mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 23:34:17 +00:00
Merge branch 'main' into add-watsonx-inference-adapter
This commit is contained in:
commit
34a3f1a749
12 changed files with 237 additions and 18 deletions
|
|
@ -28,7 +28,7 @@ The following environment variables can be configured:
|
|||
|
||||
## Setting up vLLM server
|
||||
|
||||
In the following sections, we'll use either AMD and NVIDIA GPUs to serve as hardware accelerators for the vLLM
|
||||
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
|
||||
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
|
||||
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
|
||||
that we only use GPUs here for demonstration purposes.
|
||||
|
|
@ -149,6 +149,55 @@ docker run \
|
|||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
### Setting up vLLM server on Intel GPU
|
||||
|
||||
Refer to [vLLM Documentation for XPU](https://docs.vllm.ai/en/v0.8.2/getting_started/installation/gpu.html?device=xpu) to get a vLLM endpoint. In addition to vLLM side setup which guides towards installing vLLM from sources orself-building vLLM Docker container, Intel provides prebuilt vLLM container to use on systems with Intel GPUs supported by PyTorch XPU backend:
|
||||
- [intel/vllm](https://hub.docker.com/r/intel/vllm)
|
||||
|
||||
Here is a sample script to start a vLLM server locally via Docker using Intel provided container:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
|
||||
export ZE_AFFINITY_MASK=0
|
||||
|
||||
docker run \
|
||||
--pull always \
|
||||
--device /dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--ipc=host \
|
||||
intel/vllm:xpu \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export ZE_AFFINITY_MASK=1
|
||||
|
||||
docker run \
|
||||
--pull always \
|
||||
--device /dev/dri \
|
||||
-v /dev/dri/by-path:/dev/dri/by-path \
|
||||
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
||||
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
||||
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--ipc=host \
|
||||
intel/vllm:xpu \
|
||||
--gpu-memory-utilization 0.7 \
|
||||
--model $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue