mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 06:53:47 +00:00
merge
This commit is contained in:
commit
33b6d9b7b7
8 changed files with 67 additions and 304 deletions
|
@ -7,14 +7,7 @@ from enum import Enum
|
|||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from .....apis.common.job_types import Job
|
||||
from .....apis.eval.eval import (
|
||||
AppEvalTaskConfig,
|
||||
BenchmarkEvalTaskConfig,
|
||||
Eval,
|
||||
EvalTaskConfig,
|
||||
EvaluateResponse,
|
||||
JobStatus,
|
||||
)
|
||||
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from tqdm import tqdm
|
||||
|
||||
|
@ -28,12 +21,6 @@ from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
|||
from .config import MetaReferenceEvalConfig
|
||||
|
||||
|
||||
# NOTE: this is the default eval task identifier for app eval
|
||||
# it is used to make the router work for all app evals
|
||||
# For app eval using other eval providers, the eval task identifier will be different
|
||||
DEFAULT_EVAL_TASK_IDENTIFIER = "meta-reference::app_eval"
|
||||
|
||||
|
||||
class ColumnName(Enum):
|
||||
input_query = "input_query"
|
||||
expected_answer = "expected_answer"
|
||||
|
@ -60,30 +47,15 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
# TODO: assume sync job, will need jobs API for async scheduling
|
||||
self.jobs = {}
|
||||
|
||||
# Keep track of benchmark eval tasks that are supported by this provider
|
||||
self.eval_tasks = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.eval_tasks = {
|
||||
# NOTE: In order to be routed to this provider, the eval task def must have
|
||||
# a EvalTaskDef with identifier defined as DEFAULT_EVAL_TASK_IDENTIFIER
|
||||
# for app eval where eval task benchmark_id is not pre-registered
|
||||
DEFAULT_EVAL_TASK_IDENTIFIER: EvalTaskDef(
|
||||
identifier=DEFAULT_EVAL_TASK_IDENTIFIER,
|
||||
dataset_id="",
|
||||
scoring_functions=[],
|
||||
),
|
||||
"meta-reference-mmlu": EvalTaskDef(
|
||||
identifier="meta-reference-mmlu",
|
||||
dataset_id="llamastack_mmlu",
|
||||
scoring_functions=[
|
||||
"meta-reference::regex_parser_multiple_choice_answer"
|
||||
],
|
||||
),
|
||||
}
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_eval_task(self, task_def: EvalTaskDef) -> None:
|
||||
self.eval_tasks[task_def.identifier] = task_def
|
||||
|
||||
async def list_eval_tasks(self) -> List[EvalTaskDef]:
|
||||
return list(self.eval_tasks.values())
|
||||
|
||||
|
@ -110,39 +82,15 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
|
||||
)
|
||||
|
||||
async def run_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkEvalTaskConfig,
|
||||
) -> Job:
|
||||
eval_task_def = self.eval_tasks[benchmark_id]
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=eval_task_def.dataset_id,
|
||||
rows_in_page=(
|
||||
-1
|
||||
if benchmark_config.num_examples is None
|
||||
else benchmark_config.num_examples
|
||||
),
|
||||
)
|
||||
res = await self.evaluate_rows(
|
||||
input_rows=all_rows.rows,
|
||||
scoring_functions=eval_task_def.scoring_functions,
|
||||
task_config=benchmark_config,
|
||||
)
|
||||
# TODO: currently needs to wait for generation before returning
|
||||
# need job scheduler queue (celery) w/ jobs api
|
||||
job_id = str(len(self.jobs))
|
||||
self.jobs[job_id] = res
|
||||
return Job(job_id=job_id)
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
task: EvalTaskDef,
|
||||
task_config: AppEvalTaskConfig,
|
||||
task_id: str,
|
||||
task_config: EvalTaskConfig,
|
||||
) -> Job:
|
||||
dataset_id = task.dataset_id
|
||||
task_def = self.eval_tasks[task_id]
|
||||
dataset_id = task_def.dataset_id
|
||||
candidate = task_config.eval_candidate
|
||||
scoring_functions = task.scoring_functions
|
||||
scoring_functions = task_def.scoring_functions
|
||||
|
||||
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
|
@ -152,6 +100,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
),
|
||||
)
|
||||
res = await self.evaluate_rows(
|
||||
task_id=task_id,
|
||||
input_rows=all_rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
task_config=task_config,
|
||||
|
@ -165,10 +114,10 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
task_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
task_config: EvalTaskConfig,
|
||||
eval_task_id: Optional[str] = None,
|
||||
) -> EvaluateResponse:
|
||||
candidate = task_config.eval_candidate
|
||||
if candidate.type == "agent":
|
||||
|
@ -238,17 +187,17 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
|
||||
return EvaluateResponse(generations=generations, scores=score_response.results)
|
||||
|
||||
async def job_status(self, job_id: str, eval_task_id: str) -> Optional[JobStatus]:
|
||||
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
|
||||
if job_id in self.jobs:
|
||||
return JobStatus.completed
|
||||
|
||||
return None
|
||||
|
||||
async def job_cancel(self, job_id: str, eval_task_id: str) -> None:
|
||||
async def job_cancel(self, task_id: str, job_id: str) -> None:
|
||||
raise NotImplementedError("Job cancel is not implemented yet")
|
||||
|
||||
async def job_result(self, job_id: str, eval_task_id: str) -> EvaluateResponse:
|
||||
status = await self.job_status(job_id, eval_task_id)
|
||||
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
|
||||
status = await self.job_status(task_id, job_id)
|
||||
if not status or status != JobStatus.completed:
|
||||
raise ValueError(f"Job is not completed, Status: {status.value}")
|
||||
|
||||
|
|
|
@ -89,7 +89,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Optional[Dict[str, ScoringFnParams]] = None,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
await self.validate_scoring_input_dataset_schema(dataset_id=dataset_id)
|
||||
|
@ -113,7 +113,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Optional[Dict[str, ScoringFnParams]] = None,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
) -> ScoreResponse:
|
||||
res = {}
|
||||
for scoring_fn_id in scoring_functions.keys():
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue