Update templates

This commit is contained in:
Ashwin Bharambe 2025-01-21 22:12:34 -08:00
parent 5605917361
commit 33ea91364e
68 changed files with 272 additions and 281 deletions

View file

@ -8,11 +8,11 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::nvidia` |
| memory | `inline::faiss` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss` |
### Environment Variables

View file

@ -15,11 +15,11 @@ The `llamastack/distribution-bedrock` distribution consists of the following pro
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::bedrock` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `remote::bedrock` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |

View file

@ -8,11 +8,11 @@ The `llamastack/distribution-cerebras` distribution consists of the following pr
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::cerebras` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables

View file

@ -18,11 +18,11 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::fireworks` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables

View file

@ -18,11 +18,11 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `inline::meta-reference` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.

View file

@ -18,11 +18,11 @@ The `llamastack/distribution-meta-reference-quantized-gpu` distribution consists
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `inline::meta-reference-quantized` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.

View file

@ -18,11 +18,11 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::ollama` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables

View file

@ -17,11 +17,11 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::vllm` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.

View file

@ -19,11 +19,11 @@ The `llamastack/distribution-tgi` distribution consists of the following provide
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::tgi` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.

View file

@ -18,11 +18,11 @@ The `llamastack/distribution-together` distribution consists of the following pr
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::together` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables

View file

@ -88,7 +88,7 @@ class MemoryRetrievalStep(StepCommon):
step_type: Literal[StepType.memory_retrieval.value] = (
StepType.memory_retrieval.value
)
memory_bank_ids: List[str]
vector_db_ids: str
inserted_context: InterleavedContent

View file

@ -208,7 +208,7 @@ class EventLogger:
):
details = event.payload.step_details
inserted_context = interleaved_content_as_str(details.inserted_context)
content = f"fetched {len(inserted_context)} bytes from {details.memory_bank_ids}"
content = f"fetched {len(inserted_context)} bytes from {details.vector_db_ids}"
yield (
event,

View file

@ -37,5 +37,5 @@ class Resource(BaseModel):
provider_id: str = Field(description="ID of the provider that owns this resource")
type: ResourceType = Field(
description="Type of resource (e.g. 'model', 'shield', 'memory_bank', etc.)"
description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)"
)

View file

@ -9,7 +9,7 @@ import os
import pytest
import pytest_asyncio
from llama_stack.apis.inference import Model
from llama_stack.apis.memory_banks import VectorMemoryBank
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.distribution.store.registry import (
CachedDiskDistributionRegistry,
@ -42,13 +42,12 @@ async def cached_registry(config):
@pytest.fixture
def sample_bank():
return VectorMemoryBank(
identifier="test_bank",
def sample_vector_db():
return VectorDB(
identifier="test_vector_db",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
provider_resource_id="test_bank",
embedding_dimension=384,
provider_resource_id="test_vector_db",
provider_id="test-provider",
)
@ -70,19 +69,17 @@ async def test_registry_initialization(registry):
@pytest.mark.asyncio
async def test_basic_registration(registry, sample_bank, sample_model):
print(f"Registering {sample_bank}")
await registry.register(sample_bank)
async def test_basic_registration(registry, sample_vector_db, sample_model):
print(f"Registering {sample_vector_db}")
await registry.register(sample_vector_db)
print(f"Registering {sample_model}")
await registry.register(sample_model)
print("Getting bank")
result_bank = await registry.get("memory_bank", "test_bank")
assert result_bank is not None
assert result_bank.identifier == sample_bank.identifier
assert result_bank.embedding_model == sample_bank.embedding_model
assert result_bank.chunk_size_in_tokens == sample_bank.chunk_size_in_tokens
assert result_bank.overlap_size_in_tokens == sample_bank.overlap_size_in_tokens
assert result_bank.provider_id == sample_bank.provider_id
print("Getting vector_db")
result_vector_db = await registry.get("vector_db", "test_vector_db")
assert result_vector_db is not None
assert result_vector_db.identifier == sample_vector_db.identifier
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
assert result_vector_db.provider_id == sample_vector_db.provider_id
result_model = await registry.get("model", "test_model")
assert result_model is not None
@ -91,24 +88,23 @@ async def test_basic_registration(registry, sample_bank, sample_model):
@pytest.mark.asyncio
async def test_cached_registry_initialization(config, sample_bank, sample_model):
async def test_cached_registry_initialization(config, sample_vector_db, sample_model):
# First populate the disk registry
disk_registry = DiskDistributionRegistry(await kvstore_impl(config))
await disk_registry.initialize()
await disk_registry.register(sample_bank)
await disk_registry.register(sample_vector_db)
await disk_registry.register(sample_model)
# Test cached version loads from disk
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
result_bank = await cached_registry.get("memory_bank", "test_bank")
assert result_bank is not None
assert result_bank.identifier == sample_bank.identifier
assert result_bank.embedding_model == sample_bank.embedding_model
assert result_bank.chunk_size_in_tokens == sample_bank.chunk_size_in_tokens
assert result_bank.overlap_size_in_tokens == sample_bank.overlap_size_in_tokens
assert result_bank.provider_id == sample_bank.provider_id
result_vector_db = await cached_registry.get("vector_db", "test_vector_db")
assert result_vector_db is not None
assert result_vector_db.identifier == sample_vector_db.identifier
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
assert result_vector_db.embedding_dimension == sample_vector_db.embedding_dimension
assert result_vector_db.provider_id == sample_vector_db.provider_id
@pytest.mark.asyncio
@ -116,29 +112,28 @@ async def test_cached_registry_updates(config):
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
new_bank = VectorMemoryBank(
identifier="test_bank_2",
new_vector_db = VectorDB(
identifier="test_vector_db_2",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=256,
overlap_size_in_tokens=32,
provider_resource_id="test_bank_2",
embedding_dimension=384,
provider_resource_id="test_vector_db_2",
provider_id="baz",
)
await cached_registry.register(new_bank)
await cached_registry.register(new_vector_db)
# Verify in cache
result_bank = await cached_registry.get("memory_bank", "test_bank_2")
assert result_bank is not None
assert result_bank.identifier == new_bank.identifier
assert result_bank.provider_id == new_bank.provider_id
result_vector_db = await cached_registry.get("vector_db", "test_vector_db_2")
assert result_vector_db is not None
assert result_vector_db.identifier == new_vector_db.identifier
assert result_vector_db.provider_id == new_vector_db.provider_id
# Verify persisted to disk
new_registry = DiskDistributionRegistry(await kvstore_impl(config))
await new_registry.initialize()
result_bank = await new_registry.get("memory_bank", "test_bank_2")
assert result_bank is not None
assert result_bank.identifier == new_bank.identifier
assert result_bank.provider_id == new_bank.provider_id
result_vector_db = await new_registry.get("vector_db", "test_vector_db_2")
assert result_vector_db is not None
assert result_vector_db.identifier == new_vector_db.identifier
assert result_vector_db.provider_id == new_vector_db.provider_id
@pytest.mark.asyncio
@ -146,30 +141,28 @@ async def test_duplicate_provider_registration(config):
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
await cached_registry.initialize()
original_bank = VectorMemoryBank(
identifier="test_bank_2",
original_vector_db = VectorDB(
identifier="test_vector_db_2",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=256,
overlap_size_in_tokens=32,
provider_resource_id="test_bank_2",
embedding_dimension=384,
provider_resource_id="test_vector_db_2",
provider_id="baz",
)
await cached_registry.register(original_bank)
await cached_registry.register(original_vector_db)
duplicate_bank = VectorMemoryBank(
identifier="test_bank_2",
duplicate_vector_db = VectorDB(
identifier="test_vector_db_2",
embedding_model="different-model",
chunk_size_in_tokens=128,
overlap_size_in_tokens=16,
provider_resource_id="test_bank_2",
embedding_dimension=384,
provider_resource_id="test_vector_db_2",
provider_id="baz", # Same provider_id
)
await cached_registry.register(duplicate_bank)
await cached_registry.register(duplicate_vector_db)
result = await cached_registry.get("memory_bank", "test_bank_2")
result = await cached_registry.get("vector_db", "test_vector_db_2")
assert result is not None
assert (
result.embedding_model == original_bank.embedding_model
result.embedding_model == original_vector_db.embedding_model
) # Original values preserved
@ -179,36 +172,35 @@ async def test_get_all_objects(config):
await cached_registry.initialize()
# Create multiple test banks
test_banks = [
VectorMemoryBank(
identifier=f"test_bank_{i}",
test_vector_dbs = [
VectorDB(
identifier=f"test_vector_db_{i}",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=256,
overlap_size_in_tokens=32,
provider_resource_id=f"test_bank_{i}",
embedding_dimension=384,
provider_resource_id=f"test_vector_db_{i}",
provider_id=f"provider_{i}",
)
for i in range(3)
]
# Register all banks
for bank in test_banks:
await cached_registry.register(bank)
# Register all vector_dbs
for vector_db in test_vector_dbs:
await cached_registry.register(vector_db)
# Test get_all retrieval
all_results = await cached_registry.get_all()
assert len(all_results) == 3
# Verify each bank was stored correctly
for original_bank in test_banks:
matching_banks = [
b for b in all_results if b.identifier == original_bank.identifier
# Verify each vector_db was stored correctly
for original_vector_db in test_vector_dbs:
matching_vector_dbs = [
v for v in all_results if v.identifier == original_vector_db.identifier
]
assert len(matching_banks) == 1
stored_bank = matching_banks[0]
assert stored_bank.embedding_model == original_bank.embedding_model
assert stored_bank.provider_id == original_bank.provider_id
assert stored_bank.chunk_size_in_tokens == original_bank.chunk_size_in_tokens
assert len(matching_vector_dbs) == 1
stored_vector_db = matching_vector_dbs[0]
assert stored_vector_db.embedding_model == original_vector_db.embedding_model
assert stored_vector_db.provider_id == original_vector_db.provider_id
assert (
stored_bank.overlap_size_in_tokens == original_bank.overlap_size_in_tokens
stored_vector_db.embedding_dimension
== original_vector_db.embedding_dimension
)

View file

@ -1,23 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def memory_banks():
st.header("Memory Banks")
memory_banks_info = {
m.identifier: m.to_dict() for m in llama_stack_api.client.memory_banks.list()
}
if len(memory_banks_info) > 0:
selected_memory_bank = st.selectbox(
"Select a memory bank", list(memory_banks_info.keys())
)
st.json(memory_banks_info[selected_memory_bank])
else:
st.info("No memory banks found")

View file

@ -6,10 +6,10 @@
from page.distribution.datasets import datasets
from page.distribution.eval_tasks import eval_tasks
from page.distribution.memory_banks import memory_banks
from page.distribution.models import models
from page.distribution.scoring_functions import scoring_functions
from page.distribution.shields import shields
from page.distribution.vector_dbs import vector_dbs
from streamlit_option_menu import option_menu
@ -17,7 +17,7 @@ from streamlit_option_menu import option_menu
def resources_page():
options = [
"Models",
"Memory Banks",
"Vector Databases",
"Shields",
"Scoring Functions",
"Datasets",
@ -37,8 +37,8 @@ def resources_page():
)
if selected_resource == "Eval Tasks":
eval_tasks()
elif selected_resource == "Memory Banks":
memory_banks()
elif selected_resource == "Vector Databases":
vector_dbs()
elif selected_resource == "Datasets":
datasets()
elif selected_resource == "Models":

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def vector_dbs():
st.header("Vector Databases")
vector_dbs_info = {
v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()
}
if len(vector_dbs_info) > 0:
selected_vector_db = st.selectbox(
"Select a vector database", list(vector_dbs_info.keys())
)
st.json(vector_dbs_info[selected_vector_db])
else:
st.info("No vector databases found")

View file

@ -29,12 +29,12 @@ def rag_chat_page():
if uploaded_files:
st.success(f"Successfully uploaded {len(uploaded_files)} files")
# Add memory bank name input field
memory_bank_name = st.text_input(
"Memory Bank Name",
value="rag_bank",
help="Enter a unique identifier for this memory bank",
vector_db_name = st.text_input(
"Vector Database Name",
value="rag_vector_db",
help="Enter a unique identifier for this vector database",
)
if st.button("Create Memory Bank"):
if st.button("Create Vector Database"):
documents = [
Document(
document_id=uploaded_file.name,
@ -44,37 +44,33 @@ def rag_chat_page():
]
providers = llama_stack_api.client.providers.list()
memory_provider = None
vector_io_provider = None
for x in providers:
if x.api == "memory":
memory_provider = x.provider_id
if x.api == "vector_io":
vector_io_provider = x.provider_id
llama_stack_api.client.memory_banks.register(
memory_bank_id=memory_bank_name, # Use the user-provided name
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=memory_provider,
llama_stack_api.client.vector_dbs.register(
vector_db_id=vector_db_name, # Use the user-provided name
embedding_dimension=384,
embedding_model="all-MiniLM-L6-v2",
provider_id=vector_io_provider,
)
# insert documents using the custom bank name
llama_stack_api.client.memory.insert(
bank_id=memory_bank_name, # Use the user-provided name
# insert documents using the custom vector db name
llama_stack_api.client.tool_runtime.rag_tool.insert(
vector_db_id=vector_db_name, # Use the user-provided name
documents=documents,
)
st.success("Memory bank created successfully!")
st.success("Vector database created successfully!")
st.subheader("Configure Agent")
# select memory banks
memory_banks = llama_stack_api.client.memory_banks.list()
memory_banks = [bank.identifier for bank in memory_banks]
selected_memory_banks = st.multiselect(
"Select Memory Banks",
memory_banks,
vector_dbs = llama_stack_api.client.vector_dbs.list()
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
selected_vector_dbs = st.multiselect(
"Select Vector Databases",
vector_dbs,
)
available_models = llama_stack_api.client.models.list()
@ -141,14 +137,14 @@ def rag_chat_page():
dict(
name="builtin::memory",
args={
"memory_bank_ids": [bank_id for bank_id in selected_memory_banks],
"vector_db_ids": [
vector_db_id for vector_db_id in selected_vector_dbs
],
},
)
],
tool_choice="auto",
tool_prompt_format="json",
input_shields=[],
output_shields=[],
enable_session_persistence=False,
)

View file

@ -14,8 +14,10 @@ from .config import ChromaInlineImplConfig
async def get_provider_impl(
config: ChromaInlineImplConfig, deps: Dict[Api, ProviderSpec]
):
from llama_stack.providers.remote.memory.chroma.chroma import ChromaMemoryAdapter
from llama_stack.providers.remote.vector_io.chroma.chroma import (
ChromaVectorIOAdapter,
)
impl = ChromaMemoryAdapter(config, deps[Api.inference])
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -14,8 +14,8 @@ from .config import ChromaRemoteImplConfig
async def get_adapter_impl(
config: ChromaRemoteImplConfig, deps: Dict[Api, ProviderSpec]
):
from .chroma import ChromaMemoryAdapter
from .chroma import ChromaVectorIOAdapter
impl = ChromaMemoryAdapter(config, deps[Api.inference])
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
await impl.initialize()
return impl

View file

@ -86,13 +86,13 @@ class ChromaIndex(EmbeddingIndex):
await maybe_await(self.client.delete_collection(self.collection.name))
class ChromaMemoryAdapter(VectorIO, VectorDBsProtocolPrivate):
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(
self,
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
inference_api: Api.inference,
) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
self.config = config
self.inference_api = inference_api

View file

@ -10,7 +10,7 @@ from llama_models.sku_list import all_registered_models
from llama_stack.apis.models import ModelInput
from llama_stack.distribution.datatypes import Provider, ToolGroupInput
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.bedrock.bedrock import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -18,7 +18,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::bedrock"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["remote::bedrock"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -34,7 +34,7 @@ def get_distribution_template() -> DistributionTemplate:
],
}
name = "bedrock"
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -78,7 +78,7 @@ def get_distribution_template() -> DistributionTemplate:
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=default_models,
default_tool_groups=default_tool_groups,

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::bedrock
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -5,17 +5,17 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: bedrock
provider_type: remote::bedrock
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -104,7 +104,7 @@ models:
provider_model_id: meta.llama3-1-405b-instruct-v1:0
model_type: llm
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -6,7 +6,7 @@ distribution_spec:
- remote::cerebras
safety:
- inline::llama-guard
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -13,7 +13,7 @@ from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupIn
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.cerebras.cerebras import model_aliases
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -23,7 +23,7 @@ def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::cerebras"],
"safety": ["inline::llama-guard"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"agents": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
@ -68,7 +68,7 @@ def get_distribution_template() -> DistributionTemplate:
"embedding_dimension": 384,
},
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -100,7 +100,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=default_models + [embedding_model],
default_shields=[],

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: cerebras
@ -24,7 +24,7 @@ providers:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -106,7 +106,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -60,7 +60,7 @@ providers:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -82,7 +82,7 @@ metadata_store:
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
models: []
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::fireworks
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -18,7 +18,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.fireworks.fireworks import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -27,7 +27,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::fireworks"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -55,7 +55,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -107,7 +107,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=default_models + [embedding_model],
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
@ -119,7 +119,7 @@ def get_distribution_template() -> DistributionTemplate:
inference_provider,
embedding_provider,
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
"safety": [
Provider(
provider_id="llama-guard",

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: fireworks
@ -20,7 +20,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -161,7 +161,7 @@ shields:
provider_id: llama-guard-vision
- shield_id: CodeScanner
provider_id: code-scanner
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: fireworks
@ -20,7 +20,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -150,7 +150,7 @@ models:
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::hf::endpoint
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -14,7 +14,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.tgi import InferenceEndpointImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -22,7 +22,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::hf::endpoint"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -48,7 +48,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -97,7 +97,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
@ -115,7 +115,7 @@ def get_distribution_template() -> DistributionTemplate:
),
),
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: hf-endpoint
@ -25,7 +25,7 @@ providers:
config:
endpoint_name: ${env.SAFETY_INFERENCE_ENDPOINT_NAME}
api_token: ${env.HF_API_TOKEN}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -113,7 +113,7 @@ models:
model_type: embedding
shields:
- shield_id: ${env.SAFETY_MODEL}
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: hf-endpoint
@ -20,7 +20,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -103,7 +103,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::hf::serverless
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -14,7 +14,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.tgi import InferenceAPIImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -22,7 +22,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::hf::serverless"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -49,7 +49,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -98,7 +98,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
@ -116,7 +116,7 @@ def get_distribution_template() -> DistributionTemplate:
),
),
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: hf-serverless
@ -25,7 +25,7 @@ providers:
config:
huggingface_repo: ${env.SAFETY_MODEL}
api_token: ${env.HF_API_TOKEN}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -113,7 +113,7 @@ models:
model_type: embedding
shields:
- shield_id: ${env.SAFETY_MODEL}
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: hf-serverless
@ -20,7 +20,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -103,7 +103,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- inline::meta-reference
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -19,14 +19,14 @@ from llama_stack.providers.inline.inference.meta_reference import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::meta-reference"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -55,7 +55,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -103,7 +103,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
@ -122,7 +122,7 @@ def get_distribution_template() -> DistributionTemplate:
),
),
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: meta-reference-inference
@ -27,7 +27,7 @@ providers:
model: ${env.SAFETY_MODEL}
max_seq_len: 4096
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:null}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -115,7 +115,7 @@ models:
model_type: embedding
shields:
- shield_id: ${env.SAFETY_MODEL}
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: meta-reference-inference
@ -21,7 +21,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -104,7 +104,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- inline::meta-reference-quantized
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -14,14 +14,14 @@ from llama_stack.providers.inline.inference.meta_reference import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::meta-reference-quantized"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -64,7 +64,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -93,7 +93,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: meta-reference-inference
@ -23,7 +23,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -106,7 +106,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::nvidia
memory:
vector_io:
- inline::faiss
safety:
- inline::llama-guard

View file

@ -17,7 +17,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::nvidia"],
"memory": ["inline::faiss"],
"vector_io": ["inline::faiss"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: nvidia
@ -17,7 +17,7 @@ providers:
config:
url: https://integrate.api.nvidia.com
api_key: ${env.NVIDIA_API_KEY}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -136,7 +136,7 @@ models:
provider_model_id: meta/llama-3.2-90b-vision-instruct
model_type: llm
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::ollama
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -16,7 +16,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -24,7 +24,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::ollama"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -49,7 +49,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -98,7 +98,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
@ -109,7 +109,7 @@ def get_distribution_template() -> DistributionTemplate:
inference_provider,
embedding_provider,
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
"safety": [
Provider(
provider_id="llama-guard",

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: ollama
@ -19,7 +19,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -110,7 +110,7 @@ shields:
provider_id: llama-guard
- shield_id: CodeScanner
provider_id: code-scanner
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: ollama
@ -19,7 +19,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -99,7 +99,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::vllm
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
@ -27,7 +27,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -115,7 +115,7 @@ models:
model_type: embedding
shields:
- shield_id: ${env.SAFETY_MODEL}
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
@ -21,7 +21,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -104,7 +104,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -16,7 +16,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -24,7 +24,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::vllm"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
@ -52,7 +52,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -100,7 +100,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
@ -118,7 +118,7 @@ def get_distribution_template() -> DistributionTemplate:
),
embedding_provider,
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- remote::tgi
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: tgi-inference
@ -20,7 +20,7 @@ providers:
provider_type: remote::tgi
config:
url: ${env.TGI_SAFETY_URL}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -103,7 +103,7 @@ models:
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL}
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: tgi-inference
@ -19,7 +19,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -102,7 +102,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -16,7 +16,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -24,7 +24,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::tgi"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -52,7 +52,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -101,7 +101,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
@ -118,7 +118,7 @@ def get_distribution_template() -> DistributionTemplate:
),
),
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: together
@ -20,7 +20,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -156,7 +156,7 @@ shields:
provider_id: llama-guard-vision
- shield_id: CodeScanner
provider_id: code-scanner
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- vector_io
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: together
@ -145,6 +145,7 @@ models:
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -18,7 +18,7 @@ from llama_stack.distribution.datatypes import (
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.providers.remote.inference.together import TogetherImplConfig
from llama_stack.providers.remote.inference.together.together import MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
@ -27,7 +27,7 @@ from llama_stack.templates.template import DistributionTemplate, RunConfigSettin
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::together"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -48,7 +48,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="remote::together",
config=TogetherImplConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -105,7 +105,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
@ -117,7 +117,7 @@ def get_distribution_template() -> DistributionTemplate:
inference_provider,
embedding_provider,
],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
"safety": [
Provider(
provider_id="llama-guard",

View file

@ -4,7 +4,7 @@ distribution_spec:
providers:
inference:
- inline::vllm
memory:
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector

View file

@ -5,11 +5,11 @@ apis:
- datasetio
- eval
- inference
- memory
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm
@ -23,7 +23,7 @@ providers:
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
memory:
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
@ -106,7 +106,7 @@ models:
provider_id: sentence-transformers
model_type: embedding
shields: []
memory_banks: []
vector_dbs: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -10,7 +10,7 @@ from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.inference.vllm import VLLMConfig
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissImplConfig
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
@ -21,7 +21,7 @@ from llama_stack.templates.template import (
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::vllm"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -43,7 +43,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::vllm",
config=VLLMConfig.sample_run_config(),
)
memory_provider = Provider(
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
@ -93,7 +93,7 @@ def get_distribution_template() -> DistributionTemplate:
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,