** - Implement guardrails and safety measures to ensure responsible AI behavior
### 🎮 **Interactive Development**
- **[Playground](./playground.mdx)** - Interactive environment for testing and developing applications
## Application Patterns
### 🤖 **Conversational Agents**

View file

@ -1,298 +0,0 @@
---
title: Llama Stack Playground
description: Interactive interface to explore and experiment with Llama Stack capabilities
sidebar_label: Playground
sidebar_position: 10
---
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Llama Stack Playground
:::note[Experimental Feature]
The Llama Stack Playground is currently experimental and subject to change. We welcome feedback and contributions to help improve it.
:::
The Llama Stack Playground is a simple interface that aims to:
- **Showcase capabilities and concepts** of Llama Stack in an interactive environment
- **Demo end-to-end application code** to help users get started building their own applications
- **Provide a UI** to help users inspect and understand Llama Stack API providers and resources
## Key Features
### Interactive Playground Pages
The playground provides interactive pages for users to explore Llama Stack API capabilities:
#### Chatbot Interface
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%'}}
>
<source src="https://github.com/user-attachments/assets/8d2ef802-5812-4a28-96e1-316038c84cbf" type="video/mp4" />
Your browser does not support the video tag.
</video>
<Tabs>
<TabItem value="chat" label="Chat">
**Simple Chat Interface**
- Chat directly with Llama models through an intuitive interface
- Uses the `/chat/completions` streaming API under the hood
- Real-time message streaming for responsive interactions
- Perfect for testing model capabilities and prompt engineering
</TabItem>
<TabItem value="rag" label="RAG Chat">
**Document-Aware Conversations**
- Upload documents to create memory banks
- Chat with a RAG-enabled agent that can query your documents
- Uses Llama Stack's `/agents` API to create and manage RAG sessions
- Ideal for exploring knowledge-enhanced AI applications
</TabItem>
</Tabs>
#### Evaluation Interface
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%'}}
>
<source src="https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5" type="video/mp4" />
Your browser does not support the video tag.
</video>
<Tabs>
<TabItem value="scoring" label="Scoring Evaluations">
**Custom Dataset Evaluation**
- Upload your own evaluation datasets
- Run evaluations using available scoring functions
- Uses Llama Stack's `/scoring` API for flexible evaluation workflows
- Great for testing application performance on custom metrics
</TabItem>
<TabItem value="benchmarks" label="Benchmark Evaluations">
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%', marginBottom: '1rem'}}
>
<source src="https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf" type="video/mp4" />
Your browser does not support the video tag.
</video>
**Pre-registered Evaluation Tasks**
- Evaluate models or agents on pre-defined tasks
- Uses Llama Stack's `/eval` API for comprehensive evaluation
- Combines datasets and scoring functions for standardized testing
**Setup Requirements:**
Register evaluation datasets and benchmarks first:
```bash
# Register evaluation dataset
llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string"}, "chat_completion_input": {"type": "string"}}'
# Register benchmark task
llama-stack-client benchmarks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
```
</TabItem>
</Tabs>
#### Inspection Interface
<video
controls
autoPlay
playsInline
muted
loop
style={{width: '100%'}}
>
<source src="https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99" type="video/mp4" />
Your browser does not support the video tag.
</video>
<Tabs>
<TabItem value="providers" label="API Providers">
**Provider Management**
- Inspect available Llama Stack API providers
- View provider configurations and capabilities
- Uses the `/providers` API for real-time provider information
- Essential for understanding your deployment's capabilities
</TabItem>
<TabItem value="resources" label="API Resources">
**Resource Exploration**
- Inspect Llama Stack API resources including:
- **Models**: Available language models
- **Datasets**: Registered evaluation datasets
- **Memory Banks**: Vector databases and knowledge stores
- **Benchmarks**: Evaluation tasks and scoring functions
- **Shields**: Safety and content moderation tools
- Uses `/<resources>/list` APIs for comprehensive resource visibility
- For detailed information about resources, see [Core Concepts](/docs/concepts)
</TabItem>
</Tabs>
## Getting Started
### Quick Start Guide
<Tabs>
<TabItem value="setup" label="Setup">
**1. Start the Llama Stack API Server**
```bash
llama stack list-deps together | xargs -L1 uv pip install
llama stack run together
```
**2. Start the Streamlit UI**
```bash
# Launch the playground interface
uv run --with ".[ui]" streamlit run llama_stack.core/ui/app.py
```
</TabItem>
<TabItem value="usage" label="Usage Tips">
**Making the Most of the Playground:**
- **Start with Chat**: Test basic model interactions and prompt engineering
- **Explore RAG**: Upload sample documents to see knowledge-enhanced responses
- **Try Evaluations**: Use the scoring interface to understand evaluation metrics
- **Inspect Resources**: Check what providers and resources are available
- **Experiment with Settings**: Adjust parameters to see how they affect results
</TabItem>
</Tabs>
### Available Distributions
The playground works with any Llama Stack distribution. Popular options include:
<Tabs>
<TabItem value="together" label="Together AI">
```bash
llama stack list-deps together | xargs -L1 uv pip install
llama stack run together
```
**Features:**
- Cloud-hosted models
- Fast inference
- Multiple model options
</TabItem>
<TabItem value="ollama" label="Ollama (Local)">
```bash
llama stack list-deps ollama | xargs -L1 uv pip install
llama stack run ollama
```
**Features:**
- Local model execution
- Privacy-focused
- No internet required
</TabItem>
<TabItem value="meta-reference" label="Meta Reference">
```bash
llama stack list-deps meta-reference | xargs -L1 uv pip install
llama stack run meta-reference
```
**Features:**
- Reference implementation
- All API features available
- Best for development
</TabItem>
</Tabs>
## Use Cases & Examples
### Educational Use Cases
- **Learning Llama Stack**: Hands-on exploration of API capabilities
- **Prompt Engineering**: Interactive testing of different prompting strategies
- **RAG Experimentation**: Understanding how document retrieval affects responses
- **Evaluation Understanding**: See how different metrics evaluate model performance
### Development Use Cases
- **Prototype Testing**: Quick validation of application concepts
- **API Exploration**: Understanding available endpoints and parameters
- **Integration Planning**: Seeing how different components work together
- **Demo Creation**: Showcasing Llama Stack capabilities to stakeholders
### Research Use Cases
- **Model Comparison**: Side-by-side testing of different models
- **Evaluation Design**: Understanding how scoring functions work
- **Safety Testing**: Exploring shield effectiveness with different inputs
- **Performance Analysis**: Measuring model behavior across different scenarios
## Best Practices
### 🚀 **Getting Started**
- Begin with simple chat interactions to understand basic functionality
- Gradually explore more advanced features like RAG and evaluations
- Use the inspection tools to understand your deployment's capabilities
### 🔧 **Development Workflow**
- Use the playground to prototype before writing application code
- Test different parameter settings interactively
- Validate evaluation approaches before implementing them programmatically
### 📊 **Evaluation & Testing**
- Start with simple scoring functions before trying complex evaluations
- Use the playground to understand evaluation results before automation
- Test safety features with various input types
### 🎯 **Production Preparation**
- Use playground insights to inform your production API usage
- Test edge cases and error conditions interactively
- Validate resource configurations before deployment
## Related Resources
- **[Getting Started Guide](../getting_started/quickstart)** - Complete setup and introduction
- **[Core Concepts](/docs/concepts)** - Understanding Llama Stack fundamentals
- **[Agents](./agent)** - Building intelligent agents
- **[RAG (Retrieval Augmented Generation)](./rag)** - Knowledge-enhanced applications
- **[Evaluations](./evals)** - Comprehensive evaluation framework
- **[API Reference](/docs/api/llama-stack-specification)** - Complete API documentation

View file

@ -11,7 +11,7 @@ If you are planning to use an external service for Inference (even Ollama or TGI
This avoids the overhead of setting up a server.
```bash
# setup
uv pip install llama-stack
uv pip install llama-stack llama-stack-client
llama stack list-deps starter | xargs -L1 uv pip install
```

View file

@ -44,7 +44,7 @@ spec:
# Navigate to the UI directory
echo "Navigating to UI directory..."
cd /app/llama_stack/ui
cd /app/llama_stack_ui
# Check if package.json exists
if [ ! -f "package.json" ]; then

View file

@ -163,7 +163,41 @@ docker run \
--port $LLAMA_STACK_PORT
```
### Via venv
The container will run the distribution with a SQLite store by default. This store is used for the following components:
- Metadata store: store metadata about the models, providers, etc.
- Inference store: collect of responses from the inference provider
- Agents store: store agent configurations (sessions, turns, etc.)
- Agents Responses store: store responses from the agents
However, you can use PostgreSQL instead by running the `starter::run-with-postgres-store.yaml` configuration:
```bash
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-e OPENAI_API_KEY=your_openai_key \
-e FIREWORKS_API_KEY=your_fireworks_key \
-e TOGETHER_API_KEY=your_together_key \
-e POSTGRES_HOST=your_postgres_host \
-e POSTGRES_PORT=your_postgres_port \
-e POSTGRES_DB=your_postgres_db \
-e POSTGRES_USER=your_postgres_user \
-e POSTGRES_PASSWORD=your_postgres_password \
llamastack/distribution-starter \
starter::run-with-postgres-store.yaml
```
Postgres environment variables:
- `POSTGRES_HOST`: Postgres host (default: `localhost`)
- `POSTGRES_PORT`: Postgres port (default: `5432`)
- `POSTGRES_DB`: Postgres database name (default: `llamastack`)
- `POSTGRES_USER`: Postgres username (default: `llamastack`)
- `POSTGRES_PASSWORD`: Postgres password (default: `llamastack`)
### Via Conda or venv
Ensure you have configured the starter distribution using the environment variables explained above.
@ -171,8 +205,11 @@ Ensure you have configured the starter distribution using the environment variab
# Install dependencies for the starter distribution
uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
# Run the server
# Run the server (with SQLite - default)
uv run --with llama-stack llama stack run starter
# Or run with PostgreSQL
uv run --with llama-stack llama stack run starter::run-with-postgres-store.yaml
```
## Example Usage

View file

@ -1,5 +1,5 @@
---
description: "AWS Bedrock inference provider for accessing various AI models through AWS's managed service."
description: "AWS Bedrock inference provider using OpenAI compatible endpoint."
sidebar_label: Remote - Bedrock
title: remote::bedrock
---
@ -8,7 +8,7 @@ title: remote::bedrock
## Description
AWS Bedrock inference provider for accessing various AI models through AWS's managed service.
AWS Bedrock inference provider using OpenAI compatible endpoint.
## Configuration
@ -16,19 +16,12 @@ AWS Bedrock inference provider for accessing various AI models through AWS's man
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
| `aws_secret_access_key` | `str \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
| `aws_session_token` | `str \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
| `retry_mode` | `str \| None` | No | | A string representing the type of retries Boto3 will perform.Default use environment variable: AWS_RETRY_MODE |
| `connect_timeout` | `float \| None` | No | 60.0 | The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds. |
| `read_timeout` | `float \| None` | No | 60.0 | The time in seconds till a timeout exception is thrown when attempting to read from a connection.The default is 60 seconds. |
| `session_ttl` | `int \| None` | No | 3600 | The time in seconds till a session expires. The default is 3600 seconds (1 hour). |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `region_name` | `<class 'str'>` | No | us-east-2 | AWS Region for the Bedrock Runtime endpoint |
## Sample Configuration
```yaml
{}
api_key: ${env.AWS_BEDROCK_API_KEY:=}
region_name: ${env.AWS_DEFAULT_REGION:=us-east-2}
```

View file

@ -16,7 +16,7 @@ Passthrough inference provider for connecting to any external inference service
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically from the provider |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API Key for the passthrouth endpoint |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | Authentication credential for the provider |
| `url` | `<class 'str'>` | No | | The URL for the passthrough endpoint |
## Sample Configuration

View file

@ -48,11 +48,9 @@ Both OpenAI and Llama Stack support a web-search built-in tool. The [OpenAI doc
> The type of the web search tool. One of `web_search` or `web_search_2025_08_26`.
In contrast, the [Llama Stack documentation](https://llamastack.github.io/docs/api/create-a-new-open-ai-response) says that the allowed values for `type` for web search are `MOD1`, `MOD2` and `MOD3`.
Is that correct? If so, what are the meanings of each of them? It might make sense for the allowed values for OpenAI map to some values for Llama Stack so that code written to the OpenAI specification
also work with Llama Stack.
Llama Stack now supports both `web_search` and `web_search_2025_08_26` types, matching OpenAI's API. For backward compatibility, Llama Stack also supports `web_search_preview` and `web_search_preview_2025_03_11` types.
The OpenAI web search tool also has fields for `filters` and `user_location` which are not documented as options for Llama Stack. If feasible, it would be good to support these too.
The OpenAI web search tool also has fields for `filters` and `user_location` which are not yet implemented in Llama Stack. If feasible, it would be good to support these too.
---

View file

@ -37,7 +37,7 @@
"outputs": [],
"source": [
"# NBVAL_SKIP\n",
"!pip install -U llama-stack\n",
"!pip install -U llama-stack llama-stack-client\n",
"llama stack list-deps fireworks | xargs -L1 uv pip install\n"
]
},

View file

@ -44,7 +44,7 @@
"outputs": [],
"source": [
"# NBVAL_SKIP\n",
"!pip install -U llama-stack"
"!pip install -U llama-stack llama-stack-client\n"
]
},
{

View file

@ -74,6 +74,7 @@
"source": [
"```bash\n",
"uv sync --extra dev\n",
"uv pip install -U llama-stack-client\n",
"uv pip install -e .\n",
"source .venv/bin/activate\n",
"```"

View file

@ -170,7 +170,7 @@ def _get_endpoint_functions(
for webmethod in webmethods:
print(f"Processing {colored(func_name, 'white')}...")
operation_name = func_name
if webmethod.method == "GET":
prefix = "get"
elif webmethod.method == "DELETE":
@ -196,16 +196,10 @@ def _get_endpoint_functions(
def _get_defining_class(member_fn: str, derived_cls: type) -> type:
"Find the class in which a member function is first defined in a class inheritance hierarchy."
# This import must be dynamic here
from llama_stack.apis.tools import RAGToolRuntime, ToolRuntime
# iterate in reverse member resolution order to find most specific class first
for cls in reversed(inspect.getmro(derived_cls)):
for name, _ in inspect.getmembers(cls, inspect.isfunction):
if name == member_fn:
# HACK ALERT
if cls == RAGToolRuntime:
return ToolRuntime
return cls
raise ValidationError(

File diff suppressed because it is too large Load diff

View file

@ -2052,69 +2052,6 @@ paths:
schema:
$ref: '#/components/schemas/URL'
deprecated: false
/v1/tool-runtime/rag-tool/insert:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
summary: >-
Index documents so they can be used by the RAG system.
description: >-
Index documents so they can be used by the RAG system.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/InsertRequest'
required: true
deprecated: false
/v1/tool-runtime/rag-tool/query:
post:
responses:
'200':
description: >-
RAGQueryResult containing the retrieved content and metadata
content:
application/json:
schema:
$ref: '#/components/schemas/RAGQueryResult'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
summary: >-
Query the RAG system for context; typically invoked by the agent.
description: >-
Query the RAG system for context; typically invoked by the agent.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryRequest'
required: true
deprecated: false
/v1/toolgroups:
get:
responses:
@ -6138,6 +6075,8 @@ components:
const: web_search_preview
- type: string
const: web_search_preview_2025_03_11
- type: string
const: web_search_2025_08_26
default: web_search
description: Web search tool type variant to use
search_context_size:
@ -8917,274 +8856,6 @@ components:
title: ListToolDefsResponse
description: >-
Response containing a list of tool definitions.
RAGDocument:
type: object
properties:
document_id:
type: string
description: The unique identifier for the document.
content:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
- $ref: '#/components/schemas/URL'
description: The content of the document.
mime_type:
type: string
description: The MIME type of the document.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Additional metadata for the document.
additionalProperties: false
required:
- document_id
- content
- metadata
title: RAGDocument
description: >-
A document to be used for document ingestion in the RAG Tool.
InsertRequest:
type: object
properties:
documents:
type: array
items:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_store_id:
type: string
description: >-
ID of the vector database to store the document embeddings
chunk_size_in_tokens:
type: integer
description: >-
(Optional) Size in tokens for document chunking during indexing
additionalProperties: false
required:
- documents
- vector_store_id
- chunk_size_in_tokens
title: InsertRequest
DefaultRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: default
default: default
description: >-
Type of query generator, always 'default'
separator:
type: string
default: ' '
description: >-
String separator used to join query terms
additionalProperties: false
required:
- type
- separator
title: DefaultRAGQueryGeneratorConfig
description: >-
Configuration for the default RAG query generator.
LLMRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: llm
default: llm
description: Type of query generator, always 'llm'
model:
type: string
description: >-
Name of the language model to use for query generation
template:
type: string
description: >-
Template string for formatting the query generation prompt
additionalProperties: false
required:
- type
- model
- template
title: LLMRAGQueryGeneratorConfig
description: >-
Configuration for the LLM-based RAG query generator.
RAGQueryConfig:
type: object
properties:
query_generator_config:
oneOf:
- $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
- $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig'
discriminator:
propertyName: type
mapping:
default: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
llm: '#/components/schemas/LLMRAGQueryGeneratorConfig'
description: Configuration for the query generator.
max_tokens_in_context:
type: integer
default: 4096
description: Maximum number of tokens in the context.
max_chunks:
type: integer
default: 5
description: Maximum number of chunks to retrieve.
chunk_template:
type: string
default: >
Result {index}
Content: {chunk.content}
Metadata: {metadata}
description: >-
Template for formatting each retrieved chunk in the context. Available
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
{chunk.content}\nMetadata: {metadata}\n"
mode:
$ref: '#/components/schemas/RAGSearchMode'
default: vector
description: >-
Search mode for retrieval—either "vector", "keyword", or "hybrid". Default
"vector".
ranker:
$ref: '#/components/schemas/Ranker'
description: >-
Configuration for the ranker to use in hybrid search. Defaults to RRF
ranker.
additionalProperties: false
required:
- query_generator_config
- max_tokens_in_context
- max_chunks
- chunk_template
title: RAGQueryConfig
description: >-
Configuration for the RAG query generation.
RAGSearchMode:
type: string
enum:
- vector
- keyword
- hybrid
title: RAGSearchMode
description: >-
Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search
for semantic matching - KEYWORD: Uses keyword-based search for exact matching
- HYBRID: Combines both vector and keyword search for better results
RRFRanker:
type: object
properties:
type:
type: string
const: rrf
default: rrf
description: The type of ranker, always "rrf"
impact_factor:
type: number
default: 60.0
description: >-
The impact factor for RRF scoring. Higher values give more weight to higher-ranked
results. Must be greater than 0
additionalProperties: false
required:
- type
- impact_factor
title: RRFRanker
description: >-
Reciprocal Rank Fusion (RRF) ranker configuration.
Ranker:
oneOf:
- $ref: '#/components/schemas/RRFRanker'
- $ref: '#/components/schemas/WeightedRanker'
discriminator:
propertyName: type
mapping:
rrf: '#/components/schemas/RRFRanker'
weighted: '#/components/schemas/WeightedRanker'
WeightedRanker:
type: object
properties:
type:
type: string
const: weighted
default: weighted
description: The type of ranker, always "weighted"
alpha:
type: number
default: 0.5
description: >-
Weight factor between 0 and 1. 0 means only use keyword scores, 1 means
only use vector scores, values in between blend both scores.
additionalProperties: false
required:
- type
- alpha
title: WeightedRanker
description: >-
Weighted ranker configuration that combines vector and keyword scores.
QueryRequest:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_store_ids:
type: array
items:
type: string
description: >-
List of vector database IDs to search within
query_config:
$ref: '#/components/schemas/RAGQueryConfig'
description: >-
(Optional) Configuration parameters for the query operation
additionalProperties: false
required:
- content
- vector_store_ids
title: QueryRequest
RAGQueryResult:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
(Optional) The retrieved content from the query
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Additional metadata about the query result
additionalProperties: false
required:
- metadata
title: RAGQueryResult
description: >-
Result of a RAG query containing retrieved content and metadata.
ToolGroup:
type: object
properties:
@ -9591,6 +9262,70 @@ components:
- metadata
title: VectorStoreObject
description: OpenAI Vector Store object.
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
"OpenAICreateVectorStoreRequestWithExtraBody":
type: object
properties:
@ -9616,15 +9351,7 @@ components:
description: >-
(Optional) Expiration policy for the vector store
chunking_strategy:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
description: >-
(Optional) Strategy for splitting files into chunks
metadata:
@ -9700,70 +9427,6 @@ components:
- deleted
title: VectorStoreDeleteResponse
description: Response from deleting a vector store.
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
"OpenAICreateVectorStoreFileBatchRequestWithExtraBody":
type: object
properties:
@ -10221,7 +9884,9 @@ components:
description: >-
Object type identifier for the search results page
search_query:
type: string
type: array
items:
type: string
description: >-
The original search query that was executed
data:

View file

@ -2055,69 +2055,6 @@ paths:
schema:
$ref: '#/components/schemas/URL'
deprecated: false
/v1/tool-runtime/rag-tool/insert:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
summary: >-
Index documents so they can be used by the RAG system.
description: >-
Index documents so they can be used by the RAG system.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/InsertRequest'
required: true
deprecated: false
/v1/tool-runtime/rag-tool/query:
post:
responses:
'200':
description: >-
RAGQueryResult containing the retrieved content and metadata
content:
application/json:
schema:
$ref: '#/components/schemas/RAGQueryResult'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
summary: >-
Query the RAG system for context; typically invoked by the agent.
description: >-
Query the RAG system for context; typically invoked by the agent.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryRequest'
required: true
deprecated: false
/v1/toolgroups:
get:
responses:
@ -6854,6 +6791,8 @@ components:
const: web_search_preview
- type: string
const: web_search_preview_2025_03_11
- type: string
const: web_search_2025_08_26
default: web_search
description: Web search tool type variant to use
search_context_size:
@ -9633,274 +9572,6 @@ components:
title: ListToolDefsResponse
description: >-
Response containing a list of tool definitions.
RAGDocument:
type: object
properties:
document_id:
type: string
description: The unique identifier for the document.
content:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
- $ref: '#/components/schemas/URL'
description: The content of the document.
mime_type:
type: string
description: The MIME type of the document.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Additional metadata for the document.
additionalProperties: false
required:
- document_id
- content
- metadata
title: RAGDocument
description: >-
A document to be used for document ingestion in the RAG Tool.
InsertRequest:
type: object
properties:
documents:
type: array
items:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_store_id:
type: string
description: >-
ID of the vector database to store the document embeddings
chunk_size_in_tokens:
type: integer
description: >-
(Optional) Size in tokens for document chunking during indexing
additionalProperties: false
required:
- documents
- vector_store_id
- chunk_size_in_tokens
title: InsertRequest
DefaultRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: default
default: default
description: >-
Type of query generator, always 'default'
separator:
type: string
default: ' '
description: >-
String separator used to join query terms
additionalProperties: false
required:
- type
- separator
title: DefaultRAGQueryGeneratorConfig
description: >-
Configuration for the default RAG query generator.
LLMRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: llm
default: llm
description: Type of query generator, always 'llm'
model:
type: string
description: >-
Name of the language model to use for query generation
template:
type: string
description: >-
Template string for formatting the query generation prompt
additionalProperties: false
required:
- type
- model
- template
title: LLMRAGQueryGeneratorConfig
description: >-
Configuration for the LLM-based RAG query generator.
RAGQueryConfig:
type: object
properties:
query_generator_config:
oneOf:
- $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
- $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig'
discriminator:
propertyName: type
mapping:
default: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
llm: '#/components/schemas/LLMRAGQueryGeneratorConfig'
description: Configuration for the query generator.
max_tokens_in_context:
type: integer
default: 4096
description: Maximum number of tokens in the context.
max_chunks:
type: integer
default: 5
description: Maximum number of chunks to retrieve.
chunk_template:
type: string
default: >
Result {index}
Content: {chunk.content}
Metadata: {metadata}
description: >-
Template for formatting each retrieved chunk in the context. Available
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
{chunk.content}\nMetadata: {metadata}\n"
mode:
$ref: '#/components/schemas/RAGSearchMode'
default: vector
description: >-
Search mode for retrieval—either "vector", "keyword", or "hybrid". Default
"vector".
ranker:
$ref: '#/components/schemas/Ranker'
description: >-
Configuration for the ranker to use in hybrid search. Defaults to RRF
ranker.
additionalProperties: false
required:
- query_generator_config
- max_tokens_in_context
- max_chunks
- chunk_template
title: RAGQueryConfig
description: >-
Configuration for the RAG query generation.
RAGSearchMode:
type: string
enum:
- vector
- keyword
- hybrid
title: RAGSearchMode
description: >-
Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search
for semantic matching - KEYWORD: Uses keyword-based search for exact matching
- HYBRID: Combines both vector and keyword search for better results
RRFRanker:
type: object
properties:
type:
type: string
const: rrf
default: rrf
description: The type of ranker, always "rrf"
impact_factor:
type: number
default: 60.0
description: >-
The impact factor for RRF scoring. Higher values give more weight to higher-ranked
results. Must be greater than 0
additionalProperties: false
required:
- type
- impact_factor
title: RRFRanker
description: >-
Reciprocal Rank Fusion (RRF) ranker configuration.
Ranker:
oneOf:
- $ref: '#/components/schemas/RRFRanker'
- $ref: '#/components/schemas/WeightedRanker'
discriminator:
propertyName: type
mapping:
rrf: '#/components/schemas/RRFRanker'
weighted: '#/components/schemas/WeightedRanker'
WeightedRanker:
type: object
properties:
type:
type: string
const: weighted
default: weighted
description: The type of ranker, always "weighted"
alpha:
type: number
default: 0.5
description: >-
Weight factor between 0 and 1. 0 means only use keyword scores, 1 means
only use vector scores, values in between blend both scores.
additionalProperties: false
required:
- type
- alpha
title: WeightedRanker
description: >-
Weighted ranker configuration that combines vector and keyword scores.
QueryRequest:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_store_ids:
type: array
items:
type: string
description: >-
List of vector database IDs to search within
query_config:
$ref: '#/components/schemas/RAGQueryConfig'
description: >-
(Optional) Configuration parameters for the query operation
additionalProperties: false
required:
- content
- vector_store_ids
title: QueryRequest
RAGQueryResult:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
(Optional) The retrieved content from the query
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Additional metadata about the query result
additionalProperties: false
required:
- metadata
title: RAGQueryResult
description: >-
Result of a RAG query containing retrieved content and metadata.
ToolGroup:
type: object
properties:
@ -10307,6 +9978,70 @@ components:
- metadata
title: VectorStoreObject
description: OpenAI Vector Store object.
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
"OpenAICreateVectorStoreRequestWithExtraBody":
type: object
properties:
@ -10332,15 +10067,7 @@ components:
description: >-
(Optional) Expiration policy for the vector store
chunking_strategy:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
description: >-
(Optional) Strategy for splitting files into chunks
metadata:
@ -10416,70 +10143,6 @@ components:
- deleted
title: VectorStoreDeleteResponse
description: Response from deleting a vector store.
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
"OpenAICreateVectorStoreFileBatchRequestWithExtraBody":
type: object
properties:
@ -10937,7 +10600,9 @@ components:
description: >-
Object type identifier for the search results page
search_query:
type: string
type: array
items:
type: string
description: >-
The original search query that was executed
data:

View file

@ -24,13 +24,13 @@ classifiers = [
"Topic :: Scientific/Engineering :: Information Analysis",
]
dependencies = [
"PyYAML>=6.0",
"aiohttp",
"fastapi>=0.115.0,<1.0", # server
"fire", # for MCP in LLS client
"httpx",
"jinja2>=3.1.6",
"jsonschema",
"llama-stack-client>=0.3.0",
"openai>=2.5.0",
"prompt-toolkit",
"python-dotenv",
@ -52,11 +52,8 @@ dependencies = [
]
[project.optional-dependencies]
ui = [
"streamlit",
"pandas",
"llama-stack-client>=0.3.0",
"streamlit-option-menu",
client = [
"llama-stack-client>=0.3.0", # Optional for library-only usage
]
[dependency-groups]
@ -104,6 +101,7 @@ type_checking = [
"lm-format-enforcer",
"mcp",
"ollama",
"llama-stack-client>=0.3.0",
]
# These are the dependencies required for running unit tests.
unit = [

272
scripts/cleanup_recordings.py Executable file
View file

@ -0,0 +1,272 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Clean up unused test recordings based on CI test collection.
This script:
1. Reads CI matrix definitions from tests/integration/ci_matrix.json (default + scheduled overrides)
2. Uses pytest --collect-only with --json-report to gather all test IDs that run in CI
3. Compares against existing recordings to identify unused ones
4. Optionally deletes unused recordings
Usage:
# Dry run - see what would be deleted
./scripts/cleanup_recordings.py
# Save manifest of CI test IDs for inspection
./scripts/cleanup_recordings.py --manifest ci_tests.txt
# Actually delete unused recordings
./scripts/cleanup_recordings.py --delete
"""
import argparse
import json
import os
import subprocess
import tempfile
from collections import defaultdict
from pathlib import Path
REPO_ROOT = Path(__file__).parent.parent
# Load CI matrix from JSON file
CI_MATRIX_FILE = REPO_ROOT / "tests/integration/ci_matrix.json"
with open(CI_MATRIX_FILE) as f:
_matrix_config = json.load(f)
DEFAULT_CI_MATRIX: list[dict[str, str]] = _matrix_config["default"]
SCHEDULED_MATRICES: dict[str, list[dict[str, str]]] = _matrix_config.get("schedules", {})
def _unique_configs(entries):
seen: set[tuple[str, str]] = set()
for entry in entries:
suite = entry["suite"]
setup = entry["setup"]
key = (suite, setup)
if key in seen:
continue
seen.add(key)
yield {"suite": suite, "setup": setup}
def iter_all_ci_configs() -> list[dict[str, str]]:
"""Return unique CI configs across default and scheduled matrices."""
combined = list(DEFAULT_CI_MATRIX)
for configs in SCHEDULED_MATRICES.values():
combined.extend(configs)
return list(_unique_configs(combined))
def collect_ci_tests():
"""Collect all test IDs that would run in CI using --collect-only with JSON output."""
all_test_ids = set()
configs = iter_all_ci_configs()
for config in configs:
print(f"Collecting tests for suite={config['suite']}, setup={config['setup']}...")
# Create a temporary file for JSON report
with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f:
json_report_file = f.name
try:
# Configure environment for collection run
env = os.environ.copy()
env["PYTEST_ADDOPTS"] = f"--json-report --json-report-file={json_report_file}"
repo_path = str(REPO_ROOT)
existing_path = env.get("PYTHONPATH", "")
env["PYTHONPATH"] = f"{repo_path}{os.pathsep}{existing_path}" if existing_path else repo_path
result = subprocess.run(
[
"./scripts/integration-tests.sh",
"--collect-only",
"--suite",
config["suite"],
"--setup",
config["setup"],
],
capture_output=True,
text=True,
cwd=REPO_ROOT,
env=env,
)
if result.returncode != 0:
raise RuntimeError(
"Test collection failed.\n"
f"Command: {' '.join(result.args)}\n"
f"stdout:\n{result.stdout}\n"
f"stderr:\n{result.stderr}"
)
# Parse JSON report to extract test IDs
try:
with open(json_report_file) as f:
report = json.load(f)
# The "collectors" field contains collected test items
# Each collector has a "result" array with test node IDs
for collector in report.get("collectors", []):
for item in collector.get("result", []):
# The "nodeid" field is the test ID
if "nodeid" in item:
all_test_ids.add(item["nodeid"])
print(f" Collected {len(all_test_ids)} test IDs so far")
except (json.JSONDecodeError, FileNotFoundError) as e:
print(f" Warning: Failed to parse JSON report: {e}")
continue
finally:
# Clean up temp file
if os.path.exists(json_report_file):
os.unlink(json_report_file)
print(f"\nTotal unique test IDs collected: {len(all_test_ids)}")
return all_test_ids, configs
def get_base_test_id(test_id: str) -> str:
"""Extract base test ID without parameterization.
Example:
'tests/integration/inference/test_foo.py::test_bar[param1-param2]'
-> 'tests/integration/inference/test_foo.py::test_bar'
"""
return test_id.split("[")[0] if "[" in test_id else test_id
def find_all_recordings():
"""Find all recording JSON files."""
return list((REPO_ROOT / "tests/integration").rglob("recordings/*.json"))
def analyze_recordings(ci_test_ids, dry_run=True):
"""Analyze recordings and identify unused ones."""
# Use full test IDs with parameterization for exact matching
all_recordings = find_all_recordings()
print(f"\nTotal recording files: {len(all_recordings)}")
# Categorize recordings
used_recordings = []
unused_recordings = []
shared_recordings = [] # model-list endpoints without test_id
parse_errors = []
for json_file in all_recordings:
try:
with open(json_file) as f:
data = json.load(f)
test_id = data.get("test_id", "")
if not test_id:
# Shared/infrastructure recordings (model lists, etc)
shared_recordings.append(json_file)
continue
# Match exact test_id (with full parameterization)
if test_id in ci_test_ids:
used_recordings.append(json_file)
else:
unused_recordings.append((json_file, test_id))
except Exception as e:
parse_errors.append((json_file, str(e)))
# Print summary
print("\nRecording Analysis:")
print(f" Used in CI: {len(used_recordings)}")
print(f" Shared (no ID): {len(shared_recordings)}")
print(f" UNUSED: {len(unused_recordings)}")
print(f" Parse errors: {len(parse_errors)}")
if unused_recordings:
print("\nUnused recordings by test:")
# Group by base test ID
by_test = defaultdict(list)
for file, test_id in unused_recordings:
base = get_base_test_id(test_id)
by_test[base].append(file)
for base_test, files in sorted(by_test.items()):
print(f"\n {base_test}")
print(f" ({len(files)} recording(s))")
for f in files[:3]:
print(f" - {f.relative_to(REPO_ROOT / 'tests/integration')}")
if len(files) > 3:
print(f" ... and {len(files) - 3} more")
if parse_errors:
print("\nParse errors:")
for file, error in parse_errors[:5]:
print(f" {file.relative_to(REPO_ROOT)}: {error}")
if len(parse_errors) > 5:
print(f" ... and {len(parse_errors) - 5} more")
# Perform cleanup
if not dry_run:
print(f"\nDeleting {len(unused_recordings)} unused recordings...")
for file, _ in unused_recordings:
file.unlink()
print(f" Deleted: {file.relative_to(REPO_ROOT / 'tests/integration')}")
print("✅ Cleanup complete")
else:
print("\n(Dry run - no files deleted)")
print("\nTo delete these files, run with --delete")
return len(unused_recordings)
def main():
parser = argparse.ArgumentParser(
description="Clean up unused test recordings based on CI test collection",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
parser.add_argument("--delete", action="store_true", help="Actually delete unused recordings (default is dry-run)")
parser.add_argument("--manifest", help="Save collected test IDs to file (optional)")
args = parser.parse_args()
print("=" * 60)
print("Recording Cleanup Utility")
print("=" * 60)
ci_configs = iter_all_ci_configs()
print(f"\nDetected CI configurations: {len(ci_configs)}")
for config in ci_configs:
print(f" - suite={config['suite']}, setup={config['setup']}")
# Collect test IDs from CI configurations
ci_test_ids, _ = collect_ci_tests()
if args.manifest:
with open(args.manifest, "w") as f:
for test_id in sorted(ci_test_ids):
f.write(f"{test_id}\n")
print(f"\nSaved test IDs to: {args.manifest}")
# Analyze and cleanup
unused_count = analyze_recordings(ci_test_ids, dry_run=not args.delete)
print("\n" + "=" * 60)
if unused_count > 0 and not args.delete:
print("Run with --delete to remove unused recordings")
if __name__ == "__main__":
main()

61
scripts/generate_ci_matrix.py Executable file
View file

@ -0,0 +1,61 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Generate CI test matrix from ci_matrix.json with schedule/input overrides.
This script is used by .github/workflows/integration-tests.yml to generate
the test matrix dynamically based on the CI_MATRIX definition.
"""
import json
from pathlib import Path
CI_MATRIX_FILE = Path(__file__).parent.parent / "tests/integration/ci_matrix.json"
with open(CI_MATRIX_FILE) as f:
matrix_config = json.load(f)
DEFAULT_MATRIX = matrix_config["default"]
SCHEDULE_MATRICES: dict[str, list[dict[str, str]]] = matrix_config.get("schedules", {})
def generate_matrix(schedule="", test_setup=""):
"""
Generate test matrix based on schedule or manual input.
Args:
schedule: GitHub cron schedule string (e.g., "1 0 * * 0" for weekly)
test_setup: Manual test setup input (e.g., "ollama-vision")
Returns:
Matrix configuration as JSON string
"""
# Weekly scheduled test matrices
if schedule and schedule in SCHEDULE_MATRICES:
matrix = SCHEDULE_MATRICES[schedule]
# Manual input for specific setup
elif test_setup == "ollama-vision":
matrix = [{"suite": "vision", "setup": "ollama-vision"}]
# Default: use JSON-defined matrix
else:
matrix = DEFAULT_MATRIX
# GitHub Actions expects {"include": [...]} format
return json.dumps({"include": matrix})
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Generate CI test matrix")
parser.add_argument("--schedule", default="", help="GitHub schedule cron string")
parser.add_argument("--test-setup", default="", help="Manual test setup input")
args = parser.parse_args()
print(generate_matrix(args.schedule, args.test_setup))

View file

@ -227,14 +227,16 @@ if [[ "$STACK_CONFIG" == *"server:"* && "$COLLECT_ONLY" == false ]]; then
echo "=== Starting Llama Stack Server ==="
export LLAMA_STACK_LOG_WIDTH=120
# Configure telemetry collector for server mode
# Use a fixed port for the OTEL collector so the server can connect to it
COLLECTOR_PORT=4317
export LLAMA_STACK_TEST_COLLECTOR_PORT="${COLLECTOR_PORT}"
export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:${COLLECTOR_PORT}"
export OTEL_EXPORTER_OTLP_PROTOCOL="http/protobuf"
export OTEL_BSP_SCHEDULE_DELAY="200"
export OTEL_BSP_EXPORT_TIMEOUT="2000"
# Configure telemetry collector for server mode
# Use a fixed port for the OTEL collector so the server can connect to it
COLLECTOR_PORT=4317
export LLAMA_STACK_TEST_COLLECTOR_PORT="${COLLECTOR_PORT}"
# Disabled: https://github.com/llamastack/llama-stack/issues/4089
#export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:${COLLECTOR_PORT}"
export OTEL_EXPORTER_OTLP_PROTOCOL="http/protobuf"
export OTEL_BSP_SCHEDULE_DELAY="200"
export OTEL_BSP_EXPORT_TIMEOUT="2000"
export OTEL_METRIC_EXPORT_INTERVAL="200"
# remove "server:" from STACK_CONFIG
stack_config=$(echo "$STACK_CONFIG" | sed 's/^server://')
@ -336,7 +338,11 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
DOCKER_ENV_VARS=""
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e LLAMA_STACK_TEST_INFERENCE_MODE=$INFERENCE_MODE"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e LLAMA_STACK_TEST_STACK_CONFIG_TYPE=server"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:${COLLECTOR_PORT}"
# Disabled: https://github.com/llamastack/llama-stack/issues/4089
#DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:${COLLECTOR_PORT}"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_METRIC_EXPORT_INTERVAL=200"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_BSP_SCHEDULE_DELAY=200"
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OTEL_BSP_EXPORT_TIMEOUT=2000"
# Pass through API keys if they exist
[ -n "${TOGETHER_API_KEY:-}" ] && DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e TOGETHER_API_KEY=$TOGETHER_API_KEY"
@ -349,6 +355,10 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then
[ -n "${OLLAMA_URL:-}" ] && DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e OLLAMA_URL=$OLLAMA_URL"
[ -n "${SAFETY_MODEL:-}" ] && DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e SAFETY_MODEL=$SAFETY_MODEL"
if [[ "$TEST_SETUP" == "vllm" ]]; then
DOCKER_ENV_VARS="$DOCKER_ENV_VARS -e VLLM_URL=http://localhost:8000/v1"
fi
# Determine the actual image name (may have localhost/ prefix)
IMAGE_NAME=$(docker images --format "{{.Repository}}:{{.Tag}}" | grep "distribution-$DISTRO:dev$" | head -1)
if [[ -z "$IMAGE_NAME" ]]; then
@ -401,11 +411,6 @@ fi
echo "=== Running Integration Tests ==="
EXCLUDE_TESTS="builtin_tool or safety_with_image or code_interpreter or test_rag"
# Additional exclusions for vllm setup
if [[ "$TEST_SETUP" == "vllm" ]]; then
EXCLUDE_TESTS="${EXCLUDE_TESTS} or test_inference_store_tool_calls"
fi
PYTEST_PATTERN="not( $EXCLUDE_TESTS )"
if [[ -n "$TEST_PATTERN" ]]; then
PYTEST_PATTERN="${PYTEST_PATTERN} and $TEST_PATTERN"

View file

@ -6,7 +6,7 @@
# the root directory of this source tree.
set -e
cd src/llama_stack/ui
cd src/llama_stack_ui
if [ ! -d node_modules ] || [ ! -x node_modules/.bin/prettier ] || [ ! -x node_modules/.bin/eslint ]; then
echo "UI dependencies not installed, skipping prettier/linter check"

View file

@ -3,8 +3,3 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.core.library_client import ( # noqa: F401
AsyncLlamaStackAsLibraryClient,
LlamaStackAsLibraryClient,
)

View file

@ -403,7 +403,7 @@ class OpenAIResponseText(BaseModel):
# Must match type Literals of OpenAIResponseInputToolWebSearch below
WebSearchToolTypes = ["web_search", "web_search_preview", "web_search_preview_2025_03_11"]
WebSearchToolTypes = ["web_search", "web_search_preview", "web_search_preview_2025_03_11", "web_search_2025_08_26"]
@json_schema_type
@ -415,9 +415,12 @@ class OpenAIResponseInputToolWebSearch(BaseModel):
"""
# Must match values of WebSearchToolTypes above
type: Literal["web_search"] | Literal["web_search_preview"] | Literal["web_search_preview_2025_03_11"] = (
"web_search"
)
type: (
Literal["web_search"]
| Literal["web_search_preview"]
| Literal["web_search_preview_2025_03_11"]
| Literal["web_search_2025_08_26"]
) = "web_search"
# TODO: actually use search_context_size somewhere...
search_context_size: str | None = Field(default="medium", pattern="^low|medium|high$")
# TODO: add user_location

View file

@ -34,3 +34,44 @@ class PaginatedResponse(BaseModel):
data: list[dict[str, Any]]
has_more: bool
url: str | None = None
# This is a short term solution to allow inference API to return metrics
# The ideal way to do this is to have a way for all response types to include metrics
# and all metric events logged to the telemetry API to be included with the response
# To do this, we will need to augment all response types with a metrics field.
# We have hit a blocker from stainless SDK that prevents us from doing this.
# The blocker is that if we were to augment the response types that have a data field
# in them like so
# class ListModelsResponse(BaseModel):
# metrics: Optional[List[MetricEvent]] = None
# data: List[Models]
# ...
# The client SDK will need to access the data by using a .data field, which is not
# ergonomic. Stainless SDK does support unwrapping the response type, but it
# requires that the response type to only have a single field.
# We will need a way in the client SDK to signal that the metrics are needed
# and if they are needed, the client SDK has to return the full response type
# without unwrapping it.
@json_schema_type
class MetricInResponse(BaseModel):
"""A metric value included in API responses.
:param metric: The name of the metric
:param value: The numeric value of the metric
:param unit: (Optional) The unit of measurement for the metric value
"""
metric: str
value: int | float
unit: str | None = None
class MetricResponseMixin(BaseModel):
"""Mixin class for API responses that can include metrics.
:param metrics: (Optional) List of metrics associated with the API response
"""
metrics: list[MetricInResponse] | None = None

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
def telemetry_traceable(cls):
"""
Mark a protocol for automatic tracing when telemetry is enabled.
This is a metadata-only decorator with no dependencies on core.
Actual tracing is applied by core routers at runtime if telemetry is enabled.
Usage:
@runtime_checkable
@telemetry_traceable
class MyProtocol(Protocol):
...
"""
cls.__marked_for_tracing__ = True
return cls

View file

@ -6,26 +6,22 @@
from .conversations import (
Conversation,
ConversationCreateRequest,
ConversationDeletedResource,
ConversationItem,
ConversationItemCreateRequest,
ConversationItemDeletedResource,
ConversationItemList,
Conversations,
ConversationUpdateRequest,
Metadata,
)
__all__ = [
"Conversation",
"ConversationCreateRequest",
"ConversationDeletedResource",
"ConversationItem",
"ConversationItemCreateRequest",
"ConversationItemDeletedResource",
"ConversationItemList",
"Conversations",
"ConversationUpdateRequest",
"Metadata",
]

View file

@ -20,8 +20,8 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
)
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
Metadata = dict[str, str]
@ -102,32 +102,6 @@ register_schema(ConversationItem, name="ConversationItem")
# ]
@json_schema_type
class ConversationCreateRequest(BaseModel):
"""Request body for creating a conversation."""
items: list[ConversationItem] | None = Field(
default=[],
description="Initial items to include in the conversation context. You may add up to 20 items at a time.",
max_length=20,
)
metadata: Metadata | None = Field(
default={},
description="Set of 16 key-value pairs that can be attached to an object. Useful for storing additional information",
max_length=16,
)
@json_schema_type
class ConversationUpdateRequest(BaseModel):
"""Request body for updating a conversation."""
metadata: Metadata = Field(
...,
description="Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters.",
)
@json_schema_type
class ConversationDeletedResource(BaseModel):
"""Response for deleted conversation."""
@ -183,7 +157,7 @@ class ConversationItemDeletedResource(BaseModel):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class Conversations(Protocol):
"""Conversations

View file

@ -11,8 +11,8 @@ from fastapi import File, Form, Response, UploadFile
from pydantic import BaseModel, Field
from llama_stack.apis.common.responses import Order
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
@ -102,7 +102,7 @@ class OpenAIFileDeleteResponse(BaseModel):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class Files(Protocol):
"""Files

View file

@ -19,11 +19,10 @@ from pydantic import BaseModel, Field, field_validator
from typing_extensions import TypedDict
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
from llama_stack.apis.common.responses import Order
from llama_stack.apis.common.responses import MetricResponseMixin, Order
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.models import Model
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
from llama_stack.core.telemetry.telemetry import MetricResponseMixin
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.models.llama.datatypes import (
BuiltinTool,
StopReason,
@ -1160,7 +1159,7 @@ class OpenAIEmbeddingsRequestWithExtraBody(BaseModel, extra="allow"):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class InferenceProvider(Protocol):
"""
This protocol defines the interface that should be implemented by all inference providers.

View file

@ -9,9 +9,9 @@ from typing import Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field, field_validator
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
@ -105,7 +105,7 @@ class OpenAIListModelsResponse(BaseModel):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class Models(Protocol):
async def list_models(self) -> ListModelsResponse:
"""List all models.

View file

@ -10,8 +10,8 @@ from typing import Protocol, runtime_checkable
from pydantic import BaseModel, Field, field_validator, model_validator
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
@ -92,7 +92,7 @@ class ListPromptsResponse(BaseModel):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class Prompts(Protocol):
"""Prompts

View file

@ -9,10 +9,10 @@ from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel, Field
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.shields import Shield
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
@ -94,7 +94,7 @@ class ShieldStore(Protocol):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class Safety(Protocol):
"""Safety

View file

@ -8,9 +8,9 @@ from typing import Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
@ -48,7 +48,7 @@ class ListShieldsResponse(BaseModel):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class Shields(Protocol):
@webmethod(route="/shields", method="GET", level=LLAMA_STACK_API_V1)
async def list_shields(self) -> ListShieldsResponse:

View file

@ -5,18 +5,13 @@
# the root directory of this source tree.
from enum import Enum, StrEnum
from typing import Annotated, Any, Literal, Protocol
from typing import Annotated, Any, Literal
from pydantic import BaseModel, Field, field_validator
from typing_extensions import runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class RRFRanker(BaseModel):
"""
Reciprocal Rank Fusion (RRF) ranker configuration.
@ -30,7 +25,6 @@ class RRFRanker(BaseModel):
impact_factor: float = Field(default=60.0, gt=0.0) # default of 60 for optimal performance
@json_schema_type
class WeightedRanker(BaseModel):
"""
Weighted ranker configuration that combines vector and keyword scores.
@ -55,10 +49,8 @@ Ranker = Annotated[
RRFRanker | WeightedRanker,
Field(discriminator="type"),
]
register_schema(Ranker, name="Ranker")
@json_schema_type
class RAGDocument(BaseModel):
"""
A document to be used for document ingestion in the RAG Tool.
@ -75,7 +67,6 @@ class RAGDocument(BaseModel):
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryResult(BaseModel):
"""Result of a RAG query containing retrieved content and metadata.
@ -87,7 +78,6 @@ class RAGQueryResult(BaseModel):
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryGenerator(Enum):
"""Types of query generators for RAG systems.
@ -101,7 +91,6 @@ class RAGQueryGenerator(Enum):
custom = "custom"
@json_schema_type
class RAGSearchMode(StrEnum):
"""
Search modes for RAG query retrieval:
@ -115,7 +104,6 @@ class RAGSearchMode(StrEnum):
HYBRID = "hybrid"
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
"""Configuration for the default RAG query generator.
@ -127,7 +115,6 @@ class DefaultRAGQueryGeneratorConfig(BaseModel):
separator: str = " "
@json_schema_type
class LLMRAGQueryGeneratorConfig(BaseModel):
"""Configuration for the LLM-based RAG query generator.
@ -145,10 +132,8 @@ RAGQueryGeneratorConfig = Annotated[
DefaultRAGQueryGeneratorConfig | LLMRAGQueryGeneratorConfig,
Field(discriminator="type"),
]
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
@json_schema_type
class RAGQueryConfig(BaseModel):
"""
Configuration for the RAG query generation.
@ -181,38 +166,3 @@ class RAGQueryConfig(BaseModel):
if len(v) == 0:
raise ValueError("chunk_template must not be empty")
return v
@runtime_checkable
@trace_protocol
class RAGToolRuntime(Protocol):
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST", level=LLAMA_STACK_API_V1)
async def insert(
self,
documents: list[RAGDocument],
vector_store_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system.
:param documents: List of documents to index in the RAG system
:param vector_store_id: ID of the vector database to store the document embeddings
:param chunk_size_in_tokens: (Optional) Size in tokens for document chunking during indexing
"""
...
@webmethod(route="/tool-runtime/rag-tool/query", method="POST", level=LLAMA_STACK_API_V1)
async def query(
self,
content: InterleavedContent,
vector_store_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent.
:param content: The query content to search for in the indexed documents
:param vector_store_ids: List of vector database IDs to search within
:param query_config: (Optional) Configuration parameters for the query operation
:returns: RAGQueryResult containing the retrieved content and metadata
"""
...

View file

@ -11,13 +11,11 @@ from pydantic import BaseModel
from typing_extensions import runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
from .rag_tool import RAGToolRuntime
@json_schema_type
class ToolDef(BaseModel):
@ -109,7 +107,7 @@ class ListToolDefsResponse(BaseModel):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class ToolGroups(Protocol):
@webmethod(route="/toolgroups", method="POST", level=LLAMA_STACK_API_V1)
async def register_tool_group(
@ -191,12 +189,10 @@ class SpecialToolGroup(Enum):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class ToolRuntime(Protocol):
tool_store: ToolStore | None = None
rag_tool: RAGToolRuntime | None = None
# TODO: This needs to be renamed once OPEN API generator name conflict issue is fixed.
@webmethod(route="/tool-runtime/list-tools", method="GET", level=LLAMA_STACK_API_V1)
async def list_runtime_tools(

View file

@ -13,10 +13,10 @@ from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from fastapi import Body
from pydantic import BaseModel, Field
from llama_stack.apis.common.tracing import telemetry_traceable
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.core.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema
@ -260,7 +260,7 @@ class VectorStoreSearchResponsePage(BaseModel):
"""
object: str = "vector_store.search_results.page"
search_query: str
search_query: list[str]
data: list[VectorStoreSearchResponse]
has_more: bool = False
next_page: str | None = None
@ -478,7 +478,7 @@ class OpenAICreateVectorStoreRequestWithExtraBody(BaseModel, extra="allow"):
name: str | None = None
file_ids: list[str] | None = None
expires_after: dict[str, Any] | None = None
chunking_strategy: dict[str, Any] | None = None
chunking_strategy: VectorStoreChunkingStrategy | None = None
metadata: dict[str, Any] | None = None
@ -502,7 +502,7 @@ class VectorStoreTable(Protocol):
@runtime_checkable
@trace_protocol
@telemetry_traceable
class VectorIO(Protocol):
vector_store_table: VectorStoreTable | None = None

View file

@ -46,6 +46,10 @@ class StackListDeps(Subcommand):
def _run_stack_list_deps_command(self, args: argparse.Namespace) -> None:
# always keep implementation completely silo-ed away from CLI so CLI
# can be fast to load and reduces dependencies
if not args.config and not args.providers:
self.parser.print_help()
self.parser.exit()
from ._list_deps import run_stack_list_deps_command
return run_stack_list_deps_command(args)

View file

@ -9,48 +9,69 @@ from pathlib import Path
from llama_stack.cli.subcommand import Subcommand
from llama_stack.cli.table import print_table
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
class StackListBuilds(Subcommand):
"""List built stacks in .llama/distributions directory"""
"""List available distributions (both built-in and custom)"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"list",
prog="llama stack list",
description="list the build stacks",
description="list available distributions",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._list_stack_command)
def _get_distribution_dirs(self) -> dict[str, Path]:
"""Return a dictionary of distribution names and their paths"""
distributions = {}
dist_dir = Path.home() / ".llama" / "distributions"
def _get_distribution_dirs(self) -> dict[str, tuple[Path, str]]:
"""Return a dictionary of distribution names and their paths with source type
Returns:
dict mapping distro name to (path, source_type) where source_type is 'built-in' or 'custom'
"""
distributions = {}
# Get built-in distributions from source code
distro_dir = Path(__file__).parent.parent.parent / "distributions"
if distro_dir.exists():
for stack_dir in distro_dir.iterdir():
if stack_dir.is_dir() and not stack_dir.name.startswith(".") and not stack_dir.name.startswith("__"):
distributions[stack_dir.name] = (stack_dir, "built-in")
# Get custom/run distributions from ~/.llama/distributions
# These override built-in ones if they have the same name
if DISTRIBS_BASE_DIR.exists():
for stack_dir in DISTRIBS_BASE_DIR.iterdir():
if stack_dir.is_dir() and not stack_dir.name.startswith("."):
# Clean up the name (remove llamastack- prefix if present)
name = stack_dir.name.replace("llamastack-", "")
distributions[name] = (stack_dir, "custom")
if dist_dir.exists():
for stack_dir in dist_dir.iterdir():
if stack_dir.is_dir():
distributions[stack_dir.name] = stack_dir
return distributions
def _list_stack_command(self, args: argparse.Namespace) -> None:
distributions = self._get_distribution_dirs()
if not distributions:
print("No stacks found in ~/.llama/distributions")
print("No distributions found")
return
headers = ["Stack Name", "Path"]
headers.extend(["Build Config", "Run Config"])
headers = ["Stack Name", "Source", "Path", "Build Config", "Run Config"]
rows = []
for name, path in distributions.items():
row = [name, str(path)]
for name, (path, source_type) in sorted(distributions.items()):
row = [name, source_type, str(path)]
# Check for build and run config files
build_config = "Yes" if (path / f"{name}-build.yaml").exists() else "No"
run_config = "Yes" if (path / f"{name}-run.yaml").exists() else "No"
# For built-in distributions, configs are named build.yaml and run.yaml
# For custom distributions, configs are named {name}-build.yaml and {name}-run.yaml
if source_type == "built-in":
build_config = "Yes" if (path / "build.yaml").exists() else "No"
run_config = "Yes" if (path / "run.yaml").exists() else "No"
else:
build_config = "Yes" if (path / f"{name}-build.yaml").exists() else "No"
run_config = "Yes" if (path / f"{name}-run.yaml").exists() else "No"
row.extend([build_config, run_config])
rows.append(row)
print_table(rows, headers, separate_rows=True)

View file

@ -253,7 +253,7 @@ class StackRun(Subcommand):
)
return
ui_dir = REPO_ROOT / "llama_stack" / "ui"
ui_dir = REPO_ROOT / "llama_stack_ui"
logs_dir = Path("~/.llama/ui/logs").expanduser()
try:
# Create logs directory if it doesn't exist

View file

@ -18,14 +18,21 @@ from typing import Any, TypeVar, Union, get_args, get_origin
import httpx
import yaml
from fastapi import Response as FastAPIResponse
from llama_stack_client import (
NOT_GIVEN,
APIResponse,
AsyncAPIResponse,
AsyncLlamaStackClient,
AsyncStream,
LlamaStackClient,
)
try:
from llama_stack_client import (
NOT_GIVEN,
APIResponse,
AsyncAPIResponse,
AsyncLlamaStackClient,
AsyncStream,
LlamaStackClient,
)
except ImportError as e:
raise ImportError(
"llama-stack-client is not installed. Please install it with `uv pip install llama-stack[client]`."
) from e
from pydantic import BaseModel, TypeAdapter
from rich.console import Console
from termcolor import cprint

View file

@ -397,6 +397,18 @@ async def instantiate_provider(
impl.__provider_spec__ = provider_spec
impl.__provider_config__ = config
# Apply tracing if telemetry is enabled and any base class has __marked_for_tracing__ marker
if run_config.telemetry.enabled:
traced_classes = [
base for base in reversed(impl.__class__.__mro__) if getattr(base, "__marked_for_tracing__", False)
]
if traced_classes:
from llama_stack.core.telemetry.trace_protocol import trace_protocol
for cls in traced_classes:
trace_protocol(cls)
protocols = api_protocol_map_for_compliance_check(run_config)
additional_protocols = additional_protocols_map()
# TODO: check compliance for special tool groups

View file

@ -45,6 +45,7 @@ async def get_routing_table_impl(
raise ValueError(f"API {api.value} not found in router map")
impl = api_to_tables[api.value](impls_by_provider_id, dist_registry, policy)
await impl.initialize()
return impl
@ -92,5 +93,6 @@ async def get_auto_router_impl(
api_to_dep_impl["safety_config"] = run_config.safety
impl = api_to_routers[api.value](routing_table, **api_to_dep_impl)
await impl.initialize()
return impl

View file

@ -190,7 +190,7 @@ class InferenceRouter(Inference):
response = await provider.openai_completion(params)
response.model = request_model_id
if self.telemetry_enabled:
if self.telemetry_enabled and response.usage is not None:
metrics = self._construct_metrics(
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,
@ -253,7 +253,7 @@ class InferenceRouter(Inference):
if self.store:
asyncio.create_task(self.store.store_chat_completion(response, params.messages))
if self.telemetry_enabled:
if self.telemetry_enabled and response.usage is not None:
metrics = self._construct_metrics(
prompt_tokens=response.usage.prompt_tokens,
completion_tokens=response.usage.completion_tokens,

View file

@ -8,14 +8,9 @@ from typing import Any
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
)
from llama_stack.apis.tools import (
ListToolDefsResponse,
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
RAGToolRuntime,
ToolRuntime,
)
from llama_stack.log import get_logger
@ -26,36 +21,6 @@ logger = get_logger(name=__name__, category="core::routers")
class ToolRuntimeRouter(ToolRuntime):
class RagToolImpl(RAGToolRuntime):
def __init__(
self,
routing_table: ToolGroupsRoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
self.routing_table = routing_table
async def query(
self,
content: InterleavedContent,
vector_store_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_store_ids}")
provider = await self.routing_table.get_provider_impl("knowledge_search")
return await provider.query(content, vector_store_ids, query_config)
async def insert(
self,
documents: list[RAGDocument],
vector_store_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
logger.debug(
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_store_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
)
provider = await self.routing_table.get_provider_impl("insert_into_memory")
return await provider.insert(documents, vector_store_id, chunk_size_in_tokens)
def __init__(
self,
routing_table: ToolGroupsRoutingTable,
@ -63,11 +28,6 @@ class ToolRuntimeRouter(ToolRuntime):
logger.debug("Initializing ToolRuntimeRouter")
self.routing_table = routing_table
# HACK ALERT this should be in sync with "get_all_api_endpoints()"
self.rag_tool = self.RagToolImpl(routing_table)
for method in ("query", "insert"):
setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method))
async def initialize(self) -> None:
logger.debug("ToolRuntimeRouter.initialize")
pass

View file

@ -20,6 +20,8 @@ from llama_stack.apis.vector_io import (
SearchRankingOptions,
VectorIO,
VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyStatic,
VectorStoreChunkingStrategyStaticConfig,
VectorStoreDeleteResponse,
VectorStoreFileBatchObject,
VectorStoreFileContentsResponse,
@ -167,6 +169,13 @@ class VectorIORouter(VectorIO):
if embedding_dimension is not None:
params.model_extra["embedding_dimension"] = embedding_dimension
# Set chunking strategy explicitly if not provided
if params.chunking_strategy is None or params.chunking_strategy.type == "auto":
# actualize the chunking strategy to static
params.chunking_strategy = VectorStoreChunkingStrategyStatic(
static=VectorStoreChunkingStrategyStaticConfig()
)
return await provider.openai_create_vector_store(params)
async def openai_list_vector_stores(
@ -283,6 +292,8 @@ class VectorIORouter(VectorIO):
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_attach_file_to_vector_store: {vector_store_id}, {file_id}")
if chunking_strategy is None or chunking_strategy.type == "auto":
chunking_strategy = VectorStoreChunkingStrategyStatic(static=VectorStoreChunkingStrategyStaticConfig())
provider = await self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_attach_file_to_vector_store(
vector_store_id=vector_store_id,

View file

@ -13,7 +13,6 @@ from aiohttp import hdrs
from starlette.routing import Route
from llama_stack.apis.datatypes import Api, ExternalApiSpec
from llama_stack.apis.tools import RAGToolRuntime, SpecialToolGroup
from llama_stack.core.resolver import api_protocol_map
from llama_stack.schema_utils import WebMethod
@ -25,33 +24,16 @@ RouteImpls = dict[str, PathImpl]
RouteMatch = tuple[EndpointFunc, PathParams, str, WebMethod]
def toolgroup_protocol_map():
return {
SpecialToolGroup.rag_tool: RAGToolRuntime,
}
def get_all_api_routes(
external_apis: dict[Api, ExternalApiSpec] | None = None,
) -> dict[Api, list[tuple[Route, WebMethod]]]:
apis = {}
protocols = api_protocol_map(external_apis)
toolgroup_protocols = toolgroup_protocol_map()
for api, protocol in protocols.items():
routes = []
protocol_methods = inspect.getmembers(protocol, predicate=inspect.isfunction)
# HACK ALERT
if api == Api.tool_runtime:
for tool_group in SpecialToolGroup:
sub_protocol = toolgroup_protocols[tool_group]
sub_protocol_methods = inspect.getmembers(sub_protocol, predicate=inspect.isfunction)
for name, method in sub_protocol_methods:
if not hasattr(method, "__webmethod__"):
continue
protocol_methods.append((f"{tool_group.value}.{name}", method))
for name, method in protocol_methods:
# Get all webmethods for this method (supports multiple decorators)
webmethods = getattr(method, "__webmethods__", [])

View file

@ -31,7 +31,7 @@ from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
from llama_stack.core.datatypes import Provider, SafetyConfig, StackRunConfig, VectorStoresConfig
@ -78,7 +78,6 @@ class LlamaStack(
Inspect,
ToolGroups,
ToolRuntime,
RAGToolRuntime,
Files,
Prompts,
Conversations,

View file

@ -163,47 +163,6 @@ class MetricEvent(EventCommon):
unit: str
@json_schema_type
class MetricInResponse(BaseModel):
"""A metric value included in API responses.
:param metric: The name of the metric
:param value: The numeric value of the metric
:param unit: (Optional) The unit of measurement for the metric value
"""
metric: str
value: int | float
unit: str | None = None
# This is a short term solution to allow inference API to return metrics
# The ideal way to do this is to have a way for all response types to include metrics
# and all metric events logged to the telemetry API to be included with the response
# To do this, we will need to augment all response types with a metrics field.
# We have hit a blocker from stainless SDK that prevents us from doing this.
# The blocker is that if we were to augment the response types that have a data field
# in them like so
# class ListModelsResponse(BaseModel):
# metrics: Optional[List[MetricEvent]] = None
# data: List[Models]
# ...
# The client SDK will need to access the data by using a .data field, which is not
# ergonomic. Stainless SDK does support unwrapping the response type, but it
# requires that the response type to only have a single field.
# We will need a way in the client SDK to signal that the metrics are needed
# and if they are needed, the client SDK has to return the full response type
# without unwrapping it.
class MetricResponseMixin(BaseModel):
"""Mixin class for API responses that can include metrics.
:param metrics: (Optional) List of metrics associated with the API response
"""
metrics: list[MetricInResponse] | None = None
@json_schema_type
class StructuredLogType(Enum):
"""The type of structured log event payload.
@ -427,6 +386,7 @@ _GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
"counters": {},
"gauges": {},
"up_down_counters": {},
"histograms": {},
}
_global_lock = threading.Lock()
_TRACER_PROVIDER = None
@ -540,6 +500,16 @@ class Telemetry:
)
return cast(metrics.ObservableGauge, _GLOBAL_STORAGE["gauges"][name])
def _get_or_create_histogram(self, name: str, unit: str) -> metrics.Histogram:
assert self.meter is not None
if name not in _GLOBAL_STORAGE["histograms"]:
_GLOBAL_STORAGE["histograms"][name] = self.meter.create_histogram(
name=name,
unit=unit,
description=f"Histogram for {name}",
)
return cast(metrics.Histogram, _GLOBAL_STORAGE["histograms"][name])
def _log_metric(self, event: MetricEvent) -> None:
# Add metric as an event to the current span
try:
@ -571,7 +541,16 @@ class Telemetry:
# Log to OpenTelemetry meter if available
if self.meter is None:
return
if isinstance(event.value, int):
# Use histograms for token-related metrics (per-request measurements)
# Use counters for other cumulative metrics
token_metrics = {"prompt_tokens", "completion_tokens", "total_tokens"}
if event.metric in token_metrics:
# Token metrics are per-request measurements, use histogram
histogram = self._get_or_create_histogram(event.metric, event.unit)
histogram.record(event.value, attributes=_clean_attributes(event.attributes))
elif isinstance(event.value, int):
counter = self._get_or_create_counter(event.metric, event.unit)
counter.add(event.value, attributes=_clean_attributes(event.attributes))
elif isinstance(event.value, float):

View file

@ -129,6 +129,15 @@ def trace_protocol[T: type[Any]](cls: T) -> T:
else:
return sync_wrapper
# Wrap methods on the class itself (for classes applied at runtime)
# Skip if already wrapped (indicated by __wrapped__ attribute)
for name, method in vars(cls).items():
if inspect.isfunction(method) and not name.startswith("_"):
if not hasattr(method, "__wrapped__"):
wrapped = trace_method(method)
setattr(cls, name, wrapped) # noqa: B010
# Also set up __init_subclass__ for future subclasses
original_init_subclass = cast(Callable[..., Any] | None, getattr(cls, "__init_subclass__", None))
def __init_subclass__(cls_child: type[Any], **kwargs: Any) -> None: # noqa: N807

View file

@ -1,11 +0,0 @@
# More info on playground configuration can be found here:
# https://llama-stack.readthedocs.io/en/latest/playground
FROM python:3.12-slim
WORKDIR /app
COPY . /app/
RUN /usr/local/bin/python -m pip install --upgrade pip && \
/usr/local/bin/pip3 install -r requirements.txt
EXPOSE 8501
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]

View file

@ -1,50 +0,0 @@
# (Experimental) LLama Stack UI
## Docker Setup
:warning: This is a work in progress.
## Developer Setup
1. Start up Llama Stack API server. More details [here](https://llamastack.github.io/latest/getting_started/index.htmll).
```
llama stack list-deps together | xargs -L1 uv pip install
llama stack run together
```
2. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
```bash
llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
```
```bash
llama-stack-client benchmarks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
```
3. Start Streamlit UI
```bash
uv run --with ".[ui]" streamlit run llama_stack.core/ui/app.py
```
## Environment Variables
| Environment Variable | Description | Default Value |
|----------------------------|------------------------------------|---------------------------|
| LLAMA_STACK_ENDPOINT | The endpoint for the Llama Stack | http://localhost:8321 |
| FIREWORKS_API_KEY | API key for Fireworks provider | (empty string) |
| TOGETHER_API_KEY | API key for Together provider | (empty string) |
| SAMBANOVA_API_KEY | API key for SambaNova provider | (empty string) |
| OPENAI_API_KEY | API key for OpenAI provider | (empty string) |

View file

@ -1,55 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
def main():
# Evaluation pages
application_evaluation_page = st.Page(
"page/evaluations/app_eval.py",
title="Evaluations (Scoring)",
icon="📊",
default=False,
)
native_evaluation_page = st.Page(
"page/evaluations/native_eval.py",
title="Evaluations (Generation + Scoring)",
icon="📊",
default=False,
)
# Playground pages
chat_page = st.Page("page/playground/chat.py", title="Chat", icon="💬", default=True)
rag_page = st.Page("page/playground/rag.py", title="RAG", icon="💬", default=False)
tool_page = st.Page("page/playground/tools.py", title="Tools", icon="🛠", default=False)
# Distribution pages
resources_page = st.Page("page/distribution/resources.py", title="Resources", icon="🔍", default=False)
provider_page = st.Page(
"page/distribution/providers.py",
title="API Providers",
icon="🔍",
default=False,
)
pg = st.navigation(
{
"Playground": [
chat_page,
rag_page,
tool_page,
application_evaluation_page,
native_evaluation_page,
],
"Inspect": [provider_page, resources_page],
},
expanded=False,
)
pg.run()
if __name__ == "__main__":
main()

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,32 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from llama_stack_client import LlamaStackClient
class LlamaStackApi:
def __init__(self):
self.client = LlamaStackClient(
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:8321"),
provider_data={
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
"together_api_key": os.environ.get("TOGETHER_API_KEY", ""),
"sambanova_api_key": os.environ.get("SAMBANOVA_API_KEY", ""),
"openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
"tavily_search_api_key": os.environ.get("TAVILY_SEARCH_API_KEY", ""),
},
)
def run_scoring(self, row, scoring_function_ids: list[str], scoring_params: dict | None):
"""Run scoring on a single row"""
if not scoring_params:
scoring_params = dict.fromkeys(scoring_function_ids)
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
llama_stack_api = LlamaStackApi()

View file

@ -1,42 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import os
import pandas as pd
import streamlit as st
def process_dataset(file):
if file is None:
return "No file uploaded", None
try:
# Determine file type and read accordingly
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext == ".csv":
df = pd.read_csv(file)
elif file_ext in [".xlsx", ".xls"]:
df = pd.read_excel(file)
else:
return "Unsupported file format. Please upload a CSV or Excel file.", None
return df
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def data_url_from_file(file) -> str:
file_content = file.getvalue()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type = file.type
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,18 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def datasets():
st.header("Datasets")
datasets_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()}
if len(datasets_info) > 0:
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
st.json(datasets_info[selected_dataset], expanded=True)

View file

@ -1,20 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def benchmarks():
# Benchmarks Section
st.header("Benchmarks")
benchmarks_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.benchmarks.list()}
if len(benchmarks_info) > 0:
selected_benchmark = st.selectbox("Select an eval task", list(benchmarks_info.keys()), key="benchmark_inspect")
st.json(benchmarks_info[selected_benchmark], expanded=True)

View file

@ -1,18 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def models():
# Models Section
st.header("Models")
models_info = {m.id: m.model_dump() for m in llama_stack_api.client.models.list()}
selected_model = st.selectbox("Select a model", list(models_info.keys()))
st.json(models_info[selected_model])

View file

@ -1,27 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def providers():
st.header("🔍 API Providers")
apis_providers_lst = llama_stack_api.client.providers.list()
api_to_providers = {}
for api_provider in apis_providers_lst:
if api_provider.api in api_to_providers:
api_to_providers[api_provider.api].append(api_provider)
else:
api_to_providers[api_provider.api] = [api_provider]
for api in api_to_providers.keys():
st.markdown(f"###### {api}")
st.dataframe([x.to_dict() for x in api_to_providers[api]], width=500)
providers()

View file

@ -1,48 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from streamlit_option_menu import option_menu
from llama_stack.core.ui.page.distribution.datasets import datasets
from llama_stack.core.ui.page.distribution.eval_tasks import benchmarks
from llama_stack.core.ui.page.distribution.models import models
from llama_stack.core.ui.page.distribution.scoring_functions import scoring_functions
from llama_stack.core.ui.page.distribution.shields import shields
def resources_page():
options = [
"Models",
"Shields",
"Scoring Functions",
"Datasets",
"Benchmarks",
]
icons = ["magic", "shield", "file-bar-graph", "database", "list-task"]
selected_resource = option_menu(
None,
options,
icons=icons,
orientation="horizontal",
styles={
"nav-link": {
"font-size": "12px",
},
},
)
if selected_resource == "Benchmarks":
benchmarks()
elif selected_resource == "Datasets":
datasets()
elif selected_resource == "Models":
models()
elif selected_resource == "Scoring Functions":
scoring_functions()
elif selected_resource == "Shields":
shields()
resources_page()

View file

@ -1,18 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def scoring_functions():
st.header("Scoring Functions")
scoring_functions_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.scoring_functions.list()}
selected_scoring_function = st.selectbox("Select a scoring function", list(scoring_functions_info.keys()))
st.json(scoring_functions_info[selected_scoring_function], expanded=True)

View file

@ -1,19 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def shields():
# Shields Section
st.header("Shields")
shields_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()}
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
st.json(shields_info[selected_shield])

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,143 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
from llama_stack.core.ui.modules.utils import process_dataset
def application_evaluation_page():
st.set_page_config(page_title="Evaluations (Scoring)", page_icon="🦙")
st.title("📊 Evaluations (Scoring)")
# File uploader
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx", "xls"])
if uploaded_file is None:
st.error("No file uploaded")
return
# Process uploaded file
df = process_dataset(uploaded_file)
if df is None:
st.error("Error processing file")
return
# Display dataset information
st.success("Dataset loaded successfully!")
# Display dataframe preview
st.subheader("Dataset Preview")
st.dataframe(df)
# Select Scoring Functions to Run Evaluation On
st.subheader("Select Scoring Functions")
scoring_functions = llama_stack_api.client.scoring_functions.list()
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
scoring_functions_names = list(scoring_functions.keys())
selected_scoring_functions = st.multiselect(
"Choose one or more scoring functions",
options=scoring_functions_names,
help="Choose one or more scoring functions.",
)
available_models = llama_stack_api.client.models.list()
available_models = [m.identifier for m in available_models]
scoring_params = {}
if selected_scoring_functions:
st.write("Selected:")
for scoring_fn_id in selected_scoring_functions:
scoring_fn = scoring_functions[scoring_fn_id]
st.write(f"- **{scoring_fn_id}**: {scoring_fn.description}")
new_params = None
if scoring_fn.params:
new_params = {}
for param_name, param_value in scoring_fn.params.to_dict().items():
if param_name == "type":
new_params[param_name] = param_value
continue
if param_name == "judge_model":
value = st.selectbox(
f"Select **{param_name}** for {scoring_fn_id}",
options=available_models,
index=0,
key=f"{scoring_fn_id}_{param_name}",
)
new_params[param_name] = value
else:
value = st.text_area(
f"Enter value for **{param_name}** in {scoring_fn_id} in valid JSON format",
value=json.dumps(param_value, indent=2),
height=80,
)
try:
new_params[param_name] = json.loads(value)
except json.JSONDecodeError:
st.error(f"Invalid JSON for **{param_name}** in {scoring_fn_id}")
st.json(new_params)
scoring_params[scoring_fn_id] = new_params
# Add run evaluation button & slider
total_rows = len(df)
num_rows = st.slider("Number of rows to evaluate", 1, total_rows, total_rows)
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = df.to_dict(orient="records")
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
score_res = llama_stack_api.run_scoring(
r,
scoring_function_ids=selected_scoring_functions,
scoring_params=scoring_params,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for fn_id in selected_scoring_functions:
if fn_id not in output_res:
output_res[fn_id] = []
output_res[fn_id].append(score_res.results[fn_id].score_rows[0])
# Display current row results using separate containers
progress_text_container.write(f"Expand to see current processed result ({i + 1} / {len(rows)})")
results_container.json(
score_res.to_json(),
expanded=2,
)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
application_evaluation_page()

View file

@ -1,253 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
def select_benchmark_1():
# Select Benchmarks
st.subheader("1. Choose An Eval Task")
benchmarks = llama_stack_api.client.benchmarks.list()
benchmarks = {et.identifier: et for et in benchmarks}
benchmarks_names = list(benchmarks.keys())
selected_benchmark = st.selectbox(
"Choose an eval task.",
options=benchmarks_names,
help="Choose an eval task. Each eval task is parameterized by a dataset, and list of scoring functions.",
)
with st.expander("View Eval Task"):
st.json(benchmarks[selected_benchmark], expanded=True)
st.session_state["selected_benchmark"] = selected_benchmark
st.session_state["benchmarks"] = benchmarks
if st.button("Confirm", key="confirm_1"):
st.session_state["selected_benchmark_1_next"] = True
def define_eval_candidate_2():
if not st.session_state.get("selected_benchmark_1_next", None):
return
st.subheader("2. Define Eval Candidate")
st.info(
"""
Define the configurations for the evaluation candidate model or agent used for generation.
Select "model" if you want to run generation with inference API, or "agent" if you want to run generation with agent API through specifying AgentConfig.
"""
)
with st.expander("Define Eval Candidate", expanded=True):
# Define Eval Candidate
candidate_type = st.radio("Candidate Type", ["model", "agent"])
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
# Sampling Parameters
st.markdown("##### Sampling Parameters")
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
if candidate_type == "model":
if temperature > 0.0:
strategy = {
"type": "top_p",
"temperature": temperature,
"top_p": top_p,
}
else:
strategy = {"type": "greedy"}
eval_candidate = {
"type": "model",
"model": selected_model,
"sampling_params": {
"strategy": strategy,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
}
elif candidate_type == "agent":
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
tools_json = st.text_area(
"Tools Configuration (JSON)",
value=json.dumps(
[
{
"type": "brave_search",
"engine": "brave",
"api_key": "ENTER_BRAVE_API_KEY_HERE",
}
]
),
help="Enter tool configurations in JSON format. Each tool should have a name, description, and parameters.",
height=200,
)
try:
tools = json.loads(tools_json)
except json.JSONDecodeError:
st.error("Invalid JSON format for tools configuration")
tools = []
eval_candidate = {
"type": "agent",
"config": {
"model": selected_model,
"instructions": system_prompt,
"tools": tools,
"tool_choice": "auto",
"tool_prompt_format": "json",
"input_shields": [],
"output_shields": [],
"enable_session_persistence": False,
},
}
st.session_state["eval_candidate"] = eval_candidate
if st.button("Confirm", key="confirm_2"):
st.session_state["selected_eval_candidate_2_next"] = True
def run_evaluation_3():
if not st.session_state.get("selected_eval_candidate_2_next", None):
return
st.subheader("3. Run Evaluation")
# Add info box to explain configurations being used
st.info(
"""
Review the configurations that will be used for this evaluation run, make any necessary changes, and then click the "Run Evaluation" button.
"""
)
selected_benchmark = st.session_state["selected_benchmark"]
benchmarks = st.session_state["benchmarks"]
eval_candidate = st.session_state["eval_candidate"]
dataset_id = benchmarks[selected_benchmark].dataset_id
rows = llama_stack_api.client.datasets.iterrows(
dataset_id=dataset_id,
)
total_rows = len(rows.data)
# Add number of examples control
num_rows = st.number_input(
"Number of Examples to Evaluate",
min_value=1,
max_value=total_rows,
value=5,
help="Number of examples from the dataset to evaluate. ",
)
benchmark_config = {
"type": "benchmark",
"eval_candidate": eval_candidate,
"scoring_params": {},
}
with st.expander("View Evaluation Task", expanded=True):
st.json(benchmarks[selected_benchmark], expanded=True)
with st.expander("View Evaluation Task Configuration", expanded=True):
st.json(benchmark_config, expanded=True)
# Add run button and handle evaluation
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = rows.data
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
eval_res = llama_stack_api.client.eval.evaluate_rows(
benchmark_id=selected_benchmark,
input_rows=[r],
scoring_functions=benchmarks[selected_benchmark].scoring_functions,
benchmark_config=benchmark_config,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for k in eval_res.generations[0].keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(eval_res.generations[0][k])
for scoring_fn in benchmarks[selected_benchmark].scoring_functions:
if scoring_fn not in output_res:
output_res[scoring_fn] = []
output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0])
progress_text_container.write(f"Expand to see current processed result ({i + 1} / {len(rows)})")
results_container.json(eval_res, expanded=2)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
def native_evaluation_page():
st.set_page_config(page_title="Evaluations (Generation + Scoring)", page_icon="🦙")
st.title("📊 Evaluations (Generation + Scoring)")
select_benchmark_1()
define_eval_candidate_2()
run_evaluation_3()
native_evaluation_page()

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,134 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack.core.ui.modules.api import llama_stack_api
# Sidebar configurations
with st.sidebar:
st.header("Configuration")
available_models = llama_stack_api.client.models.list()
available_models = [
model.id
for model in available_models
if model.custom_metadata and model.custom_metadata.get("model_type") == "llm"
]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
stream = st.checkbox("Stream", value=True)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Main chat interface
st.title("🦙 Chat")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Example: What is Llama Stack?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
if temperature > 0.0:
strategy = {
"type": "top_p",
"temperature": temperature,
"top_p": top_p,
}
else:
strategy = {"type": "greedy"}
response = llama_stack_api.client.inference.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
model_id=selected_model,
stream=stream,
sampling_params={
"strategy": strategy,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
)
if stream:
for chunk in response:
if chunk.event.event_type == "progress":
full_response += chunk.event.delta.text
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
else:
full_response = response.completion_message.content
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})

View file

@ -1,352 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import enum
import json
import uuid
import streamlit as st
from llama_stack_client import Agent
from llama_stack_client.lib.agents.react.agent import ReActAgent
from llama_stack_client.lib.agents.react.tool_parser import ReActOutput
from llama_stack.core.ui.modules.api import llama_stack_api
class AgentType(enum.Enum):
REGULAR = "Regular"
REACT = "ReAct"
def tool_chat_page():
st.title("🛠 Tools")
client = llama_stack_api.client
models = client.models.list()
model_list = [model.identifier for model in models if model.api_model_type == "llm"]
tool_groups = client.toolgroups.list()
tool_groups_list = [tool_group.identifier for tool_group in tool_groups]
mcp_tools_list = [tool for tool in tool_groups_list if tool.startswith("mcp::")]
builtin_tools_list = [tool for tool in tool_groups_list if not tool.startswith("mcp::")]
selected_vector_stores = []
def reset_agent():
st.session_state.clear()
st.cache_resource.clear()
with st.sidebar:
st.title("Configuration")
st.subheader("Model")
model = st.selectbox(label="Model", options=model_list, on_change=reset_agent, label_visibility="collapsed")
st.subheader("Available ToolGroups")
toolgroup_selection = st.pills(
label="Built-in tools",
options=builtin_tools_list,
selection_mode="multi",
on_change=reset_agent,
format_func=lambda tool: "".join(tool.split("::")[1:]),
help="List of built-in tools from your llama stack server.",
)
if "builtin::rag" in toolgroup_selection:
vector_stores = llama_stack_api.client.vector_stores.list() or []
if not vector_stores:
st.info("No vector databases available for selection.")
vector_stores = [vector_store.identifier for vector_store in vector_stores]
selected_vector_stores = st.multiselect(
label="Select Document Collections to use in RAG queries",
options=vector_stores,
on_change=reset_agent,
)
mcp_selection = st.pills(
label="MCP Servers",
options=mcp_tools_list,
selection_mode="multi",
on_change=reset_agent,
format_func=lambda tool: "".join(tool.split("::")[1:]),
help="List of MCP servers registered to your llama stack server.",
)
toolgroup_selection.extend(mcp_selection)
grouped_tools = {}
total_tools = 0
for toolgroup_id in toolgroup_selection:
tools = client.tools.list(toolgroup_id=toolgroup_id)
grouped_tools[toolgroup_id] = [tool.name for tool in tools]
total_tools += len(tools)
st.markdown(f"Active Tools: 🛠 {total_tools}")
for group_id, tools in grouped_tools.items():
with st.expander(f"🔧 Tools from `{group_id}`"):
for idx, tool in enumerate(tools, start=1):
st.markdown(f"{idx}. `{tool.split(':')[-1]}`")
st.subheader("Agent Configurations")
st.subheader("Agent Type")
agent_type = st.radio(
label="Select Agent Type",
options=["Regular", "ReAct"],
on_change=reset_agent,
)
if agent_type == "ReAct":
agent_type = AgentType.REACT
else:
agent_type = AgentType.REGULAR
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=64,
help="The maximum number of tokens to generate",
on_change=reset_agent,
)
for i, tool_name in enumerate(toolgroup_selection):
if tool_name == "builtin::rag":
tool_dict = dict(
name="builtin::rag",
args={
"vector_store_ids": list(selected_vector_stores),
},
)
toolgroup_selection[i] = tool_dict
@st.cache_resource
def create_agent():
if "agent_type" in st.session_state and st.session_state.agent_type == AgentType.REACT:
return ReActAgent(
client=client,
model=model,
tools=toolgroup_selection,
response_format={
"type": "json_schema",
"json_schema": ReActOutput.model_json_schema(),
},
sampling_params={"strategy": {"type": "greedy"}, "max_tokens": max_tokens},
)
else:
return Agent(
client,
model=model,
instructions="You are a helpful assistant. When you use a tool always respond with a summary of the result.",
tools=toolgroup_selection,
sampling_params={"strategy": {"type": "greedy"}, "max_tokens": max_tokens},
)
st.session_state.agent_type = agent_type
agent = create_agent()
if "agent_session_id" not in st.session_state:
st.session_state["agent_session_id"] = agent.create_session(session_name=f"tool_demo_{uuid.uuid4()}")
session_id = st.session_state["agent_session_id"]
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
if prompt := st.chat_input(placeholder=""):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
turn_response = agent.create_turn(
session_id=session_id,
messages=[{"role": "user", "content": prompt}],
stream=True,
)
def response_generator(turn_response):
if st.session_state.get("agent_type") == AgentType.REACT:
return _handle_react_response(turn_response)
else:
return _handle_regular_response(turn_response)
def _handle_react_response(turn_response):
current_step_content = ""
final_answer = None
tool_results = []
for response in turn_response:
if not hasattr(response.event, "payload"):
yield (
"\n\n🚨 :red[_Llama Stack server Error:_]\n"
"The response received is missing an expected `payload` attribute.\n"
"This could indicate a malformed response or an internal issue within the server.\n\n"
f"Error details: {response}"
)
return
payload = response.event.payload
if payload.event_type == "step_progress" and hasattr(payload.delta, "text"):
current_step_content += payload.delta.text
continue
if payload.event_type == "step_complete":
step_details = payload.step_details
if step_details.step_type == "inference":
yield from _process_inference_step(current_step_content, tool_results, final_answer)
current_step_content = ""
elif step_details.step_type == "tool_execution":
tool_results = _process_tool_execution(step_details, tool_results)
current_step_content = ""
else:
current_step_content = ""
if not final_answer and tool_results:
yield from _format_tool_results_summary(tool_results)
def _process_inference_step(current_step_content, tool_results, final_answer):
try:
react_output_data = json.loads(current_step_content)
thought = react_output_data.get("thought")
action = react_output_data.get("action")
answer = react_output_data.get("answer")
if answer and answer != "null" and answer is not None:
final_answer = answer
if thought:
with st.expander("🤔 Thinking...", expanded=False):
st.markdown(f":grey[__{thought}__]")
if action and isinstance(action, dict):
tool_name = action.get("tool_name")
tool_params = action.get("tool_params")
with st.expander(f'🛠 Action: Using tool "{tool_name}"', expanded=False):
st.json(tool_params)
if answer and answer != "null" and answer is not None:
yield f"\n\n✅ **Final Answer:**\n{answer}"
except json.JSONDecodeError:
yield f"\n\nFailed to parse ReAct step content:\n```json\n{current_step_content}\n```"
except Exception as e:
yield f"\n\nFailed to process ReAct step: {e}\n```json\n{current_step_content}\n```"
return final_answer
def _process_tool_execution(step_details, tool_results):
try:
if hasattr(step_details, "tool_responses") and step_details.tool_responses:
for tool_response in step_details.tool_responses:
tool_name = tool_response.tool_name
content = tool_response.content
tool_results.append((tool_name, content))
with st.expander(f'⚙️ Observation (Result from "{tool_name}")', expanded=False):
try:
parsed_content = json.loads(content)
st.json(parsed_content)
except json.JSONDecodeError:
st.code(content, language=None)
else:
with st.expander("⚙️ Observation", expanded=False):
st.markdown(":grey[_Tool execution step completed, but no response data found._]")
except Exception as e:
with st.expander("⚙️ Error in Tool Execution", expanded=False):
st.markdown(f":red[_Error processing tool execution: {str(e)}_]")
return tool_results
def _format_tool_results_summary(tool_results):
yield "\n\n**Here's what I found:**\n"
for tool_name, content in tool_results:
try:
parsed_content = json.loads(content)
if tool_name == "web_search" and "top_k" in parsed_content:
yield from _format_web_search_results(parsed_content)
elif "results" in parsed_content and isinstance(parsed_content["results"], list):
yield from _format_results_list(parsed_content["results"])
elif isinstance(parsed_content, dict) and len(parsed_content) > 0:
yield from _format_dict_results(parsed_content)
elif isinstance(parsed_content, list) and len(parsed_content) > 0:
yield from _format_list_results(parsed_content)
except json.JSONDecodeError:
yield f"\n**{tool_name}** was used but returned complex data. Check the observation for details.\n"
except (TypeError, AttributeError, KeyError, IndexError) as e:
print(f"Error processing {tool_name} result: {type(e).__name__}: {e}")
def _format_web_search_results(parsed_content):
for i, result in enumerate(parsed_content["top_k"], 1):
if i <= 3:
title = result.get("title", "Untitled")
url = result.get("url", "")
content_text = result.get("content", "").strip()
yield f"\n- **{title}**\n {content_text}\n [Source]({url})\n"
def _format_results_list(results):
for i, result in enumerate(results, 1):
if i <= 3:
if isinstance(result, dict):
name = result.get("name", result.get("title", "Result " + str(i)))
description = result.get("description", result.get("content", result.get("summary", "")))
yield f"\n- **{name}**\n {description}\n"
else:
yield f"\n- {result}\n"
def _format_dict_results(parsed_content):
yield "\n```\n"
for key, value in list(parsed_content.items())[:5]:
if isinstance(value, str) and len(value) < 100:
yield f"{key}: {value}\n"
else:
yield f"{key}: [Complex data]\n"
yield "```\n"
def _format_list_results(parsed_content):
yield "\n"
for _, item in enumerate(parsed_content[:3], 1):
if isinstance(item, str):
yield f"- {item}\n"
elif isinstance(item, dict) and "text" in item:
yield f"- {item['text']}\n"
elif isinstance(item, dict) and len(item) > 0:
first_value = next(iter(item.values()))
if isinstance(first_value, str) and len(first_value) < 100:
yield f"- {first_value}\n"
def _handle_regular_response(turn_response):
for response in turn_response:
if hasattr(response.event, "payload"):
print(response.event.payload)
if response.event.payload.event_type == "step_progress":
if hasattr(response.event.payload.delta, "text"):
yield response.event.payload.delta.text
if response.event.payload.event_type == "step_complete":
if response.event.payload.step_details.step_type == "tool_execution":
if response.event.payload.step_details.tool_calls:
tool_name = str(response.event.payload.step_details.tool_calls[0].tool_name)
yield f'\n\n🛠 :grey[_Using "{tool_name}" tool:_]\n\n'
else:
yield "No tool_calls present in step_details"
else:
yield f"Error occurred in the Llama Stack Cluster: {response}"
with st.chat_message("assistant"):
response_content = st.write_stream(response_generator(turn_response))
st.session_state.messages.append({"role": "assistant", "content": response_content})
tool_chat_page()

View file

@ -1,5 +0,0 @@
llama-stack>=0.2.1
llama-stack-client>=0.2.1
pandas
streamlit
streamlit-option-menu

View file

@ -52,7 +52,17 @@ def resolve_config_or_distro(
logger.debug(f"Using distribution: {distro_config}")
return distro_config
# Strategy 3: Try as built distribution name
# Strategy 3: Try as distro config path (if no .yaml extension and contains a slash)
# eg: starter::run-with-postgres-store.yaml
# Use :: to avoid slash and confusion with a filesystem path
if "::" in config_or_distro:
distro_name, config_name = config_or_distro.split("::")
distro_config = _get_distro_config_path(distro_name, config_name)
if distro_config.exists():
logger.info(f"Using distribution: {distro_config}")
return distro_config
# Strategy 4: Try as built distribution name
distrib_config = DISTRIBS_BASE_DIR / f"llamastack-{config_or_distro}" / f"{config_or_distro}-{mode}.yaml"
if distrib_config.exists():
logger.debug(f"Using built distribution: {distrib_config}")
@ -63,13 +73,15 @@ def resolve_config_or_distro(
logger.debug(f"Using built distribution: {distrib_config}")
return distrib_config
# Strategy 4: Failed - provide helpful error
# Strategy 5: Failed - provide helpful error
raise ValueError(_format_resolution_error(config_or_distro, mode))
def _get_distro_config_path(distro_name: str, mode: Mode) -> Path:
def _get_distro_config_path(distro_name: str, mode: str) -> Path:
"""Get the config file path for a distro."""
return DISTRO_DIR / distro_name / f"{mode}.yaml"
if not mode.endswith(".yaml"):
mode = f"{mode}.yaml"
return DISTRO_DIR / distro_name / mode
def _format_resolution_error(config_or_distro: str, mode: Mode) -> str:

View file

@ -84,6 +84,15 @@ def run_command(command: list[str]) -> int:
text=True,
check=False,
)
# Print stdout and stderr if command failed
if result.returncode != 0:
log.error(f"Command {' '.join(command)} failed with returncode {result.returncode}")
if result.stdout:
log.error(f"STDOUT: {result.stdout}")
if result.stderr:
log.error(f"STDERR: {result.stderr}")
return result.returncode
except subprocess.SubprocessError as e:
log.error(f"Subprocess error: {e}")

View file

@ -56,4 +56,5 @@ image_type: venv
additional_pip_packages:
- aiosqlite
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -13,5 +13,6 @@ from ..starter.starter import get_distribution_template as get_starter_distribut
def get_distribution_template() -> DistributionTemplate:
template = get_starter_distribution_template(name="ci-tests")
template.description = "CI tests for Llama Stack"
template.run_configs.pop("run-with-postgres-store.yaml", None)
return template

View file

@ -46,6 +46,9 @@ providers:
api_key: ${env.TOGETHER_API_KEY:=}
- provider_id: bedrock
provider_type: remote::bedrock
config:
api_key: ${env.AWS_BEDROCK_API_KEY:=}
region_name: ${env.AWS_DEFAULT_REGION:=us-east-2}
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
provider_type: remote::nvidia
config:

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .postgres_demo import get_distribution_template # noqa: F401

View file

@ -1,23 +0,0 @@
version: 2
distribution_spec:
description: Quick start template for running Llama Stack with several popular providers
providers:
inference:
- provider_type: remote::vllm
- provider_type: inline::sentence-transformers
vector_io:
- provider_type: remote::chromadb
safety:
- provider_type: inline::llama-guard
agents:
- provider_type: inline::meta-reference
tool_runtime:
- provider_type: remote::brave-search
- provider_type: remote::tavily-search
- provider_type: inline::rag-runtime
- provider_type: remote::model-context-protocol
image_type: venv
additional_pip_packages:
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -1,125 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models import ModelType
from llama_stack.core.datatypes import (
BuildProvider,
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.distributions.template import (
DistributionTemplate,
RunConfigSettings,
)
from llama_stack.providers.inline.inference.sentence_transformers import SentenceTransformersInferenceConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.utils.kvstore.config import PostgresKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
def get_distribution_template() -> DistributionTemplate:
inference_providers = [
Provider(
provider_id="vllm-inference",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.VLLM_URL:=http://localhost:8000/v1}",
),
),
]
providers = {
"inference": [
BuildProvider(provider_type="remote::vllm"),
BuildProvider(provider_type="inline::sentence-transformers"),
],
"vector_io": [BuildProvider(provider_type="remote::chromadb")],
"safety": [BuildProvider(provider_type="inline::llama-guard")],
"agents": [BuildProvider(provider_type="inline::meta-reference")],
"tool_runtime": [
BuildProvider(provider_type="remote::brave-search"),
BuildProvider(provider_type="remote::tavily-search"),
BuildProvider(provider_type="inline::rag-runtime"),
BuildProvider(provider_type="remote::model-context-protocol"),
],
}
name = "postgres-demo"
vector_io_providers = [
Provider(
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
url="${env.CHROMADB_URL:=}",
),
),
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
default_models = [
ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm-inference",
)
]
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
embedding_model = ModelInput(
model_id="nomic-embed-text-v1.5",
provider_id=embedding_provider.provider_id,
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 768,
},
)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Quick start template for running Llama Stack with several popular providers",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider={},
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
storage_backends={
"kv_default": PostgresKVStoreConfig.sample_run_config(
table_name="llamastack_kvstore",
),
"sql_default": PostgresSqlStoreConfig.sample_run_config(),
},
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
},
)

View file

@ -57,4 +57,5 @@ image_type: venv
additional_pip_packages:
- aiosqlite
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -0,0 +1,284 @@
version: 2
image_name: starter-gpu
apis:
- agents
- batches
- datasetio
- eval
- files
- inference
- post_training
- safety
- scoring
- tool_runtime
- vector_io
providers:
inference:
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
provider_type: remote::cerebras
config:
base_url: https://api.cerebras.ai
api_key: ${env.CEREBRAS_API_KEY:=}
- provider_id: ${env.OLLAMA_URL:+ollama}
provider_type: remote::ollama
config:
url: ${env.OLLAMA_URL:=http://localhost:11434}
- provider_id: ${env.VLLM_URL:+vllm}
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: ${env.TGI_URL:+tgi}
provider_type: remote::tgi
config:
url: ${env.TGI_URL:=}
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY:=}
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY:=}
- provider_id: bedrock
provider_type: remote::bedrock
config:
api_key: ${env.AWS_BEDROCK_API_KEY:=}
region_name: ${env.AWS_DEFAULT_REGION:=us-east-2}
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
provider_type: remote::nvidia
config:
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
api_key: ${env.NVIDIA_API_KEY:=}
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
- provider_id: openai
provider_type: remote::openai
config:
api_key: ${env.OPENAI_API_KEY:=}
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
- provider_id: anthropic
provider_type: remote::anthropic
config:
api_key: ${env.ANTHROPIC_API_KEY:=}
- provider_id: gemini
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY:=}
- provider_id: sambanova
provider_type: remote::sambanova
config:
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY:=}
- provider_id: ${env.AZURE_API_KEY:+azure}
provider_type: remote::azure
config:
api_key: ${env.AZURE_API_KEY:=}
api_base: ${env.AZURE_API_BASE:=}
api_version: ${env.AZURE_API_VERSION:=}
api_type: ${env.AZURE_API_TYPE:=}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
persistence:
namespace: vector_io::faiss
backend: kv_default
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.MILVUS_URL:+milvus}
provider_type: inline::milvus
config:
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter-gpu}/milvus.db
persistence:
namespace: vector_io::milvus
backend: kv_default
- provider_id: ${env.CHROMADB_URL:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.PGVECTOR_DB:+pgvector}
provider_type: remote::pgvector
config:
host: ${env.PGVECTOR_HOST:=localhost}
port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
persistence:
namespace: vector_io::pgvector
backend: kv_default
- provider_id: ${env.QDRANT_URL:+qdrant}
provider_type: remote::qdrant
config:
api_key: ${env.QDRANT_API_KEY:=}
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
provider_type: remote::weaviate
config:
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
persistence:
namespace: vector_io::weaviate
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter-gpu/files}
metadata_store:
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
- provider_id: code-scanner
provider_type: inline::code-scanner
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
post_training:
- provider_id: huggingface-gpu
provider_type: inline::huggingface-gpu
config:
checkpoint_format: huggingface
distributed_backend: null
device: cpu
dpo_output_dir: ~/.llama/distributions/starter-gpu/dpo_output
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
batches:
- provider_id: reference
provider_type: inline::reference
config:
kvstore:
namespace: batches
backend: kv_postgres
storage:
backends:
kv_postgres:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_postgres:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
stores:
metadata:
namespace: registry
backend: kv_postgres
inference:
table_name: inference_store
backend: sql_postgres
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_postgres
prompts:
namespace: prompts
backend: kv_postgres
registered_resources:
models: []
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups: []
server:
port: 8321
telemetry:
enabled: true

View file

@ -46,6 +46,9 @@ providers:
api_key: ${env.TOGETHER_API_KEY:=}
- provider_id: bedrock
provider_type: remote::bedrock
config:
api_key: ${env.AWS_BEDROCK_API_KEY:=}
region_name: ${env.AWS_DEFAULT_REGION:=us-east-2}
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
provider_type: remote::nvidia
config:

Some files were not shown because too many files have changed in this diff Show more