mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-16 18:08:09 +00:00
chore: Move vector store kvstore
implementation into openai_vector_store_mixin.py
(#2748)
This commit is contained in:
parent
6b8a8c1be9
commit
33f0d83ad3
14 changed files with 203 additions and 234 deletions
|
@ -179,7 +179,8 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
uri = os.path.expanduser(self.config.db_path)
|
||||
self.client = MilvusClient(uri=uri)
|
||||
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
# Load existing OpenAI vector stores into the in-memory cache
|
||||
await self.initialize_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
|
@ -248,36 +249,6 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Save vector store metadata to persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Update vector store metadata in persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
|
||||
"""Delete vector store metadata from persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
if store_id in self.openai_vector_stores:
|
||||
del self.openai_vector_stores[store_id]
|
||||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
start_key = OPENAI_VECTOR_STORES_PREFIX
|
||||
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
|
||||
stored = await self.kvstore.values_in_range(start_key, end_key)
|
||||
return {json.loads(s)["id"]: json.loads(s) for s in stored}
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
|
|
|
@ -8,6 +8,10 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -18,10 +22,12 @@ class PGVectorVectorIOConfig(BaseModel):
|
|||
db: str | None = Field(default="postgres")
|
||||
user: str | None = Field(default="postgres")
|
||||
password: str | None = Field(default="mysecretpassword")
|
||||
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
__distro_dir__: str,
|
||||
host: str = "${env.PGVECTOR_HOST:=localhost}",
|
||||
port: int = "${env.PGVECTOR_PORT:=5432}",
|
||||
db: str = "${env.PGVECTOR_DB}",
|
||||
|
@ -29,4 +35,14 @@ class PGVectorVectorIOConfig(BaseModel):
|
|||
password: str = "${env.PGVECTOR_PASSWORD}",
|
||||
**kwargs: Any,
|
||||
) -> dict[str, Any]:
|
||||
return {"host": host, "port": port, "db": db, "user": user, "password": password}
|
||||
return {
|
||||
"host": host,
|
||||
"port": port,
|
||||
"db": db,
|
||||
"user": user,
|
||||
"password": password,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="pgvector_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -13,24 +13,18 @@ from psycopg2 import sql
|
|||
from psycopg2.extras import Json, execute_values
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
from llama_stack.apis.files.files import Files
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
VectorStoreListFilesResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
|
@ -40,6 +34,13 @@ from .config import PGVectorVectorIOConfig
|
|||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:pgvector:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:pgvector:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:pgvector:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:pgvector:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:pgvector:{VERSION}::"
|
||||
|
||||
|
||||
def check_extension_version(cur):
|
||||
cur.execute("SELECT extversion FROM pg_extension WHERE extname = 'vector'")
|
||||
|
@ -69,7 +70,7 @@ def load_models(cur, cls):
|
|||
|
||||
|
||||
class PGVectorIndex(EmbeddingIndex):
|
||||
def __init__(self, vector_db: VectorDB, dimension: int, conn):
|
||||
def __init__(self, vector_db: VectorDB, dimension: int, conn, kvstore: KVStore | None = None):
|
||||
self.conn = conn
|
||||
with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
# Sanitize the table name by replacing hyphens with underscores
|
||||
|
@ -77,6 +78,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
# when created with patterns like "test-vector-db-{uuid4()}"
|
||||
sanitized_identifier = vector_db.identifier.replace("-", "_")
|
||||
self.table_name = f"vector_store_{sanitized_identifier}"
|
||||
self.kvstore = kvstore
|
||||
|
||||
cur.execute(
|
||||
f"""
|
||||
|
@ -158,15 +160,28 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
|
||||
class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: PGVectorVectorIOConfig, inference_api: Api.inference) -> None:
|
||||
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: PGVectorVectorIOConfig,
|
||||
inference_api: Api.inference,
|
||||
files_api: Files | None = None,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.conn = None
|
||||
self.cache = {}
|
||||
self.files_api = files_api
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.openai_vector_store: dict[str, dict[str, Any]] = {}
|
||||
self.metadatadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
log.info(f"Initializing PGVector memory adapter with config: {self.config}")
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
await self.initialize_openai_vector_stores()
|
||||
|
||||
try:
|
||||
self.conn = psycopg2.connect(
|
||||
host=self.config.host,
|
||||
|
@ -201,14 +216,31 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
log.info("Connection to PGVector database server closed")
|
||||
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
# Persist vector DB metadata in the KV store
|
||||
assert self.kvstore is not None
|
||||
key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}"
|
||||
await self.kvstore.set(key=key, value=vector_db.model_dump_json())
|
||||
|
||||
# Upsert model metadata in Postgres
|
||||
upsert_models(self.conn, [(vector_db.identifier, vector_db)])
|
||||
|
||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
# Create and cache the PGVector index table for the vector DB
|
||||
index = VectorDBWithIndex(
|
||||
vector_db,
|
||||
index=PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn, kvstore=self.kvstore),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
# Remove provider index and cache
|
||||
if vector_db_id in self.cache:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
# Delete vector DB metadata from KV store
|
||||
assert self.kvstore is not None
|
||||
await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_db_id}")
|
||||
|
||||
async def insert_chunks(
|
||||
self,
|
||||
|
@ -237,107 +269,20 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
# OpenAI Vector Stores File operations are not supported in PGVector
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> VectorStoreListFilesResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_retrieve_vector_store_file_contents(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||
|
|
|
@ -6,15 +6,26 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
|
||||
|
||||
class WeaviateRequestProviderData(BaseModel):
|
||||
weaviate_api_key: str
|
||||
weaviate_cluster_url: str
|
||||
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
|
||||
|
||||
|
||||
class WeaviateVectorIOConfig(BaseModel):
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
return {}
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="weaviate_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -14,10 +14,13 @@ from weaviate.classes.init import Auth
|
|||
from weaviate.classes.query import Filter
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.files.files import Files
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
|
@ -27,11 +30,19 @@ from .config import WeaviateRequestProviderData, WeaviateVectorIOConfig
|
|||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:weaviate:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:weaviate:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:weaviate:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:weaviate:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:weaviate:{VERSION}::"
|
||||
|
||||
|
||||
class WeaviateIndex(EmbeddingIndex):
|
||||
def __init__(self, client: weaviate.Client, collection_name: str):
|
||||
def __init__(self, client: weaviate.Client, collection_name: str, kvstore: KVStore | None = None):
|
||||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
|
@ -109,11 +120,21 @@ class WeaviateVectorIOAdapter(
|
|||
NeedsRequestProviderData,
|
||||
VectorDBsProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: WeaviateVectorIOConfig, inference_api: Api.inference) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
config: WeaviateVectorIOConfig,
|
||||
inference_api: Api.inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client_cache = {}
|
||||
self.cache = {}
|
||||
self.files_api = files_api
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
def _get_client(self) -> weaviate.Client:
|
||||
provider_data = self.get_request_provider_data()
|
||||
|
@ -132,7 +153,26 @@ class WeaviateVectorIOAdapter(
|
|||
return client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
"""Set up KV store and load existing vector DBs and OpenAI vector stores."""
|
||||
# Initialize KV store for metadata
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
||||
# Load existing vector DB definitions
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored = await self.kvstore.values_in_range(start_key, end_key)
|
||||
for raw in stored:
|
||||
vector_db = VectorDB.model_validate_json(raw)
|
||||
client = self._get_client()
|
||||
idx = WeaviateIndex(client=client, collection_name=vector_db.identifier, kvstore=self.kvstore)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=idx,
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
# Load OpenAI vector stores metadata into cache
|
||||
await self.initialize_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
for client in self.client_cache.values():
|
||||
|
@ -206,3 +246,21 @@ class WeaviateVectorIOAdapter(
|
|||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
# OpenAI Vector Stores File operations are not supported in Weaviate
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue