mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
parent
4773092dd1
commit
34ab7a3b6c
217 changed files with 981 additions and 2681 deletions
|
@ -1,7 +1,8 @@
|
|||
[flake8]
|
||||
# Suggested config from pytorch that we can adapt
|
||||
select = B,C,E,F,N,P,T4,W,B9,TOR0,TOR1,TOR2
|
||||
max-line-length = 120
|
||||
lint.select = ["B", "C", "E" , "F" , "N", "W", "B9"]
|
||||
|
||||
line-length = 120
|
||||
|
||||
# C408 ignored because we like the dict keyword argument syntax
|
||||
# E501 is not flexible enough, we're using B950 instead
|
||||
# N812 ignored because import torch.nn.functional as F is PyTorch convention
|
||||
|
@ -9,23 +10,28 @@ max-line-length = 120
|
|||
# E731 allow usage of assigning lambda expressions
|
||||
# E701 let black auto-format statements on one line
|
||||
# E704 let black auto-format statements on one line
|
||||
ignore =
|
||||
E203,E305,E402,E501,E721,E741,F405,F821,F841,F999,W503,W504,C408,E302,W291,E303,N812,N817,E731,E701,E704
|
||||
lint.ignore = [
|
||||
"E203", "E305", "E402", "E501", "E721", "E741", "F405", "F821", "F841",
|
||||
"C408", "E302", "W291", "E303", "N812", "N817", "E731", "E701",
|
||||
# These are the additional ones we started ignoring after moving to ruff. We should look into each one of them later.
|
||||
"C901", "C405", "C414", "N803", "N999", "C403", "C416", "B028", "C419", "C401", "B023",
|
||||
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
|
||||
# to line this up with executable bit
|
||||
EXE001,
|
||||
"EXE001",
|
||||
# random naming hints don't need
|
||||
N802,
|
||||
"N802",
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,B950
|
||||
optional-ascii-coding = True
|
||||
exclude =
|
||||
./.git,
|
||||
./docs/*,
|
||||
./build,
|
||||
./scripts,
|
||||
./venv,
|
||||
*.pyi,
|
||||
.pre-commit-config.yaml,
|
||||
*.md,
|
||||
.flake8
|
||||
"B007", "B008"
|
||||
]
|
||||
|
||||
exclude = [
|
||||
"./.git",
|
||||
"./docs/*",
|
||||
"./build",
|
||||
"./scripts",
|
||||
"./venv",
|
||||
"*.pyi",
|
||||
".pre-commit-config.yaml",
|
||||
"*.md",
|
||||
".flake8"
|
||||
]
|
|
@ -77,7 +77,7 @@ agent_config = AgentConfig(
|
|||
instructions="You are a helpful assistant",
|
||||
# Enable both RAG and tool usage
|
||||
toolgroups=[
|
||||
{"name": "builtin::rag", "args": {"vector_db_ids": ["my_docs"]}}.
|
||||
{"name": "builtin::rag", "args": {"vector_db_ids": ["my_docs"]}},
|
||||
"builtin::code_interpreter",
|
||||
],
|
||||
# Configure safety
|
||||
|
@ -86,13 +86,9 @@ agent_config = AgentConfig(
|
|||
# Control the inference loop
|
||||
max_infer_iters=5,
|
||||
sampling_params={
|
||||
"strategy": {
|
||||
"type": "top_p",
|
||||
"temperature": 0.7,
|
||||
"top_p": 0.95
|
||||
},
|
||||
"max_tokens": 2048
|
||||
}
|
||||
"strategy": {"type": "top_p", "temperature": 0.7, "top_p": 0.95},
|
||||
"max_tokens": 2048,
|
||||
},
|
||||
)
|
||||
|
||||
agent = Agent(client, agent_config)
|
||||
|
@ -101,11 +97,13 @@ session_id = agent.create_session("monitored_session")
|
|||
# Stream the agent's execution steps
|
||||
response = agent.create_turn(
|
||||
messages=[{"role": "user", "content": "Analyze this code and run it"}],
|
||||
attachments=[{
|
||||
"content": "https://raw.githubusercontent.com/example/code.py",
|
||||
"mime_type": "text/plain"
|
||||
}],
|
||||
session_id=session_id
|
||||
attachments=[
|
||||
{
|
||||
"content": "https://raw.githubusercontent.com/example/code.py",
|
||||
"mime_type": "text/plain",
|
||||
}
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Monitor each step of execution
|
||||
|
|
|
@ -15,6 +15,7 @@ This first example walks you through how to evaluate a model candidate served by
|
|||
|
||||
```python
|
||||
import datasets
|
||||
|
||||
ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev")
|
||||
ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"])
|
||||
eval_rows = ds.to_pandas().to_dict(orient="records")
|
||||
|
@ -43,7 +44,7 @@ system_message = {
|
|||
client.eval_tasks.register(
|
||||
eval_task_id="meta-reference::mmmu",
|
||||
dataset_id=f"mmmu-{subset}-{split}",
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"]
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||
)
|
||||
|
||||
response = client.eval.evaluate_rows(
|
||||
|
@ -62,9 +63,9 @@ response = client.eval.evaluate_rows(
|
|||
"max_tokens": 4096,
|
||||
"repeat_penalty": 1.0,
|
||||
},
|
||||
"system_message": system_message
|
||||
}
|
||||
}
|
||||
"system_message": system_message,
|
||||
},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -88,7 +89,7 @@ _ = client.datasets.register(
|
|||
"input_query": {"type": "string"},
|
||||
"expected_answer": {"type": "string"},
|
||||
"chat_completion_input": {"type": "chat_completion_input"},
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
eval_rows = client.datasetio.get_rows_paginated(
|
||||
|
@ -101,7 +102,7 @@ eval_rows = client.datasetio.get_rows_paginated(
|
|||
client.eval_tasks.register(
|
||||
eval_task_id="meta-reference::simpleqa",
|
||||
dataset_id=simpleqa_dataset_id,
|
||||
scoring_functions=["llm-as-judge::405b-simpleqa"]
|
||||
scoring_functions=["llm-as-judge::405b-simpleqa"],
|
||||
)
|
||||
|
||||
response = client.eval.evaluate_rows(
|
||||
|
@ -120,8 +121,8 @@ response = client.eval.evaluate_rows(
|
|||
"max_tokens": 4096,
|
||||
"repeat_penalty": 1.0,
|
||||
},
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -144,14 +145,14 @@ agent_config = {
|
|||
{
|
||||
"type": "brave_search",
|
||||
"engine": "tavily",
|
||||
"api_key": userdata.get("TAVILY_SEARCH_API_KEY")
|
||||
"api_key": userdata.get("TAVILY_SEARCH_API_KEY"),
|
||||
}
|
||||
],
|
||||
"tool_choice": "auto",
|
||||
"tool_prompt_format": "json",
|
||||
"input_shields": [],
|
||||
"output_shields": [],
|
||||
"enable_session_persistence": False
|
||||
"enable_session_persistence": False,
|
||||
}
|
||||
|
||||
response = client.eval.evaluate_rows(
|
||||
|
@ -163,7 +164,7 @@ response = client.eval.evaluate_rows(
|
|||
"eval_candidate": {
|
||||
"type": "agent",
|
||||
"config": agent_config,
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
|
|
@ -13,7 +13,7 @@ Here's how to set up basic evaluation:
|
|||
response = client.eval_tasks.register(
|
||||
eval_task_id="my_eval",
|
||||
dataset_id="my_dataset",
|
||||
scoring_functions=["accuracy", "relevance"]
|
||||
scoring_functions=["accuracy", "relevance"],
|
||||
)
|
||||
|
||||
# Run evaluation
|
||||
|
@ -21,16 +21,10 @@ job = client.eval.run_eval(
|
|||
task_id="my_eval",
|
||||
task_config={
|
||||
"type": "app",
|
||||
"eval_candidate": {
|
||||
"type": "agent",
|
||||
"config": agent_config
|
||||
}
|
||||
}
|
||||
"eval_candidate": {"type": "agent", "config": agent_config},
|
||||
},
|
||||
)
|
||||
|
||||
# Get results
|
||||
result = client.eval.job_result(
|
||||
task_id="my_eval",
|
||||
job_id=job.job_id
|
||||
)
|
||||
result = client.eval.job_result(task_id="my_eval", job_id=job.job_id)
|
||||
```
|
||||
|
|
|
@ -34,15 +34,16 @@ chunks = [
|
|||
{
|
||||
"document_id": "doc1",
|
||||
"content": "Your document text here",
|
||||
"mime_type": "text/plain"
|
||||
"mime_type": "text/plain",
|
||||
},
|
||||
...
|
||||
...,
|
||||
]
|
||||
client.vector_io.insert(vector_db_id, chunks)
|
||||
|
||||
# You can then query for these chunks
|
||||
chunks_response = client.vector_io.query(vector_db_id, query="What do you know about...")
|
||||
|
||||
chunks_response = client.vector_io.query(
|
||||
vector_db_id, query="What do you know about..."
|
||||
)
|
||||
```
|
||||
|
||||
### Using the RAG Tool
|
||||
|
@ -81,7 +82,6 @@ results = client.tool_runtime.rag_tool.query(
|
|||
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
|
||||
|
||||
```python
|
||||
|
||||
# Configure agent with memory
|
||||
agent_config = AgentConfig(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
|
@ -91,9 +91,9 @@ agent_config = AgentConfig(
|
|||
"name": "builtin::rag",
|
||||
"args": {
|
||||
"vector_db_ids": [vector_db_id],
|
||||
}
|
||||
},
|
||||
}
|
||||
]
|
||||
],
|
||||
)
|
||||
|
||||
agent = Agent(client, agent_config)
|
||||
|
@ -101,25 +101,21 @@ session_id = agent.create_session("rag_session")
|
|||
|
||||
# Initial document ingestion
|
||||
response = agent.create_turn(
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": "I am providing some documents for reference."
|
||||
}],
|
||||
messages=[
|
||||
{"role": "user", "content": "I am providing some documents for reference."}
|
||||
],
|
||||
documents=[
|
||||
dict(
|
||||
content="https://raw.githubusercontent.com/example/doc.rst",
|
||||
mime_type="text/plain"
|
||||
mime_type="text/plain",
|
||||
)
|
||||
],
|
||||
session_id=session_id
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Query with RAG
|
||||
response = agent.create_turn(
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": "What are the key topics in the documents?"
|
||||
}],
|
||||
session_id=session_id
|
||||
messages=[{"role": "user", "content": "What are the key topics in the documents?"}],
|
||||
session_id=session_id,
|
||||
)
|
||||
```
|
||||
|
|
|
@ -5,15 +5,11 @@ Safety is a critical component of any AI application. Llama Stack provides a Shi
|
|||
```python
|
||||
# Register a safety shield
|
||||
shield_id = "content_safety"
|
||||
client.shields.register(
|
||||
shield_id=shield_id,
|
||||
provider_shield_id="llama-guard-basic"
|
||||
)
|
||||
client.shields.register(shield_id=shield_id, provider_shield_id="llama-guard-basic")
|
||||
|
||||
# Run content through shield
|
||||
response = client.safety.run_shield(
|
||||
shield_id=shield_id,
|
||||
messages=[{"role": "user", "content": "User message here"}]
|
||||
shield_id=shield_id, messages=[{"role": "user", "content": "User message here"}]
|
||||
)
|
||||
|
||||
if response.violation:
|
||||
|
|
|
@ -8,24 +8,16 @@ The telemetry system supports three main types of events:
|
|||
- **Unstructured Log Events**: Free-form log messages with severity levels
|
||||
```python
|
||||
unstructured_log_event = UnstructuredLogEvent(
|
||||
message="This is a log message",
|
||||
severity=LogSeverity.INFO
|
||||
message="This is a log message", severity=LogSeverity.INFO
|
||||
)
|
||||
```
|
||||
- **Metric Events**: Numerical measurements with units
|
||||
```python
|
||||
metric_event = MetricEvent(
|
||||
metric="my_metric",
|
||||
value=10,
|
||||
unit="count"
|
||||
)
|
||||
metric_event = MetricEvent(metric="my_metric", value=10, unit="count")
|
||||
```
|
||||
- **Structured Log Events**: System events like span start/end. Extensible to add more structured log types.
|
||||
```python
|
||||
structured_log_event = SpanStartPayload(
|
||||
name="my_span",
|
||||
parent_span_id="parent_span_id"
|
||||
)
|
||||
structured_log_event = SpanStartPayload(name="my_span", parent_span_id="parent_span_id")
|
||||
```
|
||||
|
||||
### Spans and Traces
|
||||
|
|
|
@ -35,7 +35,7 @@ Example client SDK call to register a "websearch" toolgroup that is provided by
|
|||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="brave-search",
|
||||
args={"max_results": 5}
|
||||
args={"max_results": 5},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -50,8 +50,7 @@ The Code Interpreter allows execution of Python code within a controlled environ
|
|||
```python
|
||||
# Register Code Interpreter tool group
|
||||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::code_interpreter",
|
||||
provider_id="code_interpreter"
|
||||
toolgroup_id="builtin::code_interpreter", provider_id="code_interpreter"
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -68,16 +67,14 @@ The WolframAlpha tool provides access to computational knowledge through the Wol
|
|||
```python
|
||||
# Register WolframAlpha tool group
|
||||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::wolfram_alpha",
|
||||
provider_id="wolfram-alpha"
|
||||
toolgroup_id="builtin::wolfram_alpha", provider_id="wolfram-alpha"
|
||||
)
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
result = client.tool_runtime.invoke_tool(
|
||||
tool_name="wolfram_alpha",
|
||||
args={"query": "solve x^2 + 2x + 1 = 0"}
|
||||
tool_name="wolfram_alpha", args={"query": "solve x^2 + 2x + 1 = 0"}
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -90,10 +87,7 @@ The Memory tool enables retrieval of context from various types of memory banks
|
|||
client.toolgroups.register(
|
||||
toolgroup_id="builtin::memory",
|
||||
provider_id="memory",
|
||||
args={
|
||||
"max_chunks": 5,
|
||||
"max_tokens_in_context": 4096
|
||||
}
|
||||
args={"max_chunks": 5, "max_tokens_in_context": 4096},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -136,9 +130,7 @@ config = AgentConfig(
|
|||
toolgroups=[
|
||||
"builtin::websearch",
|
||||
],
|
||||
client_tools=[
|
||||
ToolDef(name="client_tool", description="Client provided tool")
|
||||
]
|
||||
client_tools=[ToolDef(name="client_tool", description="Client provided tool")],
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -167,9 +159,9 @@ Example tool definition:
|
|||
"name": "query",
|
||||
"parameter_type": "string",
|
||||
"description": "The query to search for",
|
||||
"required": True
|
||||
"required": True,
|
||||
}
|
||||
]
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -179,8 +171,7 @@ Tools can be invoked using the `invoke_tool` method:
|
|||
|
||||
```python
|
||||
result = client.tool_runtime.invoke_tool(
|
||||
tool_name="web_search",
|
||||
kwargs={"query": "What is the capital of France?"}
|
||||
tool_name="web_search", kwargs={"query": "What is the capital of France?"}
|
||||
)
|
||||
```
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# Using Llama Stack as a Library
|
||||
|
||||
If you are planning to use an external service for Inference (even Ollama or TGI counts as external), it is often easier to use Llama Stack as a library. This avoids the overhead of setting up a server.
|
||||
```python
|
||||
```bash
|
||||
# setup
|
||||
pip install llama-stack
|
||||
uv pip install llama-stack
|
||||
llama stack build --template together --image-type venv
|
||||
```
|
||||
|
||||
|
@ -13,7 +13,7 @@ from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
|||
client = LlamaStackAsLibraryClient(
|
||||
"ollama",
|
||||
# provider_data is optional, but if you need to pass in any provider specific data, you can do so here.
|
||||
provider_data = {"tavily_search_api_key": os.environ['TAVILY_SEARCH_API_KEY']}
|
||||
provider_data={"tavily_search_api_key": os.environ["TAVILY_SEARCH_API_KEY"]},
|
||||
)
|
||||
await client.initialize()
|
||||
```
|
||||
|
|
|
@ -96,18 +96,26 @@ Here is a simple example to perform chat completions using the SDK.
|
|||
```python
|
||||
import os
|
||||
|
||||
|
||||
def create_http_client():
|
||||
from llama_stack_client import LlamaStackClient
|
||||
return LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
|
||||
|
||||
return LlamaStackClient(
|
||||
base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}"
|
||||
)
|
||||
|
||||
|
||||
def create_library_client(template="ollama"):
|
||||
from llama_stack import LlamaStackAsLibraryClient
|
||||
|
||||
client = LlamaStackAsLibraryClient(template)
|
||||
client.initialize()
|
||||
return client
|
||||
|
||||
|
||||
client = create_library_client() # or create_http_client() depending on the environment you picked
|
||||
client = (
|
||||
create_library_client()
|
||||
) # or create_http_client() depending on the environment you picked
|
||||
|
||||
# List available models
|
||||
models = client.models.list()
|
||||
|
@ -120,8 +128,8 @@ response = client.inference.chat_completion(
|
|||
model_id=os.environ["INFERENCE_MODEL"],
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Write a haiku about coding"}
|
||||
]
|
||||
{"role": "user", "content": "Write a haiku about coding"},
|
||||
],
|
||||
)
|
||||
print(response.completion_message.content)
|
||||
```
|
||||
|
@ -139,7 +147,9 @@ from llama_stack_client.lib.agents.event_logger import EventLogger
|
|||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
from llama_stack_client.types import Document
|
||||
|
||||
client = create_library_client() # or create_http_client() depending on the environment you picked
|
||||
client = (
|
||||
create_library_client()
|
||||
) # or create_http_client() depending on the environment you picked
|
||||
|
||||
# Documents to be used for RAG
|
||||
urls = ["chat.rst", "llama3.rst", "datasets.rst", "lora_finetune.rst"]
|
||||
|
@ -174,12 +184,12 @@ agent_config = AgentConfig(
|
|||
instructions="You are a helpful assistant",
|
||||
enable_session_persistence=False,
|
||||
# Define tools available to the agent
|
||||
toolgroups = [
|
||||
toolgroups=[
|
||||
{
|
||||
"name": "builtin::rag",
|
||||
"args" : {
|
||||
"vector_db_ids": [vector_db_id],
|
||||
}
|
||||
"name": "builtin::rag",
|
||||
"args": {
|
||||
"vector_db_ids": [vector_db_id],
|
||||
},
|
||||
}
|
||||
],
|
||||
)
|
||||
|
@ -193,7 +203,7 @@ user_prompts = [
|
|||
|
||||
# Run the agent loop by calling the `create_turn` method
|
||||
for prompt in user_prompts:
|
||||
cprint(f'User> {prompt}', 'green')
|
||||
cprint(f"User> {prompt}", "green")
|
||||
response = rag_agent.create_turn(
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
session_id=session_id,
|
||||
|
|
|
@ -51,6 +51,7 @@ This first example walks you through how to evaluate a model candidate served by
|
|||
|
||||
```python
|
||||
import datasets
|
||||
|
||||
ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev")
|
||||
ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"])
|
||||
eval_rows = ds.to_pandas().to_dict(orient="records")
|
||||
|
@ -79,7 +80,7 @@ system_message = {
|
|||
client.eval_tasks.register(
|
||||
eval_task_id="meta-reference::mmmu",
|
||||
dataset_id=f"mmmu-{subset}-{split}",
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"]
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||
)
|
||||
|
||||
response = client.eval.evaluate_rows(
|
||||
|
@ -98,9 +99,9 @@ response = client.eval.evaluate_rows(
|
|||
"max_tokens": 4096,
|
||||
"repeat_penalty": 1.0,
|
||||
},
|
||||
"system_message": system_message
|
||||
}
|
||||
}
|
||||
"system_message": system_message,
|
||||
},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -124,7 +125,7 @@ _ = client.datasets.register(
|
|||
"input_query": {"type": "string"},
|
||||
"expected_answer": {"type": "string"},
|
||||
"chat_completion_input": {"type": "chat_completion_input"},
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
eval_rows = client.datasetio.get_rows_paginated(
|
||||
|
@ -137,7 +138,7 @@ eval_rows = client.datasetio.get_rows_paginated(
|
|||
client.eval_tasks.register(
|
||||
eval_task_id="meta-reference::simpleqa",
|
||||
dataset_id=simpleqa_dataset_id,
|
||||
scoring_functions=["llm-as-judge::405b-simpleqa"]
|
||||
scoring_functions=["llm-as-judge::405b-simpleqa"],
|
||||
)
|
||||
|
||||
response = client.eval.evaluate_rows(
|
||||
|
@ -156,8 +157,8 @@ response = client.eval.evaluate_rows(
|
|||
"max_tokens": 4096,
|
||||
"repeat_penalty": 1.0,
|
||||
},
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -180,14 +181,14 @@ agent_config = {
|
|||
{
|
||||
"type": "brave_search",
|
||||
"engine": "tavily",
|
||||
"api_key": userdata.get("TAVILY_SEARCH_API_KEY")
|
||||
"api_key": userdata.get("TAVILY_SEARCH_API_KEY"),
|
||||
}
|
||||
],
|
||||
"tool_choice": "auto",
|
||||
"tool_prompt_format": "json",
|
||||
"input_shields": [],
|
||||
"output_shields": [],
|
||||
"enable_session_persistence": False
|
||||
"enable_session_persistence": False,
|
||||
}
|
||||
|
||||
response = client.eval.evaluate_rows(
|
||||
|
@ -199,8 +200,8 @@ response = client.eval.evaluate_rows(
|
|||
"eval_candidate": {
|
||||
"type": "agent",
|
||||
"config": agent_config,
|
||||
}
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -237,7 +238,9 @@ GENERATED_RESPONSE: {generated_answer}
|
|||
EXPECTED_RESPONSE: {expected_answer}
|
||||
"""
|
||||
|
||||
input_query = "What are the top 5 topics that were explained? Only list succinct bullet points."
|
||||
input_query = (
|
||||
"What are the top 5 topics that were explained? Only list succinct bullet points."
|
||||
)
|
||||
generated_answer = """
|
||||
Here are the top 5 topics that were explained in the documentation for Torchtune:
|
||||
|
||||
|
@ -268,7 +271,9 @@ scoring_params = {
|
|||
"braintrust::factuality": None,
|
||||
}
|
||||
|
||||
response = client.scoring.score(input_rows=dataset_rows, scoring_functions=scoring_params)
|
||||
response = client.scoring.score(
|
||||
input_rows=dataset_rows, scoring_functions=scoring_params
|
||||
)
|
||||
```
|
||||
|
||||
## Running Evaluations via CLI
|
||||
|
|
|
@ -33,7 +33,11 @@ from llama_stack_client.types import (
|
|||
Types:
|
||||
|
||||
```python
|
||||
from llama_stack_client.types import ListToolGroupsResponse, ToolGroup, ToolgroupListResponse
|
||||
from llama_stack_client.types import (
|
||||
ListToolGroupsResponse,
|
||||
ToolGroup,
|
||||
ToolgroupListResponse,
|
||||
)
|
||||
```
|
||||
|
||||
Methods:
|
||||
|
@ -444,7 +448,11 @@ Methods:
|
|||
Types:
|
||||
|
||||
```python
|
||||
from llama_stack_client.types import EvalTask, ListEvalTasksResponse, EvalTaskListResponse
|
||||
from llama_stack_client.types import (
|
||||
EvalTask,
|
||||
ListEvalTasksResponse,
|
||||
EvalTaskListResponse,
|
||||
)
|
||||
```
|
||||
|
||||
Methods:
|
||||
|
|
|
@ -224,7 +224,7 @@ client = LlamaStackClient(base_url="http://localhost:5001")
|
|||
response = client.inference.chat_completion(
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a friendly assistant."},
|
||||
{"role": "user", "content": "Write a two-sentence poem about llama."}
|
||||
{"role": "user", "content": "Write a two-sentence poem about llama."},
|
||||
],
|
||||
model_id=INFERENCE_MODEL,
|
||||
)
|
||||
|
|
|
@ -86,9 +86,7 @@ class ShieldCallStep(StepCommon):
|
|||
|
||||
@json_schema_type
|
||||
class MemoryRetrievalStep(StepCommon):
|
||||
step_type: Literal[StepType.memory_retrieval.value] = (
|
||||
StepType.memory_retrieval.value
|
||||
)
|
||||
step_type: Literal[StepType.memory_retrieval.value] = StepType.memory_retrieval.value
|
||||
vector_db_ids: str
|
||||
inserted_context: InterleavedContent
|
||||
|
||||
|
@ -184,9 +182,7 @@ class AgentTurnResponseEventType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepStartPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.step_start.value] = (
|
||||
AgentTurnResponseEventType.step_start.value
|
||||
)
|
||||
event_type: Literal[AgentTurnResponseEventType.step_start.value] = AgentTurnResponseEventType.step_start.value
|
||||
step_type: StepType
|
||||
step_id: str
|
||||
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict)
|
||||
|
@ -194,9 +190,7 @@ class AgentTurnResponseStepStartPayload(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepCompletePayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.step_complete.value] = (
|
||||
AgentTurnResponseEventType.step_complete.value
|
||||
)
|
||||
event_type: Literal[AgentTurnResponseEventType.step_complete.value] = AgentTurnResponseEventType.step_complete.value
|
||||
step_type: StepType
|
||||
step_id: str
|
||||
step_details: Step
|
||||
|
@ -206,9 +200,7 @@ class AgentTurnResponseStepCompletePayload(BaseModel):
|
|||
class AgentTurnResponseStepProgressPayload(BaseModel):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
event_type: Literal[AgentTurnResponseEventType.step_progress.value] = (
|
||||
AgentTurnResponseEventType.step_progress.value
|
||||
)
|
||||
event_type: Literal[AgentTurnResponseEventType.step_progress.value] = AgentTurnResponseEventType.step_progress.value
|
||||
step_type: StepType
|
||||
step_id: str
|
||||
|
||||
|
@ -217,17 +209,13 @@ class AgentTurnResponseStepProgressPayload(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnStartPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_start.value] = (
|
||||
AgentTurnResponseEventType.turn_start.value
|
||||
)
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_start.value] = AgentTurnResponseEventType.turn_start.value
|
||||
turn_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnCompletePayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_complete.value] = (
|
||||
AgentTurnResponseEventType.turn_complete.value
|
||||
)
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_complete.value] = AgentTurnResponseEventType.turn_complete.value
|
||||
turn: Turn
|
||||
|
||||
|
||||
|
@ -329,9 +317,7 @@ class Agents(Protocol):
|
|||
toolgroups: Optional[List[AgentToolGroup]] = None,
|
||||
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]: ...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}", method="GET"
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}", method="GET")
|
||||
async def get_agents_turn(
|
||||
self,
|
||||
agent_id: str,
|
||||
|
|
|
@ -63,9 +63,7 @@ class EventLogger:
|
|||
if isinstance(chunk, ToolResponseMessage):
|
||||
yield (
|
||||
chunk,
|
||||
LogEvent(
|
||||
role="CustomTool", content=chunk.content, color="grey"
|
||||
),
|
||||
LogEvent(role="CustomTool", content=chunk.content, color="grey"),
|
||||
)
|
||||
continue
|
||||
|
||||
|
@ -81,17 +79,12 @@ class EventLogger:
|
|||
|
||||
step_type = event.payload.step_type
|
||||
# handle safety
|
||||
if (
|
||||
step_type == StepType.shield_call
|
||||
and event_type == EventType.step_complete.value
|
||||
):
|
||||
if step_type == StepType.shield_call and event_type == EventType.step_complete.value:
|
||||
violation = event.payload.step_details.violation
|
||||
if not violation:
|
||||
yield (
|
||||
event,
|
||||
LogEvent(
|
||||
role=step_type, content="No Violation", color="magenta"
|
||||
),
|
||||
LogEvent(role=step_type, content="No Violation", color="magenta"),
|
||||
)
|
||||
else:
|
||||
yield (
|
||||
|
@ -110,9 +103,7 @@ class EventLogger:
|
|||
# TODO: Currently this event is never received
|
||||
yield (
|
||||
event,
|
||||
LogEvent(
|
||||
role=step_type, content="", end="", color="yellow"
|
||||
),
|
||||
LogEvent(role=step_type, content="", end="", color="yellow"),
|
||||
)
|
||||
elif event_type == EventType.step_progress.value:
|
||||
# HACK: if previous was not step/event was not inference's step_progress
|
||||
|
@ -125,9 +116,7 @@ class EventLogger:
|
|||
):
|
||||
yield (
|
||||
event,
|
||||
LogEvent(
|
||||
role=step_type, content="", end="", color="yellow"
|
||||
),
|
||||
LogEvent(role=step_type, content="", end="", color="yellow"),
|
||||
)
|
||||
|
||||
delta = event.payload.delta
|
||||
|
@ -161,9 +150,7 @@ class EventLogger:
|
|||
if event_type == EventType.step_complete.value:
|
||||
response = event.payload.step_details.model_response
|
||||
if response.tool_calls:
|
||||
content = ToolUtils.encode_tool_call(
|
||||
response.tool_calls[0], tool_prompt_format
|
||||
)
|
||||
content = ToolUtils.encode_tool_call(response.tool_calls[0], tool_prompt_format)
|
||||
else:
|
||||
content = response.content
|
||||
yield (
|
||||
|
@ -202,10 +189,7 @@ class EventLogger:
|
|||
),
|
||||
)
|
||||
|
||||
if (
|
||||
step_type == StepType.memory_retrieval
|
||||
and event_type == EventType.step_complete.value
|
||||
):
|
||||
if step_type == StepType.memory_retrieval and event_type == EventType.step_complete.value:
|
||||
details = event.payload.step_details
|
||||
inserted_context = interleaved_content_as_str(details.inserted_context)
|
||||
content = f"fetched {len(inserted_context)} bytes from {details.vector_db_ids}"
|
||||
|
|
|
@ -39,6 +39,4 @@ class DatasetIO(Protocol):
|
|||
) -> PaginatedRowsResult: ...
|
||||
|
||||
@webmethod(route="/datasetio/rows", method="POST")
|
||||
async def append_rows(
|
||||
self, dataset_id: str, rows: List[Dict[str, Any]]
|
||||
) -> None: ...
|
||||
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None: ...
|
||||
|
|
|
@ -63,9 +63,7 @@ class AppEvalTaskConfig(BaseModel):
|
|||
|
||||
|
||||
EvalTaskConfig = register_schema(
|
||||
Annotated[
|
||||
Union[BenchmarkEvalTaskConfig, AppEvalTaskConfig], Field(discriminator="type")
|
||||
],
|
||||
Annotated[Union[BenchmarkEvalTaskConfig, AppEvalTaskConfig], Field(discriminator="type")],
|
||||
name="EvalTaskConfig",
|
||||
)
|
||||
|
||||
|
|
|
@ -245,9 +245,7 @@ class JsonSchemaResponseFormat(BaseModel):
|
|||
:param json_schema: The JSON schema the response should conform to. In a Python SDK, this is often a `pydantic` model.
|
||||
"""
|
||||
|
||||
type: Literal[ResponseFormatType.json_schema.value] = (
|
||||
ResponseFormatType.json_schema.value
|
||||
)
|
||||
type: Literal[ResponseFormatType.json_schema.value] = ResponseFormatType.json_schema.value
|
||||
json_schema: Dict[str, Any]
|
||||
|
||||
|
||||
|
@ -406,9 +404,7 @@ class Inference(Protocol):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
|
||||
]:
|
||||
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
||||
"""Generate a chat completion for the given messages using the specified model.
|
||||
|
||||
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
|
|
|
@ -89,9 +89,7 @@ class QATFinetuningConfig(BaseModel):
|
|||
|
||||
|
||||
AlgorithmConfig = register_schema(
|
||||
Annotated[
|
||||
Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")
|
||||
],
|
||||
Annotated[Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")],
|
||||
name="AlgorithmConfig",
|
||||
)
|
||||
|
||||
|
@ -204,14 +202,10 @@ class PostTraining(Protocol):
|
|||
async def get_training_jobs(self) -> ListPostTrainingJobsResponse: ...
|
||||
|
||||
@webmethod(route="/post-training/job/status", method="GET")
|
||||
async def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> Optional[PostTrainingJobStatusResponse]: ...
|
||||
async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]: ...
|
||||
|
||||
@webmethod(route="/post-training/job/cancel", method="POST")
|
||||
async def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts", method="GET")
|
||||
async def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> Optional[PostTrainingJobArtifactsResponse]: ...
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]: ...
|
||||
|
|
|
@ -23,9 +23,7 @@ class ResourceType(Enum):
|
|||
class Resource(BaseModel):
|
||||
"""Base class for all Llama Stack resources"""
|
||||
|
||||
identifier: str = Field(
|
||||
description="Unique identifier for this resource in llama stack"
|
||||
)
|
||||
identifier: str = Field(description="Unique identifier for this resource in llama stack")
|
||||
|
||||
provider_resource_id: str = Field(
|
||||
description="Unique identifier for this resource in the provider",
|
||||
|
@ -34,6 +32,4 @@ class Resource(BaseModel):
|
|||
|
||||
provider_id: str = Field(description="ID of the provider that owns this resource")
|
||||
|
||||
type: ResourceType = Field(
|
||||
description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)"
|
||||
)
|
||||
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)")
|
||||
|
|
|
@ -43,9 +43,7 @@ class AggregationFunctionType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class LLMAsJudgeScoringFnParams(BaseModel):
|
||||
type: Literal[ScoringFnParamsType.llm_as_judge.value] = (
|
||||
ScoringFnParamsType.llm_as_judge.value
|
||||
)
|
||||
type: Literal[ScoringFnParamsType.llm_as_judge.value] = ScoringFnParamsType.llm_as_judge.value
|
||||
judge_model: str
|
||||
prompt_template: Optional[str] = None
|
||||
judge_score_regexes: Optional[List[str]] = Field(
|
||||
|
@ -60,9 +58,7 @@ class LLMAsJudgeScoringFnParams(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class RegexParserScoringFnParams(BaseModel):
|
||||
type: Literal[ScoringFnParamsType.regex_parser.value] = (
|
||||
ScoringFnParamsType.regex_parser.value
|
||||
)
|
||||
type: Literal[ScoringFnParamsType.regex_parser.value] = ScoringFnParamsType.regex_parser.value
|
||||
parsing_regexes: Optional[List[str]] = Field(
|
||||
description="Regex to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
|
@ -112,9 +108,7 @@ class CommonScoringFnFields(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class ScoringFn(CommonScoringFnFields, Resource):
|
||||
type: Literal[ResourceType.scoring_function.value] = (
|
||||
ResourceType.scoring_function.value
|
||||
)
|
||||
type: Literal[ResourceType.scoring_function.value] = ResourceType.scoring_function.value
|
||||
|
||||
@property
|
||||
def scoring_fn_id(self) -> str:
|
||||
|
@ -141,9 +135,7 @@ class ScoringFunctions(Protocol):
|
|||
async def list_scoring_functions(self) -> ListScoringFunctionsResponse: ...
|
||||
|
||||
@webmethod(route="/scoring-functions/{scoring_fn_id}", method="GET")
|
||||
async def get_scoring_function(
|
||||
self, scoring_fn_id: str, /
|
||||
) -> Optional[ScoringFn]: ...
|
||||
async def get_scoring_function(self, scoring_fn_id: str, /) -> Optional[ScoringFn]: ...
|
||||
|
||||
@webmethod(route="/scoring-functions", method="POST")
|
||||
async def register_scoring_function(
|
||||
|
|
|
@ -102,9 +102,7 @@ class StructuredLogType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class SpanStartPayload(BaseModel):
|
||||
type: Literal[StructuredLogType.SPAN_START.value] = (
|
||||
StructuredLogType.SPAN_START.value
|
||||
)
|
||||
type: Literal[StructuredLogType.SPAN_START.value] = StructuredLogType.SPAN_START.value
|
||||
name: str
|
||||
parent_span_id: Optional[str] = None
|
||||
|
||||
|
@ -190,9 +188,7 @@ class QuerySpanTreeResponse(BaseModel):
|
|||
@runtime_checkable
|
||||
class Telemetry(Protocol):
|
||||
@webmethod(route="/telemetry/events", method="POST")
|
||||
async def log_event(
|
||||
self, event: Event, ttl_seconds: int = DEFAULT_TTL_DAYS * 86400
|
||||
) -> None: ...
|
||||
async def log_event(self, event: Event, ttl_seconds: int = DEFAULT_TTL_DAYS * 86400) -> None: ...
|
||||
|
||||
@webmethod(route="/telemetry/traces", method="GET")
|
||||
async def query_traces(
|
||||
|
|
|
@ -64,9 +64,7 @@ RAGQueryGeneratorConfig = register_schema(
|
|||
class RAGQueryConfig(BaseModel):
|
||||
# This config defines how a query is generated using the messages
|
||||
# for memory bank retrieval.
|
||||
query_generator_config: RAGQueryGeneratorConfig = Field(
|
||||
default=DefaultRAGQueryGeneratorConfig()
|
||||
)
|
||||
query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig())
|
||||
max_tokens_in_context: int = 4096
|
||||
max_chunks: int = 5
|
||||
|
||||
|
|
|
@ -150,8 +150,6 @@ class ToolRuntime(Protocol):
|
|||
) -> List[ToolDef]: ...
|
||||
|
||||
@webmethod(route="/tool-runtime/invoke", method="POST")
|
||||
async def invoke_tool(
|
||||
self, tool_name: str, kwargs: Dict[str, Any]
|
||||
) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
"""Run a tool with the given arguments"""
|
||||
...
|
||||
|
|
|
@ -147,9 +147,7 @@ class ParallelDownloader:
|
|||
"follow_redirects": True,
|
||||
}
|
||||
|
||||
async def retry_with_exponential_backoff(
|
||||
self, task: DownloadTask, func, *args, **kwargs
|
||||
):
|
||||
async def retry_with_exponential_backoff(self, task: DownloadTask, func, *args, **kwargs):
|
||||
last_exception = None
|
||||
for attempt in range(task.max_retries):
|
||||
try:
|
||||
|
@ -166,13 +164,9 @@ class ParallelDownloader:
|
|||
continue
|
||||
raise last_exception
|
||||
|
||||
async def get_file_info(
|
||||
self, client: httpx.AsyncClient, task: DownloadTask
|
||||
) -> None:
|
||||
async def get_file_info(self, client: httpx.AsyncClient, task: DownloadTask) -> None:
|
||||
async def _get_info():
|
||||
response = await client.head(
|
||||
task.url, headers={"Accept-Encoding": "identity"}, **self.client_options
|
||||
)
|
||||
response = await client.head(task.url, headers={"Accept-Encoding": "identity"}, **self.client_options)
|
||||
response.raise_for_status()
|
||||
return response
|
||||
|
||||
|
@ -201,14 +195,10 @@ class ParallelDownloader:
|
|||
return False
|
||||
return os.path.getsize(task.output_file) == task.total_size
|
||||
|
||||
async def download_chunk(
|
||||
self, client: httpx.AsyncClient, task: DownloadTask, start: int, end: int
|
||||
) -> None:
|
||||
async def download_chunk(self, client: httpx.AsyncClient, task: DownloadTask, start: int, end: int) -> None:
|
||||
async def _download_chunk():
|
||||
headers = {"Range": f"bytes={start}-{end}"}
|
||||
async with client.stream(
|
||||
"GET", task.url, headers=headers, **self.client_options
|
||||
) as response:
|
||||
async with client.stream("GET", task.url, headers=headers, **self.client_options) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
with open(task.output_file, "ab") as file:
|
||||
|
@ -225,8 +215,7 @@ class ParallelDownloader:
|
|||
await self.retry_with_exponential_backoff(task, _download_chunk)
|
||||
except Exception as e:
|
||||
raise DownloadError(
|
||||
f"Failed to download chunk {start}-{end} after "
|
||||
f"{task.max_retries} attempts: {str(e)}"
|
||||
f"Failed to download chunk {start}-{end} after {task.max_retries} attempts: {str(e)}"
|
||||
) from e
|
||||
|
||||
async def prepare_download(self, task: DownloadTask) -> None:
|
||||
|
@ -244,9 +233,7 @@ class ParallelDownloader:
|
|||
# Check if file is already downloaded
|
||||
if os.path.exists(task.output_file):
|
||||
if self.verify_file_integrity(task):
|
||||
self.console.print(
|
||||
f"[green]Already downloaded {task.output_file}[/green]"
|
||||
)
|
||||
self.console.print(f"[green]Already downloaded {task.output_file}[/green]")
|
||||
self.progress.update(task.task_id, completed=task.total_size)
|
||||
return
|
||||
|
||||
|
@ -259,9 +246,7 @@ class ParallelDownloader:
|
|||
|
||||
current_pos = task.downloaded_size
|
||||
while current_pos < task.total_size:
|
||||
chunk_end = min(
|
||||
current_pos + chunk_size - 1, task.total_size - 1
|
||||
)
|
||||
chunk_end = min(current_pos + chunk_size - 1, task.total_size - 1)
|
||||
chunks.append((current_pos, chunk_end))
|
||||
current_pos = chunk_end + 1
|
||||
|
||||
|
@ -273,18 +258,12 @@ class ParallelDownloader:
|
|||
raise DownloadError(f"Download failed: {str(e)}") from e
|
||||
|
||||
except Exception as e:
|
||||
self.progress.update(
|
||||
task.task_id, description=f"[red]Failed: {task.output_file}[/red]"
|
||||
)
|
||||
raise DownloadError(
|
||||
f"Download failed for {task.output_file}: {str(e)}"
|
||||
) from e
|
||||
self.progress.update(task.task_id, description=f"[red]Failed: {task.output_file}[/red]")
|
||||
raise DownloadError(f"Download failed for {task.output_file}: {str(e)}") from e
|
||||
|
||||
def has_disk_space(self, tasks: List[DownloadTask]) -> bool:
|
||||
try:
|
||||
total_remaining_size = sum(
|
||||
task.total_size - task.downloaded_size for task in tasks
|
||||
)
|
||||
total_remaining_size = sum(task.total_size - task.downloaded_size for task in tasks)
|
||||
dir_path = os.path.dirname(os.path.abspath(tasks[0].output_file))
|
||||
free_space = shutil.disk_usage(dir_path).free
|
||||
|
||||
|
@ -314,9 +293,7 @@ class ParallelDownloader:
|
|||
with self.progress:
|
||||
for task in tasks:
|
||||
desc = f"Downloading {Path(task.output_file).name}"
|
||||
task.task_id = self.progress.add_task(
|
||||
desc, total=task.total_size, completed=task.downloaded_size
|
||||
)
|
||||
task.task_id = self.progress.add_task(desc, total=task.total_size, completed=task.downloaded_size)
|
||||
|
||||
semaphore = asyncio.Semaphore(self.max_concurrent_downloads)
|
||||
|
||||
|
@ -332,9 +309,7 @@ class ParallelDownloader:
|
|||
if failed_tasks:
|
||||
self.console.print("\n[red]Some downloads failed:[/red]")
|
||||
for task, error in failed_tasks:
|
||||
self.console.print(
|
||||
f"[red]- {Path(task.output_file).name}: {error}[/red]"
|
||||
)
|
||||
self.console.print(f"[red]- {Path(task.output_file).name}: {error}[/red]")
|
||||
raise DownloadError(f"{len(failed_tasks)} downloads failed")
|
||||
|
||||
|
||||
|
@ -396,11 +371,7 @@ def _meta_download(
|
|||
output_file = str(output_dir / f)
|
||||
url = meta_url.replace("*", f"{info.folder}/{f}")
|
||||
total_size = info.pth_size if "consolidated" in f else 0
|
||||
tasks.append(
|
||||
DownloadTask(
|
||||
url=url, output_file=output_file, total_size=total_size, max_retries=3
|
||||
)
|
||||
)
|
||||
tasks.append(DownloadTask(url=url, output_file=output_file, total_size=total_size, max_retries=3))
|
||||
|
||||
# Initialize and run parallel downloader
|
||||
downloader = ParallelDownloader(max_concurrent_downloads=max_concurrent_downloads)
|
||||
|
@ -446,14 +417,10 @@ def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
|
|||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if any(output_dir.iterdir()):
|
||||
console.print(
|
||||
f"[yellow]Output directory {output_dir} is not empty.[/yellow]"
|
||||
)
|
||||
console.print(f"[yellow]Output directory {output_dir} is not empty.[/yellow]")
|
||||
|
||||
while True:
|
||||
resp = input(
|
||||
"Do you want to (C)ontinue download or (R)estart completely? (continue/restart): "
|
||||
)
|
||||
resp = input("Do you want to (C)ontinue download or (R)estart completely? (continue/restart): ")
|
||||
if resp.lower() in ["restart", "r"]:
|
||||
shutil.rmtree(output_dir)
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
@ -471,9 +438,7 @@ def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
|
|||
]
|
||||
|
||||
# Initialize and run parallel downloader
|
||||
downloader = ParallelDownloader(
|
||||
max_concurrent_downloads=max_concurrent_downloads
|
||||
)
|
||||
downloader = ParallelDownloader(max_concurrent_downloads=max_concurrent_downloads)
|
||||
asyncio.run(downloader.download_all(tasks))
|
||||
|
||||
|
||||
|
|
|
@ -47,33 +47,20 @@ class ModelPromptFormat(Subcommand):
|
|||
|
||||
# Only Llama 3.1 and 3.2 are supported
|
||||
supported_model_ids = [
|
||||
m
|
||||
for m in CoreModelId
|
||||
if model_family(m) in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
||||
m for m in CoreModelId if model_family(m) in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
||||
]
|
||||
model_str = "\n".join([m.value for m in supported_model_ids])
|
||||
try:
|
||||
model_id = CoreModelId(args.model_name)
|
||||
except ValueError:
|
||||
self.parser.error(
|
||||
f"{args.model_name} is not a valid Model. Choose one from --\n{model_str}"
|
||||
)
|
||||
self.parser.error(f"{args.model_name} is not a valid Model. Choose one from --\n{model_str}")
|
||||
|
||||
if model_id not in supported_model_ids:
|
||||
self.parser.error(
|
||||
f"{model_id} is not a valid Model. Choose one from --\n {model_str}"
|
||||
)
|
||||
self.parser.error(f"{model_id} is not a valid Model. Choose one from --\n {model_str}")
|
||||
|
||||
llama_3_1_file = (
|
||||
importlib.resources.files("llama_models") / "llama3_1/prompt_format.md"
|
||||
)
|
||||
llama_3_2_text_file = (
|
||||
importlib.resources.files("llama_models") / "llama3_2/text_prompt_format.md"
|
||||
)
|
||||
llama_3_2_vision_file = (
|
||||
importlib.resources.files("llama_models")
|
||||
/ "llama3_2/vision_prompt_format.md"
|
||||
)
|
||||
llama_3_1_file = importlib.resources.files("llama_models") / "llama3_1/prompt_format.md"
|
||||
llama_3_2_text_file = importlib.resources.files("llama_models") / "llama3_2/text_prompt_format.md"
|
||||
llama_3_2_vision_file = importlib.resources.files("llama_models") / "llama3_2/vision_prompt_format.md"
|
||||
if model_family(model_id) == ModelFamily.llama3_1:
|
||||
with importlib.resources.as_file(llama_3_1_file) as f:
|
||||
content = f.open("r").read()
|
||||
|
|
|
@ -17,16 +17,12 @@ class PromptGuardModel(BaseModel):
|
|||
"""Make a 'fake' Model-like object for Prompt Guard. Eventually this will be removed."""
|
||||
|
||||
model_id: str = "Prompt-Guard-86M"
|
||||
description: str = (
|
||||
"Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
|
||||
)
|
||||
description: str = "Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
|
||||
is_featured: bool = False
|
||||
huggingface_repo: str = "meta-llama/Prompt-Guard-86M"
|
||||
max_seq_length: int = 2048
|
||||
is_instruct_model: bool = False
|
||||
quantization_format: CheckpointQuantizationFormat = (
|
||||
CheckpointQuantizationFormat.bf16
|
||||
)
|
||||
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
|
||||
arch_args: Dict[str, Any] = Field(default_factory=dict)
|
||||
recommended_sampling_params: Optional[SamplingParams] = None
|
||||
|
||||
|
|
|
@ -56,9 +56,7 @@ def available_templates_specs() -> Dict[str, BuildConfig]:
|
|||
return template_specs
|
||||
|
||||
|
||||
def run_stack_build_command(
|
||||
parser: argparse.ArgumentParser, args: argparse.Namespace
|
||||
) -> None:
|
||||
def run_stack_build_command(parser: argparse.ArgumentParser, args: argparse.Namespace) -> None:
|
||||
if args.list_templates:
|
||||
return _run_template_list_cmd()
|
||||
|
||||
|
@ -129,11 +127,7 @@ def run_stack_build_command(
|
|||
|
||||
providers = dict()
|
||||
for api, providers_for_api in get_provider_registry().items():
|
||||
available_providers = [
|
||||
x
|
||||
for x in providers_for_api.keys()
|
||||
if x not in ("remote", "remote::sample")
|
||||
]
|
||||
available_providers = [x for x in providers_for_api.keys() if x not in ("remote", "remote::sample")]
|
||||
api_provider = prompt(
|
||||
"> Enter provider for API {}: ".format(api.value),
|
||||
completer=WordCompleter(available_providers),
|
||||
|
@ -156,9 +150,7 @@ def run_stack_build_command(
|
|||
description=description,
|
||||
)
|
||||
|
||||
build_config = BuildConfig(
|
||||
image_type=image_type, distribution_spec=distribution_spec
|
||||
)
|
||||
build_config = BuildConfig(image_type=image_type, distribution_spec=distribution_spec)
|
||||
else:
|
||||
with open(args.config, "r") as f:
|
||||
try:
|
||||
|
@ -179,9 +171,7 @@ def run_stack_build_command(
|
|||
|
||||
if args.print_deps_only:
|
||||
print(f"# Dependencies for {args.template or args.config or image_name}")
|
||||
normal_deps, special_deps = get_provider_dependencies(
|
||||
build_config.distribution_spec.providers
|
||||
)
|
||||
normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
print(f"uv pip install {' '.join(normal_deps)}")
|
||||
for special_dep in special_deps:
|
||||
|
@ -206,9 +196,7 @@ def _generate_run_config(
|
|||
"""
|
||||
apis = list(build_config.distribution_spec.providers.keys())
|
||||
run_config = StackRunConfig(
|
||||
container_image=(
|
||||
image_name if build_config.image_type == ImageType.container.value else None
|
||||
),
|
||||
container_image=(image_name if build_config.image_type == ImageType.container.value else None),
|
||||
image_name=image_name,
|
||||
apis=apis,
|
||||
providers={},
|
||||
|
@ -228,13 +216,9 @@ def _generate_run_config(
|
|||
if p.deprecation_error:
|
||||
raise InvalidProviderError(p.deprecation_error)
|
||||
|
||||
config_type = instantiate_class_type(
|
||||
provider_registry[Api(api)][provider_type].config_class
|
||||
)
|
||||
config_type = instantiate_class_type(provider_registry[Api(api)][provider_type].config_class)
|
||||
if hasattr(config_type, "sample_run_config"):
|
||||
config = config_type.sample_run_config(
|
||||
__distro_dir__=f"distributions/{image_name}"
|
||||
)
|
||||
config = config_type.sample_run_config(__distro_dir__=f"distributions/{image_name}")
|
||||
else:
|
||||
config = {}
|
||||
|
||||
|
@ -269,9 +253,7 @@ def _run_stack_build_command_from_build_config(
|
|||
image_name = f"distribution-{template_name}"
|
||||
else:
|
||||
if not image_name:
|
||||
raise ValueError(
|
||||
"Please specify an image name when building a container image without a template"
|
||||
)
|
||||
raise ValueError("Please specify an image name when building a container image without a template")
|
||||
elif build_config.image_type == ImageType.conda.value:
|
||||
if not image_name:
|
||||
raise ValueError("Please specify an image name when building a conda image")
|
||||
|
@ -299,10 +281,7 @@ def _run_stack_build_command_from_build_config(
|
|||
|
||||
if template_name:
|
||||
# copy run.yaml from template to build_dir instead of generating it again
|
||||
template_path = (
|
||||
importlib.resources.files("llama_stack")
|
||||
/ f"templates/{template_name}/run.yaml"
|
||||
)
|
||||
template_path = importlib.resources.files("llama_stack") / f"templates/{template_name}/run.yaml"
|
||||
with importlib.resources.as_file(template_path) as path:
|
||||
run_config_file = build_dir / f"{template_name}-run.yaml"
|
||||
shutil.copy(path, run_config_file)
|
||||
|
|
|
@ -82,31 +82,21 @@ class StackRun(Subcommand):
|
|||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if this is a template
|
||||
config_file = (
|
||||
Path(REPO_ROOT) / "llama_stack" / "templates" / args.config / "run.yaml"
|
||||
)
|
||||
config_file = Path(REPO_ROOT) / "llama_stack" / "templates" / args.config / "run.yaml"
|
||||
if config_file.exists():
|
||||
template_name = args.config
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if it's a build config saved to conda dir
|
||||
config_file = Path(
|
||||
BUILDS_BASE_DIR / ImageType.conda.value / f"{args.config}-run.yaml"
|
||||
)
|
||||
config_file = Path(BUILDS_BASE_DIR / ImageType.conda.value / f"{args.config}-run.yaml")
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if it's a build config saved to container dir
|
||||
config_file = Path(
|
||||
BUILDS_BASE_DIR / ImageType.container.value / f"{args.config}-run.yaml"
|
||||
)
|
||||
config_file = Path(BUILDS_BASE_DIR / ImageType.container.value / f"{args.config}-run.yaml")
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if it's a build config saved to ~/.llama dir
|
||||
config_file = Path(
|
||||
DISTRIBS_BASE_DIR
|
||||
/ f"llamastack-{args.config}"
|
||||
/ f"{args.config}-run.yaml"
|
||||
)
|
||||
config_file = Path(DISTRIBS_BASE_DIR / f"llamastack-{args.config}" / f"{args.config}-run.yaml")
|
||||
|
||||
if not config_file.exists():
|
||||
self.parser.error(
|
||||
|
@ -119,15 +109,8 @@ class StackRun(Subcommand):
|
|||
config = parse_and_maybe_upgrade_config(config_dict)
|
||||
|
||||
if config.container_image:
|
||||
script = (
|
||||
importlib.resources.files("llama_stack")
|
||||
/ "distribution/start_container.sh"
|
||||
)
|
||||
image_name = (
|
||||
f"distribution-{template_name}"
|
||||
if template_name
|
||||
else config.container_image
|
||||
)
|
||||
script = importlib.resources.files("llama_stack") / "distribution/start_container.sh"
|
||||
image_name = f"distribution-{template_name}" if template_name else config.container_image
|
||||
run_args = [script, image_name]
|
||||
else:
|
||||
current_conda_env = os.environ.get("CONDA_DEFAULT_ENV")
|
||||
|
@ -145,11 +128,7 @@ class StackRun(Subcommand):
|
|||
if env_name == "base":
|
||||
return os.environ.get("CONDA_PREFIX")
|
||||
# Get conda environments info
|
||||
conda_env_info = json.loads(
|
||||
subprocess.check_output(
|
||||
["conda", "info", "--envs", "--json"]
|
||||
).decode()
|
||||
)
|
||||
conda_env_info = json.loads(subprocess.check_output(["conda", "info", "--envs", "--json"]).decode())
|
||||
envs = conda_env_info["envs"]
|
||||
for envpath in envs:
|
||||
if envpath.endswith(env_name):
|
||||
|
@ -173,10 +152,7 @@ class StackRun(Subcommand):
|
|||
)
|
||||
return
|
||||
|
||||
script = (
|
||||
importlib.resources.files("llama_stack")
|
||||
/ "distribution/start_conda_env.sh"
|
||||
)
|
||||
script = importlib.resources.files("llama_stack") / "distribution/start_conda_env.sh"
|
||||
run_args = [
|
||||
script,
|
||||
image_name,
|
||||
|
|
|
@ -22,11 +22,7 @@ def format_row(row, col_widths):
|
|||
if line.strip() == "":
|
||||
lines.append("")
|
||||
else:
|
||||
lines.extend(
|
||||
textwrap.wrap(
|
||||
line, width, break_long_words=False, replace_whitespace=False
|
||||
)
|
||||
)
|
||||
lines.extend(textwrap.wrap(line, width, break_long_words=False, replace_whitespace=False))
|
||||
return lines
|
||||
|
||||
wrapped = [wrap(item, width) for item, width in zip(row, col_widths)]
|
||||
|
|
|
@ -41,9 +41,7 @@ def up_to_date_config():
|
|||
- provider_id: provider1
|
||||
provider_type: inline::meta-reference
|
||||
config: {{}}
|
||||
""".format(
|
||||
version=LLAMA_STACK_RUN_CONFIG_VERSION, built_at=datetime.now().isoformat()
|
||||
)
|
||||
""".format(version=LLAMA_STACK_RUN_CONFIG_VERSION, built_at=datetime.now().isoformat())
|
||||
)
|
||||
|
||||
|
||||
|
@ -83,9 +81,7 @@ def old_config():
|
|||
telemetry:
|
||||
provider_type: noop
|
||||
config: {{}}
|
||||
""".format(
|
||||
built_at=datetime.now().isoformat()
|
||||
)
|
||||
""".format(built_at=datetime.now().isoformat())
|
||||
)
|
||||
|
||||
|
||||
|
@ -108,10 +104,7 @@ def test_parse_and_maybe_upgrade_config_up_to_date(up_to_date_config):
|
|||
def test_parse_and_maybe_upgrade_config_old_format(old_config):
|
||||
result = parse_and_maybe_upgrade_config(old_config)
|
||||
assert result.version == LLAMA_STACK_RUN_CONFIG_VERSION
|
||||
assert all(
|
||||
api in result.providers
|
||||
for api in ["inference", "safety", "memory", "telemetry"]
|
||||
)
|
||||
assert all(api in result.providers for api in ["inference", "safety", "memory", "telemetry"])
|
||||
safety_provider = result.providers["safety"][0]
|
||||
assert safety_provider.provider_type == "meta-reference"
|
||||
assert "llama_guard_shield" in safety_provider.config
|
||||
|
|
|
@ -72,9 +72,7 @@ def load_checksums(checklist_path: Path) -> Dict[str, str]:
|
|||
return checksums
|
||||
|
||||
|
||||
def verify_files(
|
||||
model_dir: Path, checksums: Dict[str, str], console: Console
|
||||
) -> List[VerificationResult]:
|
||||
def verify_files(model_dir: Path, checksums: Dict[str, str], console: Console) -> List[VerificationResult]:
|
||||
results = []
|
||||
|
||||
with Progress(
|
||||
|
|
|
@ -58,22 +58,14 @@ def get_provider_dependencies(
|
|||
for api_str, provider_or_providers in config_providers.items():
|
||||
providers_for_api = all_providers[Api(api_str)]
|
||||
|
||||
providers = (
|
||||
provider_or_providers
|
||||
if isinstance(provider_or_providers, list)
|
||||
else [provider_or_providers]
|
||||
)
|
||||
providers = provider_or_providers if isinstance(provider_or_providers, list) else [provider_or_providers]
|
||||
|
||||
for provider in providers:
|
||||
# Providers from BuildConfig and RunConfig are subtly different – not great
|
||||
provider_type = (
|
||||
provider if isinstance(provider, str) else provider.provider_type
|
||||
)
|
||||
provider_type = provider if isinstance(provider, str) else provider.provider_type
|
||||
|
||||
if provider_type not in providers_for_api:
|
||||
raise ValueError(
|
||||
f"Provider `{provider}` is not available for API `{api_str}`"
|
||||
)
|
||||
raise ValueError(f"Provider `{provider}` is not available for API `{api_str}`")
|
||||
|
||||
provider_spec = providers_for_api[provider_type]
|
||||
deps.extend(provider_spec.pip_packages)
|
||||
|
@ -109,19 +101,13 @@ def build_image(
|
|||
image_name: str,
|
||||
template_or_config: str,
|
||||
):
|
||||
container_base = (
|
||||
build_config.distribution_spec.container_image or "python:3.10-slim"
|
||||
)
|
||||
container_base = build_config.distribution_spec.container_image or "python:3.10-slim"
|
||||
|
||||
normal_deps, special_deps = get_provider_dependencies(
|
||||
build_config.distribution_spec.providers
|
||||
)
|
||||
normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
|
||||
if build_config.image_type == ImageType.container.value:
|
||||
script = str(
|
||||
importlib.resources.files("llama_stack") / "distribution/build_container.sh"
|
||||
)
|
||||
script = str(importlib.resources.files("llama_stack") / "distribution/build_container.sh")
|
||||
args = [
|
||||
script,
|
||||
template_or_config,
|
||||
|
@ -132,9 +118,7 @@ def build_image(
|
|||
" ".join(normal_deps),
|
||||
]
|
||||
elif build_config.image_type == ImageType.conda.value:
|
||||
script = str(
|
||||
importlib.resources.files("llama_stack") / "distribution/build_conda_env.sh"
|
||||
)
|
||||
script = str(importlib.resources.files("llama_stack") / "distribution/build_conda_env.sh")
|
||||
args = [
|
||||
script,
|
||||
str(image_name),
|
||||
|
@ -142,9 +126,7 @@ def build_image(
|
|||
" ".join(normal_deps),
|
||||
]
|
||||
elif build_config.image_type == ImageType.venv.value:
|
||||
script = str(
|
||||
importlib.resources.files("llama_stack") / "distribution/build_venv.sh"
|
||||
)
|
||||
script = str(importlib.resources.files("llama_stack") / "distribution/build_venv.sh")
|
||||
args = [
|
||||
script,
|
||||
str(image_name),
|
||||
|
|
|
@ -68,9 +68,7 @@ def create_api_client_class(protocol) -> Type:
|
|||
return_type = None
|
||||
else:
|
||||
return_type = extract_non_async_iterator_type(sig.return_annotation)
|
||||
assert return_type, (
|
||||
f"Could not extract return type for {sig.return_annotation}"
|
||||
)
|
||||
assert return_type, f"Could not extract return type for {sig.return_annotation}"
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
params = self.httpx_request_params(method_name, *args, **kwargs)
|
||||
|
@ -87,9 +85,7 @@ def create_api_client_class(protocol) -> Type:
|
|||
webmethod, sig = self.routes[method_name]
|
||||
|
||||
return_type = extract_async_iterator_type(sig.return_annotation)
|
||||
assert return_type, (
|
||||
f"Could not extract return type for {sig.return_annotation}"
|
||||
)
|
||||
assert return_type, f"Could not extract return type for {sig.return_annotation}"
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
params = self.httpx_request_params(method_name, *args, **kwargs)
|
||||
|
@ -204,9 +200,7 @@ async def example(model: str = None):
|
|||
if not model:
|
||||
model = "Llama3.2-3B-Instruct"
|
||||
|
||||
message = UserMessage(
|
||||
content="hello world, write me a 2 sentence poem about the moon"
|
||||
)
|
||||
message = UserMessage(content="hello world, write me a 2 sentence poem about the moon")
|
||||
cprint(f"User>{message.content}", "green")
|
||||
|
||||
stream = True
|
||||
|
|
|
@ -26,9 +26,7 @@ from llama_stack.providers.datatypes import Api, ProviderSpec
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def configure_single_provider(
|
||||
registry: Dict[str, ProviderSpec], provider: Provider
|
||||
) -> Provider:
|
||||
def configure_single_provider(registry: Dict[str, ProviderSpec], provider: Provider) -> Provider:
|
||||
provider_spec = registry[provider.provider_type]
|
||||
config_type = instantiate_class_type(provider_spec.config_class)
|
||||
try:
|
||||
|
@ -47,9 +45,7 @@ def configure_single_provider(
|
|||
)
|
||||
|
||||
|
||||
def configure_api_providers(
|
||||
config: StackRunConfig, build_spec: DistributionSpec
|
||||
) -> StackRunConfig:
|
||||
def configure_api_providers(config: StackRunConfig, build_spec: DistributionSpec) -> StackRunConfig:
|
||||
is_nux = len(config.providers) == 0
|
||||
|
||||
if is_nux:
|
||||
|
@ -87,9 +83,7 @@ def configure_api_providers(
|
|||
updated_providers = []
|
||||
for p in existing_providers:
|
||||
logger.info(f"> Configuring provider `({p.provider_type})`")
|
||||
updated_providers.append(
|
||||
configure_single_provider(provider_registry[api], p)
|
||||
)
|
||||
updated_providers.append(configure_single_provider(provider_registry[api], p))
|
||||
logger.info("")
|
||||
else:
|
||||
# we are newly configuring this API
|
||||
|
@ -114,11 +108,7 @@ def configure_api_providers(
|
|||
configure_single_provider(
|
||||
provider_registry[api],
|
||||
Provider(
|
||||
provider_id=(
|
||||
f"{provider_type}-{i:02d}"
|
||||
if len(plist) > 1
|
||||
else provider_type
|
||||
),
|
||||
provider_id=(f"{provider_type}-{i:02d}" if len(plist) > 1 else provider_type),
|
||||
provider_type=provider_type,
|
||||
config={},
|
||||
),
|
||||
|
@ -137,11 +127,7 @@ def upgrade_from_routing_table(
|
|||
def get_providers(entries):
|
||||
return [
|
||||
Provider(
|
||||
provider_id=(
|
||||
f"{entry['provider_type']}-{i:02d}"
|
||||
if len(entries) > 1
|
||||
else entry["provider_type"]
|
||||
),
|
||||
provider_id=(f"{entry['provider_type']}-{i:02d}" if len(entries) > 1 else entry["provider_type"]),
|
||||
provider_type=entry["provider_type"],
|
||||
config=entry["config"],
|
||||
)
|
||||
|
|
|
@ -163,9 +163,7 @@ a default SQLite store will be used.""",
|
|||
class BuildConfig(BaseModel):
|
||||
version: str = LLAMA_STACK_BUILD_CONFIG_VERSION
|
||||
|
||||
distribution_spec: DistributionSpec = Field(
|
||||
description="The distribution spec to build including API providers. "
|
||||
)
|
||||
distribution_spec: DistributionSpec = Field(description="The distribution spec to build including API providers. ")
|
||||
image_type: str = Field(
|
||||
default="conda",
|
||||
description="Type of package to build (conda | container | venv)",
|
||||
|
|
|
@ -55,9 +55,7 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
|||
|
||||
|
||||
def providable_apis() -> List[Api]:
|
||||
routing_table_apis = set(
|
||||
x.routing_table_api for x in builtin_automatically_routed_apis()
|
||||
)
|
||||
routing_table_apis = set(x.routing_table_api for x in builtin_automatically_routed_apis())
|
||||
return [api for api in Api if api not in routing_table_apis and api != Api.inspect]
|
||||
|
||||
|
||||
|
|
|
@ -154,9 +154,7 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
|
|||
|
||||
def sync_generator():
|
||||
try:
|
||||
async_stream = loop.run_until_complete(
|
||||
self.async_client.request(*args, **kwargs)
|
||||
)
|
||||
async_stream = loop.run_until_complete(self.async_client.request(*args, **kwargs))
|
||||
while True:
|
||||
chunk = loop.run_until_complete(async_stream.__anext__())
|
||||
yield chunk
|
||||
|
@ -181,9 +179,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
# when using the library client, we should not log to console since many
|
||||
# of our logs are intended for server-side usage
|
||||
current_sinks = os.environ.get("TELEMETRY_SINKS", "sqlite").split(",")
|
||||
os.environ["TELEMETRY_SINKS"] = ",".join(
|
||||
sink for sink in current_sinks if sink != "console"
|
||||
)
|
||||
os.environ["TELEMETRY_SINKS"] = ",".join(sink for sink in current_sinks if sink != "console")
|
||||
|
||||
if config_path_or_template_name.endswith(".yaml"):
|
||||
config_path = Path(config_path_or_template_name)
|
||||
|
@ -202,9 +198,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
|
||||
async def initialize(self):
|
||||
try:
|
||||
self.impls = await construct_stack(
|
||||
self.config, self.custom_provider_registry
|
||||
)
|
||||
self.impls = await construct_stack(self.config, self.custom_provider_registry)
|
||||
except ModuleNotFoundError as _e:
|
||||
cprint(_e.msg, "red")
|
||||
cprint(
|
||||
|
@ -247,9 +241,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
func = getattr(impl, endpoint.name)
|
||||
if endpoint.method not in endpoint_impls:
|
||||
endpoint_impls[endpoint.method] = {}
|
||||
endpoint_impls[endpoint.method][
|
||||
_convert_path_to_regex(endpoint.route)
|
||||
] = func
|
||||
endpoint_impls[endpoint.method][_convert_path_to_regex(endpoint.route)] = func
|
||||
|
||||
self.endpoint_impls = endpoint_impls
|
||||
return True
|
||||
|
@ -266,9 +258,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
raise ValueError("Client not initialized")
|
||||
|
||||
if self.provider_data:
|
||||
set_request_provider_data(
|
||||
{"X-LlamaStack-Provider-Data": json.dumps(self.provider_data)}
|
||||
)
|
||||
set_request_provider_data({"X-LlamaStack-Provider-Data": json.dumps(self.provider_data)})
|
||||
|
||||
if stream:
|
||||
response = await self._call_streaming(
|
||||
|
@ -408,9 +398,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
)
|
||||
return await response.parse()
|
||||
|
||||
def _convert_body(
|
||||
self, path: str, method: str, body: Optional[dict] = None
|
||||
) -> dict:
|
||||
def _convert_body(self, path: str, method: str, body: Optional[dict] = None) -> dict:
|
||||
if not body:
|
||||
return {}
|
||||
|
||||
|
@ -425,7 +413,5 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
for param_name, param in sig.parameters.items():
|
||||
if param_name in body:
|
||||
value = body.get(param_name)
|
||||
converted_body[param_name] = convert_to_pydantic(
|
||||
param.annotation, value
|
||||
)
|
||||
converted_body[param_name] = convert_to_pydantic(param.annotation, value)
|
||||
return converted_body
|
||||
|
|
|
@ -115,9 +115,7 @@ async def resolve_impls(
|
|||
- flatmaps, sorts and resolves the providers in dependency order
|
||||
- for each API, produces either a (local, passthrough or router) implementation
|
||||
"""
|
||||
routing_table_apis = set(
|
||||
x.routing_table_api for x in builtin_automatically_routed_apis()
|
||||
)
|
||||
routing_table_apis = set(x.routing_table_api for x in builtin_automatically_routed_apis())
|
||||
router_apis = set(x.router_api for x in builtin_automatically_routed_apis())
|
||||
|
||||
providers_with_specs = {}
|
||||
|
@ -125,16 +123,12 @@ async def resolve_impls(
|
|||
for api_str, providers in run_config.providers.items():
|
||||
api = Api(api_str)
|
||||
if api in routing_table_apis:
|
||||
raise ValueError(
|
||||
f"Provider for `{api_str}` is automatically provided and cannot be overridden"
|
||||
)
|
||||
raise ValueError(f"Provider for `{api_str}` is automatically provided and cannot be overridden")
|
||||
|
||||
specs = {}
|
||||
for provider in providers:
|
||||
if provider.provider_type not in provider_registry[api]:
|
||||
raise ValueError(
|
||||
f"Provider `{provider.provider_type}` is not available for API `{api}`"
|
||||
)
|
||||
raise ValueError(f"Provider `{provider.provider_type}` is not available for API `{api}`")
|
||||
|
||||
p = provider_registry[api][provider.provider_type]
|
||||
if p.deprecation_error:
|
||||
|
@ -145,9 +139,7 @@ async def resolve_impls(
|
|||
log.warning(
|
||||
f"Provider `{provider.provider_type}` for API `{api}` is deprecated and will be removed in a future release: {p.deprecation_warning}",
|
||||
)
|
||||
p.deps__ = [a.value for a in p.api_dependencies] + [
|
||||
a.value for a in p.optional_api_dependencies
|
||||
]
|
||||
p.deps__ = [a.value for a in p.api_dependencies] + [a.value for a in p.optional_api_dependencies]
|
||||
spec = ProviderWithSpec(
|
||||
spec=p,
|
||||
**(provider.model_dump()),
|
||||
|
@ -158,9 +150,7 @@ async def resolve_impls(
|
|||
providers_with_specs[key] = specs
|
||||
|
||||
apis_to_serve = run_config.apis or set(
|
||||
list(providers_with_specs.keys())
|
||||
+ [x.value for x in routing_table_apis]
|
||||
+ [x.value for x in router_apis]
|
||||
list(providers_with_specs.keys()) + [x.value for x in routing_table_apis] + [x.value for x in router_apis]
|
||||
)
|
||||
|
||||
for info in builtin_automatically_routed_apis():
|
||||
|
@ -197,9 +187,7 @@ async def resolve_impls(
|
|||
)
|
||||
}
|
||||
|
||||
sorted_providers = topological_sort(
|
||||
{k: v.values() for k, v in providers_with_specs.items()}
|
||||
)
|
||||
sorted_providers = topological_sort({k: v.values() for k, v in providers_with_specs.items()})
|
||||
apis = [x[1].spec.api for x in sorted_providers]
|
||||
sorted_providers.append(
|
||||
(
|
||||
|
@ -237,9 +225,7 @@ async def resolve_impls(
|
|||
|
||||
inner_impls = {}
|
||||
if isinstance(provider.spec, RoutingTableProviderSpec):
|
||||
inner_impls = inner_impls_by_provider_id[
|
||||
f"inner-{provider.spec.router_api.value}"
|
||||
]
|
||||
inner_impls = inner_impls_by_provider_id[f"inner-{provider.spec.router_api.value}"]
|
||||
|
||||
impl = await instantiate_provider(
|
||||
provider,
|
||||
|
@ -336,10 +322,7 @@ async def instantiate_provider(
|
|||
# TODO: check compliance for special tool groups
|
||||
# the impl should be for Api.tool_runtime, the name should be the special tool group, the protocol should be the special tool group protocol
|
||||
check_protocol_compliance(impl, protocols[provider_spec.api])
|
||||
if (
|
||||
not isinstance(provider_spec, AutoRoutedProviderSpec)
|
||||
and provider_spec.api in additional_protocols
|
||||
):
|
||||
if not isinstance(provider_spec, AutoRoutedProviderSpec) and provider_spec.api in additional_protocols:
|
||||
additional_api, _, _ = additional_protocols[provider_spec.api]
|
||||
check_protocol_compliance(impl, additional_api)
|
||||
|
||||
|
@ -367,19 +350,12 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
|
|||
obj_params = set(obj_sig.parameters)
|
||||
obj_params.discard("self")
|
||||
if not (proto_params <= obj_params):
|
||||
log.error(
|
||||
f"Method {name} incompatible proto: {proto_params} vs. obj: {obj_params}"
|
||||
)
|
||||
log.error(f"Method {name} incompatible proto: {proto_params} vs. obj: {obj_params}")
|
||||
missing_methods.append((name, "signature_mismatch"))
|
||||
else:
|
||||
# Check if the method is actually implemented in the class
|
||||
method_owner = next(
|
||||
(cls for cls in mro if name in cls.__dict__), None
|
||||
)
|
||||
if (
|
||||
method_owner is None
|
||||
or method_owner.__name__ == protocol.__name__
|
||||
):
|
||||
method_owner = next((cls for cls in mro if name in cls.__dict__), None)
|
||||
if method_owner is None or method_owner.__name__ == protocol.__name__:
|
||||
missing_methods.append((name, "not_actually_implemented"))
|
||||
|
||||
if missing_methods:
|
||||
|
|
|
@ -85,9 +85,7 @@ class VectorIORouter(VectorIO):
|
|||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(
|
||||
vector_db_id, chunks, ttl_seconds
|
||||
)
|
||||
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(vector_db_id, chunks, ttl_seconds)
|
||||
|
||||
async def query_chunks(
|
||||
self,
|
||||
|
@ -95,9 +93,7 @@ class VectorIORouter(VectorIO):
|
|||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryChunksResponse:
|
||||
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(
|
||||
vector_db_id, query, params
|
||||
)
|
||||
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
|
||||
|
||||
|
||||
class InferenceRouter(Inference):
|
||||
|
@ -123,9 +119,7 @@ class InferenceRouter(Inference):
|
|||
metadata: Optional[Dict[str, Any]] = None,
|
||||
model_type: Optional[ModelType] = None,
|
||||
) -> None:
|
||||
await self.routing_table.register_model(
|
||||
model_id, provider_model_id, provider_id, metadata, model_type
|
||||
)
|
||||
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
|
@ -143,9 +137,7 @@ class InferenceRouter(Inference):
|
|||
if model is None:
|
||||
raise ValueError(f"Model '{model_id}' not found")
|
||||
if model.model_type == ModelType.embedding:
|
||||
raise ValueError(
|
||||
f"Model '{model_id}' is an embedding model and does not support chat completions"
|
||||
)
|
||||
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
|
||||
params = dict(
|
||||
model_id=model_id,
|
||||
messages=messages,
|
||||
|
@ -176,9 +168,7 @@ class InferenceRouter(Inference):
|
|||
if model is None:
|
||||
raise ValueError(f"Model '{model_id}' not found")
|
||||
if model.model_type == ModelType.embedding:
|
||||
raise ValueError(
|
||||
f"Model '{model_id}' is an embedding model and does not support chat completions"
|
||||
)
|
||||
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
|
||||
provider = self.routing_table.get_provider_impl(model_id)
|
||||
params = dict(
|
||||
model_id=model_id,
|
||||
|
@ -202,9 +192,7 @@ class InferenceRouter(Inference):
|
|||
if model is None:
|
||||
raise ValueError(f"Model '{model_id}' not found")
|
||||
if model.model_type == ModelType.llm:
|
||||
raise ValueError(
|
||||
f"Model '{model_id}' is an LLM model and does not support embeddings"
|
||||
)
|
||||
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
|
||||
return await self.routing_table.get_provider_impl(model_id).embeddings(
|
||||
model_id=model_id,
|
||||
contents=contents,
|
||||
|
@ -231,9 +219,7 @@ class SafetyRouter(Safety):
|
|||
provider_id: Optional[str] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> Shield:
|
||||
return await self.routing_table.register_shield(
|
||||
shield_id, provider_shield_id, provider_id, params
|
||||
)
|
||||
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
|
||||
|
||||
async def run_shield(
|
||||
self,
|
||||
|
@ -268,9 +254,7 @@ class DatasetIORouter(DatasetIO):
|
|||
page_token: Optional[str] = None,
|
||||
filter_condition: Optional[str] = None,
|
||||
) -> PaginatedRowsResult:
|
||||
return await self.routing_table.get_provider_impl(
|
||||
dataset_id
|
||||
).get_rows_paginated(
|
||||
return await self.routing_table.get_provider_impl(dataset_id).get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=rows_in_page,
|
||||
page_token=page_token,
|
||||
|
@ -305,9 +289,7 @@ class ScoringRouter(Scoring):
|
|||
) -> ScoreBatchResponse:
|
||||
res = {}
|
||||
for fn_identifier in scoring_functions.keys():
|
||||
score_response = await self.routing_table.get_provider_impl(
|
||||
fn_identifier
|
||||
).score_batch(
|
||||
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
|
||||
dataset_id=dataset_id,
|
||||
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||
)
|
||||
|
@ -328,9 +310,7 @@ class ScoringRouter(Scoring):
|
|||
res = {}
|
||||
# look up and map each scoring function to its provider impl
|
||||
for fn_identifier in scoring_functions.keys():
|
||||
score_response = await self.routing_table.get_provider_impl(
|
||||
fn_identifier
|
||||
).score(
|
||||
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
|
||||
input_rows=input_rows,
|
||||
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||
)
|
||||
|
@ -381,9 +361,7 @@ class EvalRouter(Eval):
|
|||
task_id: str,
|
||||
job_id: str,
|
||||
) -> Optional[JobStatus]:
|
||||
return await self.routing_table.get_provider_impl(task_id).job_status(
|
||||
task_id, job_id
|
||||
)
|
||||
return await self.routing_table.get_provider_impl(task_id).job_status(task_id, job_id)
|
||||
|
||||
async def job_cancel(
|
||||
self,
|
||||
|
@ -420,9 +398,9 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
vector_db_ids: List[str],
|
||||
query_config: Optional[RAGQueryConfig] = None,
|
||||
) -> RAGQueryResult:
|
||||
return await self.routing_table.get_provider_impl(
|
||||
"query_from_memory"
|
||||
).query(content, vector_db_ids, query_config)
|
||||
return await self.routing_table.get_provider_impl("query_from_memory").query(
|
||||
content, vector_db_ids, query_config
|
||||
)
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
|
@ -430,9 +408,9 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
vector_db_id: str,
|
||||
chunk_size_in_tokens: int = 512,
|
||||
) -> None:
|
||||
return await self.routing_table.get_provider_impl(
|
||||
"insert_into_memory"
|
||||
).insert(documents, vector_db_id, chunk_size_in_tokens)
|
||||
return await self.routing_table.get_provider_impl("insert_into_memory").insert(
|
||||
documents, vector_db_id, chunk_size_in_tokens
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -460,6 +438,4 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
) -> List[ToolDef]:
|
||||
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(
|
||||
tool_group_id, mcp_endpoint
|
||||
)
|
||||
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)
|
||||
|
|
|
@ -94,9 +94,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
self.dist_registry = dist_registry
|
||||
|
||||
async def initialize(self) -> None:
|
||||
async def add_objects(
|
||||
objs: List[RoutableObjectWithProvider], provider_id: str, cls
|
||||
) -> None:
|
||||
async def add_objects(objs: List[RoutableObjectWithProvider], provider_id: str, cls) -> None:
|
||||
for obj in objs:
|
||||
if cls is None:
|
||||
obj.provider_id = provider_id
|
||||
|
@ -131,9 +129,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
for p in self.impls_by_provider_id.values():
|
||||
await p.shutdown()
|
||||
|
||||
def get_provider_impl(
|
||||
self, routing_key: str, provider_id: Optional[str] = None
|
||||
) -> Any:
|
||||
def get_provider_impl(self, routing_key: str, provider_id: Optional[str] = None) -> Any:
|
||||
def apiname_object():
|
||||
if isinstance(self, ModelsRoutingTable):
|
||||
return ("Inference", "model")
|
||||
|
@ -171,9 +167,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
|
||||
raise ValueError(f"Provider not found for `{routing_key}`")
|
||||
|
||||
async def get_object_by_identifier(
|
||||
self, type: str, identifier: str
|
||||
) -> Optional[RoutableObjectWithProvider]:
|
||||
async def get_object_by_identifier(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
|
||||
# Get from disk registry
|
||||
obj = await self.dist_registry.get(type, identifier)
|
||||
if not obj:
|
||||
|
@ -183,13 +177,9 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
|
||||
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
|
||||
await self.dist_registry.delete(obj.type, obj.identifier)
|
||||
await unregister_object_from_provider(
|
||||
obj, self.impls_by_provider_id[obj.provider_id]
|
||||
)
|
||||
await unregister_object_from_provider(obj, self.impls_by_provider_id[obj.provider_id])
|
||||
|
||||
async def register_object(
|
||||
self, obj: RoutableObjectWithProvider
|
||||
) -> RoutableObjectWithProvider:
|
||||
async def register_object(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider:
|
||||
# if provider_id is not specified, pick an arbitrary one from existing entries
|
||||
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
|
||||
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
|
@ -244,9 +234,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
if model_type is None:
|
||||
model_type = ModelType.llm
|
||||
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
|
||||
raise ValueError(
|
||||
"Embedding model must have an embedding dimension in its metadata"
|
||||
)
|
||||
raise ValueError("Embedding model must have an embedding dimension in its metadata")
|
||||
model = Model(
|
||||
identifier=model_id,
|
||||
provider_resource_id=provider_model_id,
|
||||
|
@ -266,9 +254,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
|
||||
class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
|
||||
async def list_shields(self) -> ListShieldsResponse:
|
||||
return ListShieldsResponse(
|
||||
data=await self.get_all_with_type(ResourceType.shield.value)
|
||||
)
|
||||
return ListShieldsResponse(data=await self.get_all_with_type(ResourceType.shield.value))
|
||||
|
||||
async def get_shield(self, identifier: str) -> Optional[Shield]:
|
||||
return await self.get_object_by_identifier("shield", identifier)
|
||||
|
@ -340,9 +326,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
if model.model_type != ModelType.embedding:
|
||||
raise ValueError(f"Model {embedding_model} is not an embedding model")
|
||||
if "embedding_dimension" not in model.metadata:
|
||||
raise ValueError(
|
||||
f"Model {embedding_model} does not have an embedding dimension"
|
||||
)
|
||||
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
|
||||
vector_db_data = {
|
||||
"identifier": vector_db_id,
|
||||
"type": ResourceType.vector_db.value,
|
||||
|
@ -364,9 +348,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
|
||||
class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
|
||||
async def list_datasets(self) -> ListDatasetsResponse:
|
||||
return ListDatasetsResponse(
|
||||
data=await self.get_all_with_type(ResourceType.dataset.value)
|
||||
)
|
||||
return ListDatasetsResponse(data=await self.get_all_with_type(ResourceType.dataset.value))
|
||||
|
||||
async def get_dataset(self, dataset_id: str) -> Optional[Dataset]:
|
||||
return await self.get_object_by_identifier("dataset", dataset_id)
|
||||
|
@ -411,9 +393,7 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
|
|||
|
||||
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
|
||||
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
|
||||
return ListScoringFunctionsResponse(
|
||||
data=await self.get_all_with_type(ResourceType.scoring_function.value)
|
||||
)
|
||||
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
|
||||
|
||||
async def get_scoring_function(self, scoring_fn_id: str) -> Optional[ScoringFn]:
|
||||
return await self.get_object_by_identifier("scoring_function", scoring_fn_id)
|
||||
|
@ -510,12 +490,8 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
|
|||
args: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
tools = []
|
||||
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(
|
||||
toolgroup_id, mcp_endpoint
|
||||
)
|
||||
tool_host = (
|
||||
ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
|
||||
)
|
||||
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)
|
||||
tool_host = ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
|
||||
|
||||
for tool_def in tool_defs:
|
||||
tools.append(
|
||||
|
|
|
@ -43,9 +43,7 @@ def get_all_api_endpoints() -> Dict[Api, List[ApiEndpoint]]:
|
|||
if api == Api.tool_runtime:
|
||||
for tool_group in SpecialToolGroup:
|
||||
sub_protocol = toolgroup_protocols[tool_group]
|
||||
sub_protocol_methods = inspect.getmembers(
|
||||
sub_protocol, predicate=inspect.isfunction
|
||||
)
|
||||
sub_protocol_methods = inspect.getmembers(sub_protocol, predicate=inspect.isfunction)
|
||||
for name, method in sub_protocol_methods:
|
||||
if not hasattr(method, "__webmethod__"):
|
||||
continue
|
||||
|
|
|
@ -76,9 +76,7 @@ async def global_exception_handler(request: Request, exc: Exception):
|
|||
traceback.print_exception(exc)
|
||||
http_exc = translate_exception(exc)
|
||||
|
||||
return JSONResponse(
|
||||
status_code=http_exc.status_code, content={"error": {"detail": http_exc.detail}}
|
||||
)
|
||||
return JSONResponse(status_code=http_exc.status_code, content={"error": {"detail": http_exc.detail}})
|
||||
|
||||
|
||||
def translate_exception(exc: Exception) -> Union[HTTPException, RequestValidationError]:
|
||||
|
@ -178,9 +176,7 @@ def create_dynamic_typed_route(func: Any, method: str, route: str):
|
|||
is_streaming = is_streaming_request(func.__name__, request, **kwargs)
|
||||
try:
|
||||
if is_streaming:
|
||||
return StreamingResponse(
|
||||
sse_generator(func(**kwargs)), media_type="text/event-stream"
|
||||
)
|
||||
return StreamingResponse(sse_generator(func(**kwargs)), media_type="text/event-stream")
|
||||
else:
|
||||
value = func(**kwargs)
|
||||
return await maybe_await(value)
|
||||
|
@ -190,11 +186,7 @@ def create_dynamic_typed_route(func: Any, method: str, route: str):
|
|||
|
||||
sig = inspect.signature(func)
|
||||
|
||||
new_params = [
|
||||
inspect.Parameter(
|
||||
"request", inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=Request
|
||||
)
|
||||
]
|
||||
new_params = [inspect.Parameter("request", inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=Request)]
|
||||
new_params.extend(sig.parameters.values())
|
||||
|
||||
path_params = extract_path_params(route)
|
||||
|
@ -202,15 +194,9 @@ def create_dynamic_typed_route(func: Any, method: str, route: str):
|
|||
# Annotate parameters that are in the path with Path(...) and others with Body(...)
|
||||
new_params = [new_params[0]] + [
|
||||
(
|
||||
param.replace(
|
||||
annotation=Annotated[
|
||||
param.annotation, FastapiPath(..., title=param.name)
|
||||
]
|
||||
)
|
||||
param.replace(annotation=Annotated[param.annotation, FastapiPath(..., title=param.name)])
|
||||
if param.name in path_params
|
||||
else param.replace(
|
||||
annotation=Annotated[param.annotation, Body(..., embed=True)]
|
||||
)
|
||||
else param.replace(annotation=Annotated[param.annotation, Body(..., embed=True)])
|
||||
)
|
||||
for param in new_params[1:]
|
||||
]
|
||||
|
@ -244,12 +230,8 @@ class ClientVersionMiddleware:
|
|||
client_version = headers.get(b"x-llamastack-client-version", b"").decode()
|
||||
if client_version:
|
||||
try:
|
||||
client_version_parts = tuple(
|
||||
map(int, client_version.split(".")[:2])
|
||||
)
|
||||
server_version_parts = tuple(
|
||||
map(int, self.server_version.split(".")[:2])
|
||||
)
|
||||
client_version_parts = tuple(map(int, client_version.split(".")[:2]))
|
||||
server_version_parts = tuple(map(int, self.server_version.split(".")[:2]))
|
||||
if client_version_parts != server_version_parts:
|
||||
|
||||
async def send_version_error(send):
|
||||
|
@ -267,9 +249,7 @@ class ClientVersionMiddleware:
|
|||
}
|
||||
}
|
||||
).encode()
|
||||
await send(
|
||||
{"type": "http.response.body", "body": error_msg}
|
||||
)
|
||||
await send({"type": "http.response.body", "body": error_msg})
|
||||
|
||||
return await send_version_error(send)
|
||||
except (ValueError, IndexError):
|
||||
|
@ -296,9 +276,7 @@ def main():
|
|||
default=int(os.getenv("LLAMA_STACK_PORT", 8321)),
|
||||
help="Port to listen on",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-ipv6", action="store_true", help="Whether to disable IPv6 support"
|
||||
)
|
||||
parser.add_argument("--disable-ipv6", action="store_true", help="Whether to disable IPv6 support")
|
||||
parser.add_argument(
|
||||
"--env",
|
||||
action="append",
|
||||
|
@ -323,9 +301,7 @@ def main():
|
|||
raise ValueError(f"Config file {config_file} does not exist")
|
||||
print(f"Using config file: {config_file}")
|
||||
elif args.template:
|
||||
config_file = (
|
||||
Path(REPO_ROOT) / "llama_stack" / "templates" / args.template / "run.yaml"
|
||||
)
|
||||
config_file = Path(REPO_ROOT) / "llama_stack" / "templates" / args.template / "run.yaml"
|
||||
if not config_file.exists():
|
||||
raise ValueError(f"Template {args.template} does not exist")
|
||||
print(f"Using template {args.template} config file: {config_file}")
|
||||
|
@ -383,9 +359,7 @@ def main():
|
|||
impl_method = getattr(impl, endpoint.name)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore", category=UserWarning, module="pydantic._internal._fields"
|
||||
)
|
||||
warnings.filterwarnings("ignore", category=UserWarning, module="pydantic._internal._fields")
|
||||
getattr(app, endpoint.method)(endpoint.route, response_model=None)(
|
||||
create_dynamic_typed_route(
|
||||
impl_method,
|
||||
|
@ -416,9 +390,7 @@ def main():
|
|||
|
||||
def extract_path_params(route: str) -> List[str]:
|
||||
segments = route.split("/")
|
||||
params = [
|
||||
seg[1:-1] for seg in segments if seg.startswith("{") and seg.endswith("}")
|
||||
]
|
||||
params = [seg[1:-1] for seg in segments if seg.startswith("{") and seg.endswith("}")]
|
||||
return params
|
||||
|
||||
|
||||
|
|
|
@ -110,9 +110,7 @@ class EnvVarError(Exception):
|
|||
def __init__(self, var_name: str, path: str = ""):
|
||||
self.var_name = var_name
|
||||
self.path = path
|
||||
super().__init__(
|
||||
f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}"
|
||||
)
|
||||
super().__init__(f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}")
|
||||
|
||||
|
||||
def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
|
@ -187,9 +185,7 @@ def validate_env_pair(env_pair: str) -> tuple[str, str]:
|
|||
if not key:
|
||||
raise ValueError(f"Empty key in environment variable pair: {env_pair}")
|
||||
if not all(c.isalnum() or c == "_" for c in key):
|
||||
raise ValueError(
|
||||
f"Key must contain only alphanumeric characters and underscores: {key}"
|
||||
)
|
||||
raise ValueError(f"Key must contain only alphanumeric characters and underscores: {key}")
|
||||
return key, value
|
||||
except ValueError as e:
|
||||
raise ValueError(
|
||||
|
@ -202,20 +198,14 @@ def validate_env_pair(env_pair: str) -> tuple[str, str]:
|
|||
async def construct_stack(
|
||||
run_config: StackRunConfig, provider_registry: Optional[ProviderRegistry] = None
|
||||
) -> Dict[Api, Any]:
|
||||
dist_registry, _ = await create_dist_registry(
|
||||
run_config.metadata_store, run_config.image_name
|
||||
)
|
||||
impls = await resolve_impls(
|
||||
run_config, provider_registry or get_provider_registry(), dist_registry
|
||||
)
|
||||
dist_registry, _ = await create_dist_registry(run_config.metadata_store, run_config.image_name)
|
||||
impls = await resolve_impls(run_config, provider_registry or get_provider_registry(), dist_registry)
|
||||
await register_resources(run_config, impls)
|
||||
return impls
|
||||
|
||||
|
||||
def get_stack_run_config_from_template(template: str) -> StackRunConfig:
|
||||
template_path = (
|
||||
importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
|
||||
)
|
||||
template_path = importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
|
||||
|
||||
with importlib.resources.as_file(template_path) as path:
|
||||
if not path.exists():
|
||||
|
|
|
@ -25,9 +25,7 @@ class DistributionRegistry(Protocol):
|
|||
|
||||
def get_cached(self, identifier: str) -> Optional[RoutableObjectWithProvider]: ...
|
||||
|
||||
async def update(
|
||||
self, obj: RoutableObjectWithProvider
|
||||
) -> RoutableObjectWithProvider: ...
|
||||
async def update(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider: ...
|
||||
|
||||
async def register(self, obj: RoutableObjectWithProvider) -> bool: ...
|
||||
|
||||
|
@ -61,9 +59,7 @@ class DiskDistributionRegistry(DistributionRegistry):
|
|||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
def get_cached(
|
||||
self, type: str, identifier: str
|
||||
) -> Optional[RoutableObjectWithProvider]:
|
||||
def get_cached(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
|
||||
# Disk registry does not have a cache
|
||||
raise NotImplementedError("Disk registry does not have a cache")
|
||||
|
||||
|
@ -72,12 +68,8 @@ class DiskDistributionRegistry(DistributionRegistry):
|
|||
values = await self.kvstore.range(start_key, end_key)
|
||||
return _parse_registry_values(values)
|
||||
|
||||
async def get(
|
||||
self, type: str, identifier: str
|
||||
) -> Optional[RoutableObjectWithProvider]:
|
||||
json_str = await self.kvstore.get(
|
||||
KEY_FORMAT.format(type=type, identifier=identifier)
|
||||
)
|
||||
async def get(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
|
||||
json_str = await self.kvstore.get(KEY_FORMAT.format(type=type, identifier=identifier))
|
||||
if not json_str:
|
||||
return None
|
||||
|
||||
|
@ -143,9 +135,7 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry):
|
|||
async def initialize(self) -> None:
|
||||
await self._ensure_initialized()
|
||||
|
||||
def get_cached(
|
||||
self, type: str, identifier: str
|
||||
) -> Optional[RoutableObjectWithProvider]:
|
||||
def get_cached(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
|
||||
return self.cache.get((type, identifier), None)
|
||||
|
||||
async def get_all(self) -> List[RoutableObjectWithProvider]:
|
||||
|
@ -153,9 +143,7 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry):
|
|||
async with self._locked_cache() as cache:
|
||||
return list(cache.values())
|
||||
|
||||
async def get(
|
||||
self, type: str, identifier: str
|
||||
) -> Optional[RoutableObjectWithProvider]:
|
||||
async def get(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
|
||||
await self._ensure_initialized()
|
||||
cache_key = (type, identifier)
|
||||
|
||||
|
@ -197,9 +185,7 @@ async def create_dist_registry(
|
|||
dist_kvstore = await kvstore_impl(metadata_store)
|
||||
else:
|
||||
dist_kvstore = await kvstore_impl(
|
||||
SqliteKVStoreConfig(
|
||||
db_path=(DISTRIBS_BASE_DIR / image_name / "kvstore.db").as_posix()
|
||||
)
|
||||
SqliteKVStoreConfig(db_path=(DISTRIBS_BASE_DIR / image_name / "kvstore.db").as_posix())
|
||||
)
|
||||
dist_registry = CachedDiskDistributionRegistry(dist_kvstore)
|
||||
await dist_registry.initialize()
|
||||
|
|
|
@ -161,9 +161,7 @@ async def test_duplicate_provider_registration(config):
|
|||
|
||||
result = await cached_registry.get("vector_db", "test_vector_db_2")
|
||||
assert result is not None
|
||||
assert (
|
||||
result.embedding_model == original_vector_db.embedding_model
|
||||
) # Original values preserved
|
||||
assert result.embedding_model == original_vector_db.embedding_model # Original values preserved
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
@ -193,14 +191,9 @@ async def test_get_all_objects(config):
|
|||
|
||||
# Verify each vector_db was stored correctly
|
||||
for original_vector_db in test_vector_dbs:
|
||||
matching_vector_dbs = [
|
||||
v for v in all_results if v.identifier == original_vector_db.identifier
|
||||
]
|
||||
matching_vector_dbs = [v for v in all_results if v.identifier == original_vector_db.identifier]
|
||||
assert len(matching_vector_dbs) == 1
|
||||
stored_vector_db = matching_vector_dbs[0]
|
||||
assert stored_vector_db.embedding_model == original_vector_db.embedding_model
|
||||
assert stored_vector_db.provider_id == original_vector_db.provider_id
|
||||
assert (
|
||||
stored_vector_db.embedding_dimension
|
||||
== original_vector_db.embedding_dimension
|
||||
)
|
||||
assert stored_vector_db.embedding_dimension == original_vector_db.embedding_dimension
|
||||
|
|
|
@ -22,15 +22,11 @@ def main():
|
|||
)
|
||||
|
||||
# Playground pages
|
||||
chat_page = st.Page(
|
||||
"page/playground/chat.py", title="Chat", icon="💬", default=True
|
||||
)
|
||||
chat_page = st.Page("page/playground/chat.py", title="Chat", icon="💬", default=True)
|
||||
rag_page = st.Page("page/playground/rag.py", title="RAG", icon="💬", default=False)
|
||||
|
||||
# Distribution pages
|
||||
resources_page = st.Page(
|
||||
"page/distribution/resources.py", title="Resources", icon="🔍", default=False
|
||||
)
|
||||
resources_page = st.Page("page/distribution/resources.py", title="Resources", icon="🔍", default=False)
|
||||
provider_page = st.Page(
|
||||
"page/distribution/providers.py",
|
||||
title="API Providers",
|
||||
|
|
|
@ -23,15 +23,11 @@ class LlamaStackApi:
|
|||
},
|
||||
)
|
||||
|
||||
def run_scoring(
|
||||
self, row, scoring_function_ids: list[str], scoring_params: Optional[dict]
|
||||
):
|
||||
def run_scoring(self, row, scoring_function_ids: list[str], scoring_params: Optional[dict]):
|
||||
"""Run scoring on a single row"""
|
||||
if not scoring_params:
|
||||
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
|
||||
return self.client.scoring.score(
|
||||
input_rows=[row], scoring_functions=scoring_params
|
||||
)
|
||||
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
|
||||
|
||||
llama_stack_api = LlamaStackApi()
|
||||
|
|
|
@ -11,9 +11,7 @@ from modules.api import llama_stack_api
|
|||
def datasets():
|
||||
st.header("Datasets")
|
||||
|
||||
datasets_info = {
|
||||
d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()
|
||||
}
|
||||
datasets_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()}
|
||||
if len(datasets_info) > 0:
|
||||
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
|
||||
st.json(datasets_info[selected_dataset], expanded=True)
|
||||
|
|
|
@ -12,12 +12,8 @@ def eval_tasks():
|
|||
# Eval Tasks Section
|
||||
st.header("Eval Tasks")
|
||||
|
||||
eval_tasks_info = {
|
||||
d.identifier: d.to_dict() for d in llama_stack_api.client.eval_tasks.list()
|
||||
}
|
||||
eval_tasks_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.eval_tasks.list()}
|
||||
|
||||
if len(eval_tasks_info) > 0:
|
||||
selected_eval_task = st.selectbox(
|
||||
"Select an eval task", list(eval_tasks_info.keys()), key="eval_task_inspect"
|
||||
)
|
||||
selected_eval_task = st.selectbox("Select an eval task", list(eval_tasks_info.keys()), key="eval_task_inspect")
|
||||
st.json(eval_tasks_info[selected_eval_task], expanded=True)
|
||||
|
|
|
@ -11,9 +11,7 @@ from modules.api import llama_stack_api
|
|||
def models():
|
||||
# Models Section
|
||||
st.header("Models")
|
||||
models_info = {
|
||||
m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()
|
||||
}
|
||||
models_info = {m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()}
|
||||
|
||||
selected_model = st.selectbox("Select a model", list(models_info.keys()))
|
||||
st.json(models_info[selected_model])
|
||||
|
|
|
@ -11,12 +11,7 @@ from modules.api import llama_stack_api
|
|||
def scoring_functions():
|
||||
st.header("Scoring Functions")
|
||||
|
||||
scoring_functions_info = {
|
||||
s.identifier: s.to_dict()
|
||||
for s in llama_stack_api.client.scoring_functions.list()
|
||||
}
|
||||
scoring_functions_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.scoring_functions.list()}
|
||||
|
||||
selected_scoring_function = st.selectbox(
|
||||
"Select a scoring function", list(scoring_functions_info.keys())
|
||||
)
|
||||
selected_scoring_function = st.selectbox("Select a scoring function", list(scoring_functions_info.keys()))
|
||||
st.json(scoring_functions_info[selected_scoring_function], expanded=True)
|
||||
|
|
|
@ -12,9 +12,7 @@ def shields():
|
|||
# Shields Section
|
||||
st.header("Shields")
|
||||
|
||||
shields_info = {
|
||||
s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()
|
||||
}
|
||||
shields_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()}
|
||||
|
||||
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
|
||||
st.json(shields_info[selected_shield])
|
||||
|
|
|
@ -10,14 +10,10 @@ from modules.api import llama_stack_api
|
|||
|
||||
def vector_dbs():
|
||||
st.header("Vector Databases")
|
||||
vector_dbs_info = {
|
||||
v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()
|
||||
}
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()}
|
||||
|
||||
if len(vector_dbs_info) > 0:
|
||||
selected_vector_db = st.selectbox(
|
||||
"Select a vector database", list(vector_dbs_info.keys())
|
||||
)
|
||||
selected_vector_db = st.selectbox("Select a vector database", list(vector_dbs_info.keys()))
|
||||
st.json(vector_dbs_info[selected_vector_db])
|
||||
else:
|
||||
st.info("No vector databases found")
|
||||
|
|
|
@ -14,7 +14,6 @@ from modules.utils import process_dataset
|
|||
|
||||
|
||||
def application_evaluation_page():
|
||||
|
||||
st.set_page_config(page_title="Evaluations (Scoring)", page_icon="🦙")
|
||||
st.title("📊 Evaluations (Scoring)")
|
||||
|
||||
|
@ -83,9 +82,7 @@ def application_evaluation_page():
|
|||
try:
|
||||
new_params[param_name] = json.loads(value)
|
||||
except json.JSONDecodeError:
|
||||
st.error(
|
||||
f"Invalid JSON for **{param_name}** in {scoring_fn_id}"
|
||||
)
|
||||
st.error(f"Invalid JSON for **{param_name}** in {scoring_fn_id}")
|
||||
|
||||
st.json(new_params)
|
||||
scoring_params[scoring_fn_id] = new_params
|
||||
|
@ -128,9 +125,7 @@ def application_evaluation_page():
|
|||
output_res[fn_id].append(score_res.results[fn_id].score_rows[0])
|
||||
|
||||
# Display current row results using separate containers
|
||||
progress_text_container.write(
|
||||
f"Expand to see current processed result ({i + 1} / {len(rows)})"
|
||||
)
|
||||
progress_text_container.write(f"Expand to see current processed result ({i + 1} / {len(rows)})")
|
||||
results_container.json(
|
||||
score_res.to_json(),
|
||||
expanded=2,
|
||||
|
|
|
@ -195,7 +195,6 @@ def run_evaluation_3():
|
|||
|
||||
# Add run button and handle evaluation
|
||||
if st.button("Run Evaluation"):
|
||||
|
||||
progress_text = "Running evaluation..."
|
||||
progress_bar = st.progress(0, text=progress_text)
|
||||
rows = rows.rows
|
||||
|
@ -233,9 +232,7 @@ def run_evaluation_3():
|
|||
output_res[scoring_fn] = []
|
||||
output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0])
|
||||
|
||||
progress_text_container.write(
|
||||
f"Expand to see current processed result ({i + 1} / {len(rows)})"
|
||||
)
|
||||
progress_text_container.write(f"Expand to see current processed result ({i + 1} / {len(rows)})")
|
||||
results_container.json(eval_res, expanded=2)
|
||||
|
||||
progress_bar.progress(1.0, text="Evaluation complete!")
|
||||
|
@ -247,7 +244,6 @@ def run_evaluation_3():
|
|||
|
||||
|
||||
def native_evaluation_page():
|
||||
|
||||
st.set_page_config(page_title="Evaluations (Generation + Scoring)", page_icon="🦙")
|
||||
st.title("📊 Evaluations (Generation + Scoring)")
|
||||
|
||||
|
|
|
@ -11,9 +11,7 @@ from modules.api import llama_stack_api
|
|||
with st.sidebar:
|
||||
st.header("Configuration")
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [
|
||||
model.identifier for model in available_models if model.model_type == "llm"
|
||||
]
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
available_models,
|
||||
|
@ -128,6 +126,4 @@ if prompt := st.chat_input("Example: What is Llama Stack?"):
|
|||
full_response = response
|
||||
message_placeholder.markdown(full_response.completion_message.content)
|
||||
|
||||
st.session_state.messages.append(
|
||||
{"role": "assistant", "content": full_response}
|
||||
)
|
||||
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
||||
|
|
|
@ -74,9 +74,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [
|
||||
model.identifier for model in available_models if model.model_type == "llm"
|
||||
]
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
available_models,
|
||||
|
@ -137,9 +135,7 @@ def rag_chat_page():
|
|||
dict(
|
||||
name="builtin::rag",
|
||||
args={
|
||||
"vector_db_ids": [
|
||||
vector_db_id for vector_db_id in selected_vector_dbs
|
||||
],
|
||||
"vector_db_ids": [vector_db_id for vector_db_id in selected_vector_dbs],
|
||||
},
|
||||
)
|
||||
],
|
||||
|
@ -186,9 +182,7 @@ def rag_chat_page():
|
|||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
|
||||
st.session_state.messages.append(
|
||||
{"role": "assistant", "content": full_response}
|
||||
)
|
||||
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
||||
|
||||
|
||||
rag_chat_page()
|
||||
|
|
|
@ -8,9 +8,7 @@ import os
|
|||
from pathlib import Path
|
||||
|
||||
|
||||
LLAMA_STACK_CONFIG_DIR = Path(
|
||||
os.getenv("LLAMA_STACK_CONFIG_DIR", os.path.expanduser("~/.llama/"))
|
||||
)
|
||||
LLAMA_STACK_CONFIG_DIR = Path(os.getenv("LLAMA_STACK_CONFIG_DIR", os.path.expanduser("~/.llama/")))
|
||||
|
||||
DISTRIBS_BASE_DIR = LLAMA_STACK_CONFIG_DIR / "distributions"
|
||||
|
||||
|
|
|
@ -31,15 +31,11 @@ def is_list_of_primitives(field_type):
|
|||
|
||||
|
||||
def is_basemodel_without_fields(typ):
|
||||
return (
|
||||
inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) == 0
|
||||
)
|
||||
return inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) == 0
|
||||
|
||||
|
||||
def can_recurse(typ):
|
||||
return (
|
||||
inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) > 0
|
||||
)
|
||||
return inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) > 0
|
||||
|
||||
|
||||
def get_literal_values(field):
|
||||
|
@ -72,7 +68,7 @@ def is_discriminated_union(typ) -> bool:
|
|||
if isinstance(typ, FieldInfo):
|
||||
return typ.discriminator
|
||||
else:
|
||||
if not (get_origin(typ) is Annotated):
|
||||
if get_origin(typ) is not Annotated:
|
||||
return False
|
||||
args = get_args(typ)
|
||||
return len(args) >= 2 and args[1].discriminator
|
||||
|
@ -116,9 +112,7 @@ def prompt_for_discriminated_union(
|
|||
chosen_type = type_map[discriminator_value]
|
||||
log.info(f"\nConfiguring {chosen_type.__name__}:")
|
||||
|
||||
if existing_value and (
|
||||
getattr(existing_value, discriminator) != discriminator_value
|
||||
):
|
||||
if existing_value and (getattr(existing_value, discriminator) != discriminator_value):
|
||||
existing_value = None
|
||||
|
||||
sub_config = prompt_for_config(chosen_type, existing_value)
|
||||
|
@ -134,9 +128,7 @@ def prompt_for_discriminated_union(
|
|||
#
|
||||
# doesn't support List[nested_class] yet or Dicts of any kind. needs a bunch of
|
||||
# unit tests for coverage.
|
||||
def prompt_for_config(
|
||||
config_type: type[BaseModel], existing_config: Optional[BaseModel] = None
|
||||
) -> BaseModel:
|
||||
def prompt_for_config(config_type: type[BaseModel], existing_config: Optional[BaseModel] = None) -> BaseModel:
|
||||
"""
|
||||
Recursively prompt the user for configuration values based on a Pydantic BaseModel.
|
||||
|
||||
|
@ -150,17 +142,11 @@ def prompt_for_config(
|
|||
|
||||
for field_name, field in config_type.__fields__.items():
|
||||
field_type = field.annotation
|
||||
existing_value = (
|
||||
getattr(existing_config, field_name) if existing_config else None
|
||||
)
|
||||
existing_value = getattr(existing_config, field_name) if existing_config else None
|
||||
if existing_value:
|
||||
default_value = existing_value
|
||||
else:
|
||||
default_value = (
|
||||
field.default
|
||||
if not isinstance(field.default, PydanticUndefinedType)
|
||||
else None
|
||||
)
|
||||
default_value = field.default if not isinstance(field.default, PydanticUndefinedType) else None
|
||||
is_required = field.is_required
|
||||
|
||||
# Skip fields with Literal type
|
||||
|
@ -183,15 +169,11 @@ def prompt_for_config(
|
|||
config_data[field_name] = validated_value
|
||||
break
|
||||
except KeyError:
|
||||
log.error(
|
||||
f"Invalid choice. Please choose from: {', '.join(e.name for e in field_type)}"
|
||||
)
|
||||
log.error(f"Invalid choice. Please choose from: {', '.join(e.name for e in field_type)}")
|
||||
continue
|
||||
|
||||
if is_discriminated_union(field):
|
||||
config_data[field_name] = prompt_for_discriminated_union(
|
||||
field_name, field, existing_value
|
||||
)
|
||||
config_data[field_name] = prompt_for_discriminated_union(field_name, field, existing_value)
|
||||
continue
|
||||
|
||||
if is_optional(field_type) and can_recurse(get_non_none_type(field_type)):
|
||||
|
@ -202,9 +184,7 @@ def prompt_for_config(
|
|||
nested_type = get_non_none_type(field_type)
|
||||
log.info(f"Entering sub-configuration for {field_name}:")
|
||||
config_data[field_name] = prompt_for_config(nested_type, existing_value)
|
||||
elif is_optional(field_type) and is_discriminated_union(
|
||||
get_non_none_type(field_type)
|
||||
):
|
||||
elif is_optional(field_type) and is_discriminated_union(get_non_none_type(field_type)):
|
||||
prompt = f"Do you want to configure {field_name}? (y/n): "
|
||||
if input(prompt).lower() == "n":
|
||||
config_data[field_name] = None
|
||||
|
@ -260,16 +240,12 @@ def prompt_for_config(
|
|||
try:
|
||||
value = json.loads(user_input)
|
||||
if not isinstance(value, list):
|
||||
raise ValueError(
|
||||
"Input must be a JSON-encoded list"
|
||||
)
|
||||
raise ValueError("Input must be a JSON-encoded list")
|
||||
element_type = get_args(field_type)[0]
|
||||
value = [element_type(item) for item in value]
|
||||
|
||||
except json.JSONDecodeError:
|
||||
log.error(
|
||||
'Invalid JSON. Please enter a valid JSON-encoded list e.g., ["foo","bar"]'
|
||||
)
|
||||
log.error('Invalid JSON. Please enter a valid JSON-encoded list e.g., ["foo","bar"]')
|
||||
continue
|
||||
except ValueError as e:
|
||||
log.error(f"{str(e)}")
|
||||
|
@ -279,20 +255,14 @@ def prompt_for_config(
|
|||
try:
|
||||
value = json.loads(user_input)
|
||||
if not isinstance(value, dict):
|
||||
raise ValueError(
|
||||
"Input must be a JSON-encoded dictionary"
|
||||
)
|
||||
raise ValueError("Input must be a JSON-encoded dictionary")
|
||||
|
||||
except json.JSONDecodeError:
|
||||
log.error(
|
||||
"Invalid JSON. Please enter a valid JSON-encoded dict."
|
||||
)
|
||||
log.error("Invalid JSON. Please enter a valid JSON-encoded dict.")
|
||||
continue
|
||||
|
||||
# Convert the input to the correct type
|
||||
elif inspect.isclass(field_type) and issubclass(
|
||||
field_type, BaseModel
|
||||
):
|
||||
elif inspect.isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
# For nested BaseModels, we assume a dictionary-like string input
|
||||
import ast
|
||||
|
||||
|
@ -301,16 +271,12 @@ def prompt_for_config(
|
|||
value = field_type(user_input)
|
||||
|
||||
except ValueError:
|
||||
log.error(
|
||||
f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}"
|
||||
)
|
||||
log.error(f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}")
|
||||
continue
|
||||
|
||||
try:
|
||||
# Validate the field using our manual validation function
|
||||
validated_value = manually_validate_field(
|
||||
config_type, field_name, value
|
||||
)
|
||||
validated_value = manually_validate_field(config_type, field_name, value)
|
||||
config_data[field_name] = validated_value
|
||||
break
|
||||
except ValueError as e:
|
||||
|
|
|
@ -11,9 +11,7 @@ from llama_stack.distribution.datatypes import Api, ProviderSpec
|
|||
from .config import MetaReferenceAgentsImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: MetaReferenceAgentsImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .agents import MetaReferenceAgentsImpl
|
||||
|
||||
impl = MetaReferenceAgentsImpl(
|
||||
|
|
|
@ -74,9 +74,7 @@ log = logging.getLogger(__name__)
|
|||
|
||||
|
||||
def make_random_string(length: int = 8):
|
||||
return "".join(
|
||||
secrets.choice(string.ascii_letters + string.digits) for _ in range(length)
|
||||
)
|
||||
return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length))
|
||||
|
||||
|
||||
TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})")
|
||||
|
@ -153,9 +151,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
async def create_session(self, name: str) -> str:
|
||||
return await self.storage.create_session(name)
|
||||
|
||||
async def create_and_execute_turn(
|
||||
self, request: AgentTurnCreateRequest
|
||||
) -> AsyncGenerator:
|
||||
async def create_and_execute_turn(self, request: AgentTurnCreateRequest) -> AsyncGenerator:
|
||||
with tracing.span("create_and_execute_turn") as span:
|
||||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("agent_id", self.agent_id)
|
||||
|
@ -206,14 +202,9 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
output_message = chunk
|
||||
continue
|
||||
|
||||
assert isinstance(
|
||||
chunk, AgentTurnResponseStreamChunk
|
||||
), f"Unexpected type {type(chunk)}"
|
||||
assert isinstance(chunk, AgentTurnResponseStreamChunk), f"Unexpected type {type(chunk)}"
|
||||
event = chunk.event
|
||||
if (
|
||||
event.payload.event_type
|
||||
== AgentTurnResponseEventType.step_complete.value
|
||||
):
|
||||
if event.payload.event_type == AgentTurnResponseEventType.step_complete.value:
|
||||
steps.append(event.payload.step_details)
|
||||
|
||||
yield chunk
|
||||
|
@ -388,9 +379,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
tool_defs, tool_to_group = await self._get_tool_defs(toolgroups_for_turn)
|
||||
if documents:
|
||||
await self.handle_documents(
|
||||
session_id, documents, input_messages, tool_defs
|
||||
)
|
||||
await self.handle_documents(session_id, documents, input_messages, tool_defs)
|
||||
|
||||
if RAG_TOOL_GROUP in toolgroups and len(input_messages) > 0:
|
||||
with tracing.span(MEMORY_QUERY_TOOL) as span:
|
||||
|
@ -408,9 +397,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
vector_db_ids = args.get("vector_db_ids", [])
|
||||
query_config = args.get("query_config")
|
||||
if query_config:
|
||||
query_config = TypeAdapter(RAGQueryConfig).validate_python(
|
||||
query_config
|
||||
)
|
||||
query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config)
|
||||
else:
|
||||
# handle someone passing an empty dict
|
||||
query_config = RAGQueryConfig()
|
||||
|
@ -438,9 +425,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
result = await self.tool_runtime_api.rag_tool.query(
|
||||
content=concat_interleaved_content(
|
||||
[msg.content for msg in input_messages]
|
||||
),
|
||||
content=concat_interleaved_content([msg.content for msg in input_messages]),
|
||||
vector_db_ids=vector_db_ids,
|
||||
query_config=query_config,
|
||||
)
|
||||
|
@ -472,9 +457,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute("input", [m.model_dump_json() for m in input_messages])
|
||||
span.set_attribute("output", retrieved_context)
|
||||
span.set_attribute("tool_name", MEMORY_QUERY_TOOL)
|
||||
|
||||
|
@ -511,9 +494,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
self.agent_config.model,
|
||||
input_messages,
|
||||
tools=[
|
||||
tool
|
||||
for tool in tool_defs.values()
|
||||
if tool_to_group.get(tool.tool_name, None) != RAG_TOOL_GROUP
|
||||
tool for tool in tool_defs.values() if tool_to_group.get(tool.tool_name, None) != RAG_TOOL_GROUP
|
||||
],
|
||||
tool_prompt_format=self.agent_config.tool_prompt_format,
|
||||
response_format=self.agent_config.response_format,
|
||||
|
@ -560,12 +541,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
if event.stop_reason is not None:
|
||||
stop_reason = event.stop_reason
|
||||
span.set_attribute("stop_reason", stop_reason)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute(
|
||||
"output", f"content: {content} tool_calls: {tool_calls}"
|
||||
)
|
||||
span.set_attribute("input", [m.model_dump_json() for m in input_messages])
|
||||
span.set_attribute("output", f"content: {content} tool_calls: {tool_calls}")
|
||||
|
||||
stop_reason = stop_reason or StopReason.out_of_tokens
|
||||
|
||||
|
@ -667,9 +644,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
toolgroup_args,
|
||||
tool_to_group,
|
||||
)
|
||||
assert (
|
||||
len(result_messages) == 1
|
||||
), "Currently not supporting multiple messages"
|
||||
assert len(result_messages) == 1, "Currently not supporting multiple messages"
|
||||
result_message = result_messages[0]
|
||||
span.set_attribute("output", result_message.model_dump_json())
|
||||
|
||||
|
@ -697,9 +672,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# TODO: add tool-input touchpoint and a "start" event for this step also
|
||||
# but that needs a lot more refactoring of Tool code potentially
|
||||
|
||||
if out_attachment := _interpret_content_as_attachment(
|
||||
result_message.content
|
||||
):
|
||||
if out_attachment := _interpret_content_as_attachment(result_message.content):
|
||||
# NOTE: when we push this message back to the model, the model may ignore the
|
||||
# attached file path etc. since the model is trained to only provide a user message
|
||||
# with the summary. We keep all generated attachments and then attach them to final message
|
||||
|
@ -714,22 +687,14 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
) -> Tuple[Dict[str, ToolDefinition], Dict[str, str]]:
|
||||
# Determine which tools to include
|
||||
agent_config_toolgroups = set(
|
||||
(
|
||||
toolgroup.name
|
||||
if isinstance(toolgroup, AgentToolGroupWithArgs)
|
||||
else toolgroup
|
||||
)
|
||||
(toolgroup.name if isinstance(toolgroup, AgentToolGroupWithArgs) else toolgroup)
|
||||
for toolgroup in self.agent_config.toolgroups
|
||||
)
|
||||
toolgroups_for_turn_set = (
|
||||
agent_config_toolgroups
|
||||
if toolgroups_for_turn is None
|
||||
else {
|
||||
(
|
||||
toolgroup.name
|
||||
if isinstance(toolgroup, AgentToolGroupWithArgs)
|
||||
else toolgroup
|
||||
)
|
||||
(toolgroup.name if isinstance(toolgroup, AgentToolGroupWithArgs) else toolgroup)
|
||||
for toolgroup in toolgroups_for_turn
|
||||
}
|
||||
)
|
||||
|
@ -759,10 +724,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
continue
|
||||
tools = await self.tool_groups_api.list_tools(toolgroup_id=toolgroup_name)
|
||||
for tool_def in tools.data:
|
||||
if (
|
||||
toolgroup_name.startswith("builtin")
|
||||
and toolgroup_name != RAG_TOOL_GROUP
|
||||
):
|
||||
if toolgroup_name.startswith("builtin") and toolgroup_name != RAG_TOOL_GROUP:
|
||||
tool_name = tool_def.identifier
|
||||
built_in_type = BuiltinTool.brave_search
|
||||
if tool_name == "web_search":
|
||||
|
@ -773,9 +735,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
if tool_def_map.get(built_in_type, None):
|
||||
raise ValueError(f"Tool {built_in_type} already exists")
|
||||
|
||||
tool_def_map[built_in_type] = ToolDefinition(
|
||||
tool_name=built_in_type
|
||||
)
|
||||
tool_def_map[built_in_type] = ToolDefinition(tool_name=built_in_type)
|
||||
tool_to_group[built_in_type] = tool_def.toolgroup_id
|
||||
continue
|
||||
|
||||
|
@ -821,9 +781,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
|
||||
if code_interpreter_tool:
|
||||
for c in content_items:
|
||||
temp_file_path = os.path.join(
|
||||
self.tempdir, f"{make_random_string()}.txt"
|
||||
)
|
||||
temp_file_path = os.path.join(self.tempdir, f"{make_random_string()}.txt")
|
||||
with open(temp_file_path, "w") as temp_file:
|
||||
temp_file.write(c.content)
|
||||
url_items.append(URL(uri=f"file://{temp_file_path}"))
|
||||
|
@ -849,8 +807,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# we try to load the data from the URLs and content items as a message to inference
|
||||
# and add it to the last message's context
|
||||
input_messages[-1].context = "\n".join(
|
||||
[doc.content for doc in content_items]
|
||||
+ await load_data_from_urls(url_items)
|
||||
[doc.content for doc in content_items] + await load_data_from_urls(url_items)
|
||||
)
|
||||
|
||||
async def _ensure_vector_db(self, session_id: str) -> str:
|
||||
|
@ -874,9 +831,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
return vector_db_id
|
||||
|
||||
async def add_to_session_vector_db(
|
||||
self, session_id: str, data: List[Document]
|
||||
) -> None:
|
||||
async def add_to_session_vector_db(self, session_id: str, data: List[Document]) -> None:
|
||||
vector_db_id = await self._ensure_vector_db(session_id)
|
||||
documents = [
|
||||
RAGDocument(
|
||||
|
@ -931,11 +886,7 @@ async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessa
|
|||
else:
|
||||
raise ValueError(f"Unsupported URL {url}")
|
||||
|
||||
content.append(
|
||||
TextContentItem(
|
||||
text=f'# There is a file accessible to you at "{filepath}"\n'
|
||||
)
|
||||
)
|
||||
content.append(TextContentItem(text=f'# There is a file accessible to you at "{filepath}"\n'))
|
||||
|
||||
return ToolResponseMessage(
|
||||
call_id="",
|
||||
|
|
|
@ -94,16 +94,12 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
try:
|
||||
agent_config = json.loads(agent_config)
|
||||
except json.JSONDecodeError as e:
|
||||
raise ValueError(
|
||||
f"Could not JSON decode agent config for {agent_id}"
|
||||
) from e
|
||||
raise ValueError(f"Could not JSON decode agent config for {agent_id}") from e
|
||||
|
||||
try:
|
||||
agent_config = AgentConfig(**agent_config)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"Could not validate(?) agent config for {agent_id}"
|
||||
) from e
|
||||
raise ValueError(f"Could not validate(?) agent config for {agent_id}") from e
|
||||
|
||||
return ChatAgent(
|
||||
agent_id=agent_id,
|
||||
|
@ -115,9 +111,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
tool_runtime_api=self.tool_runtime_api,
|
||||
tool_groups_api=self.tool_groups_api,
|
||||
persistence_store=(
|
||||
self.persistence_store
|
||||
if agent_config.enable_session_persistence
|
||||
else self.in_memory_store
|
||||
self.persistence_store if agent_config.enable_session_persistence else self.in_memory_store
|
||||
),
|
||||
)
|
||||
|
||||
|
@ -168,22 +162,14 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
async for event in agent.create_and_execute_turn(request):
|
||||
yield event
|
||||
|
||||
async def get_agents_turn(
|
||||
self, agent_id: str, session_id: str, turn_id: str
|
||||
) -> Turn:
|
||||
turn = await self.persistence_store.get(
|
||||
f"session:{agent_id}:{session_id}:{turn_id}"
|
||||
)
|
||||
async def get_agents_turn(self, agent_id: str, session_id: str, turn_id: str) -> Turn:
|
||||
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
||||
turn = json.loads(turn)
|
||||
turn = Turn(**turn)
|
||||
return turn
|
||||
|
||||
async def get_agents_step(
|
||||
self, agent_id: str, session_id: str, turn_id: str, step_id: str
|
||||
) -> AgentStepResponse:
|
||||
turn = await self.persistence_store.get(
|
||||
f"session:{agent_id}:{session_id}:{turn_id}"
|
||||
)
|
||||
async def get_agents_step(self, agent_id: str, session_id: str, turn_id: str, step_id: str) -> AgentStepResponse:
|
||||
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
||||
turn = json.loads(turn)
|
||||
turn = Turn(**turn)
|
||||
steps = turn.steps
|
||||
|
@ -203,9 +189,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
turns = []
|
||||
if turn_ids:
|
||||
for turn_id in turn_ids:
|
||||
turn = await self.persistence_store.get(
|
||||
f"session:{agent_id}:{session_id}:{turn_id}"
|
||||
)
|
||||
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
||||
turn = json.loads(turn)
|
||||
turn = Turn(**turn)
|
||||
turns.append(turn)
|
||||
|
|
|
@ -33,9 +33,7 @@ class ShieldRunnerMixin:
|
|||
self.input_shields = input_shields
|
||||
self.output_shields = output_shields
|
||||
|
||||
async def run_multiple_shields(
|
||||
self, messages: List[Message], identifiers: List[str]
|
||||
) -> None:
|
||||
async def run_multiple_shields(self, messages: List[Message], identifiers: List[str]) -> None:
|
||||
responses = await asyncio.gather(
|
||||
*[
|
||||
self.safety_api.run_shield(
|
||||
|
|
|
@ -64,9 +64,7 @@ class MockInferenceAPI:
|
|||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
|
||||
]:
|
||||
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
||||
async def stream_response():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -104,9 +102,7 @@ class MockInferenceAPI:
|
|||
|
||||
|
||||
class MockSafetyAPI:
|
||||
async def run_shield(
|
||||
self, shield_id: str, messages: List[Message]
|
||||
) -> RunShieldResponse:
|
||||
async def run_shield(self, shield_id: str, messages: List[Message]) -> RunShieldResponse:
|
||||
return RunShieldResponse(violation=None)
|
||||
|
||||
|
||||
|
@ -129,9 +125,7 @@ class MockVectorIOAPI:
|
|||
|
||||
|
||||
class MockToolGroupsAPI:
|
||||
async def register_tool_group(
|
||||
self, toolgroup_id: str, provider_id: str, mcp_endpoint=None, args=None
|
||||
) -> None:
|
||||
async def register_tool_group(self, toolgroup_id: str, provider_id: str, mcp_endpoint=None, args=None) -> None:
|
||||
pass
|
||||
|
||||
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
|
||||
|
@ -341,26 +335,21 @@ async def test_chat_agent_complex_turn(get_chat_agent):
|
|||
assert len(responses) > 0
|
||||
|
||||
step_types = [
|
||||
response.event.payload.step_type
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "step_type")
|
||||
response.event.payload.step_type for response in responses if hasattr(response.event.payload, "step_type")
|
||||
]
|
||||
|
||||
assert StepType.shield_call in step_types, "Shield call step is missing"
|
||||
assert StepType.inference in step_types, "Inference step is missing"
|
||||
|
||||
event_types = [
|
||||
response.event.payload.event_type
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "event_type")
|
||||
response.event.payload.event_type for response in responses if hasattr(response.event.payload, "event_type")
|
||||
]
|
||||
assert "turn_start" in event_types, "Start event is missing"
|
||||
assert "turn_complete" in event_types, "Complete event is missing"
|
||||
|
||||
assert any(
|
||||
isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload)
|
||||
for response in responses
|
||||
), "Turn complete event is missing"
|
||||
assert any(isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload) for response in responses), (
|
||||
"Turn complete event is missing"
|
||||
)
|
||||
turn_complete_payload = next(
|
||||
response.event.payload
|
||||
for response in responses
|
||||
|
@ -380,9 +369,7 @@ async def test_chat_agent_complex_turn(get_chat_agent):
|
|||
([MEMORY_TOOLGROUP, CODE_INTERPRETER_TOOLGROUP], True, True), # all tools
|
||||
],
|
||||
)
|
||||
async def test_chat_agent_tools(
|
||||
get_agents_impl, toolgroups, expected_memory, expected_code_interpreter
|
||||
):
|
||||
async def test_chat_agent_tools(get_agents_impl, toolgroups, expected_memory, expected_code_interpreter):
|
||||
impl = await get_agents_impl
|
||||
agent_config = AgentConfig(
|
||||
model="test_model",
|
||||
|
|
|
@ -172,9 +172,7 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
|
||||
new_rows_df = pandas.DataFrame(rows)
|
||||
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
|
||||
dataset_impl.df = pandas.concat(
|
||||
[dataset_impl.df, new_rows_df], ignore_index=True
|
||||
)
|
||||
dataset_impl.df = pandas.concat([dataset_impl.df, new_rows_df], ignore_index=True)
|
||||
|
||||
url = str(dataset_info.dataset_def.url)
|
||||
parsed_url = urlparse(url)
|
||||
|
@ -189,12 +187,8 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
raise ValueError("Data URL must be a base64-encoded CSV")
|
||||
|
||||
csv_buffer = dataset_impl.df.to_csv(index=False)
|
||||
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
|
||||
"utf-8"
|
||||
)
|
||||
dataset_info.dataset_def.url = URL(
|
||||
uri=f"data:text/csv;base64,{base64_content}"
|
||||
)
|
||||
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode("utf-8")
|
||||
dataset_info.dataset_def.url = URL(uri=f"data:text/csv;base64,{base64_content}")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
|
||||
|
|
|
@ -91,14 +91,10 @@ class MetaReferenceEvalImpl(
|
|||
candidate = task_config.eval_candidate
|
||||
scoring_functions = task_def.scoring_functions
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value))
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=(
|
||||
-1 if task_config.num_examples is None else task_config.num_examples
|
||||
),
|
||||
rows_in_page=(-1 if task_config.num_examples is None else task_config.num_examples),
|
||||
)
|
||||
res = await self.evaluate_rows(
|
||||
task_id=task_id,
|
||||
|
@ -127,9 +123,7 @@ class MetaReferenceEvalImpl(
|
|||
input_messages = [UserMessage(**x) for x in input_messages]
|
||||
|
||||
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
|
||||
session_create_response = await self.agents_api.create_agent_session(
|
||||
agent_id, f"session-{i}"
|
||||
)
|
||||
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
|
||||
session_id = session_create_response.session_id
|
||||
|
||||
turn_request = dict(
|
||||
|
@ -138,12 +132,7 @@ class MetaReferenceEvalImpl(
|
|||
messages=input_messages,
|
||||
stream=True,
|
||||
)
|
||||
turn_response = [
|
||||
chunk
|
||||
async for chunk in await self.agents_api.create_agent_turn(
|
||||
**turn_request
|
||||
)
|
||||
]
|
||||
turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)]
|
||||
final_event = turn_response[-1].event.payload
|
||||
|
||||
# check if there's a memory retrieval step and extract the context
|
||||
|
@ -152,14 +141,10 @@ class MetaReferenceEvalImpl(
|
|||
if step.step_type == StepType.tool_execution.value:
|
||||
for tool_response in step.tool_responses:
|
||||
if tool_response.tool_name == MEMORY_QUERY_TOOL:
|
||||
memory_rag_context = " ".join(
|
||||
x.text for x in tool_response.content
|
||||
)
|
||||
memory_rag_context = " ".join(x.text for x in tool_response.content)
|
||||
|
||||
agent_generation = {}
|
||||
agent_generation[ColumnName.generated_answer.value] = (
|
||||
final_event.turn.output_message.content
|
||||
)
|
||||
agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content
|
||||
if memory_rag_context:
|
||||
agent_generation[ColumnName.context.value] = memory_rag_context
|
||||
|
||||
|
@ -171,9 +156,7 @@ class MetaReferenceEvalImpl(
|
|||
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = task_config.eval_candidate
|
||||
assert (
|
||||
candidate.sampling_params.max_tokens is not None
|
||||
), "SamplingParams.max_tokens must be provided"
|
||||
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
|
||||
|
||||
generations = []
|
||||
for x in tqdm(input_rows):
|
||||
|
@ -184,15 +167,9 @@ class MetaReferenceEvalImpl(
|
|||
content=input_content,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: response.completion_message.content
|
||||
}
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
chat_completion_input_str = str(
|
||||
x[ColumnName.chat_completion_input.value]
|
||||
)
|
||||
chat_completion_input_str = str(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = eval(chat_completion_input_str)
|
||||
input_messages = [UserMessage(**x) for x in input_messages]
|
||||
messages = []
|
||||
|
@ -204,11 +181,7 @@ class MetaReferenceEvalImpl(
|
|||
messages=messages,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: response.completion_message.content
|
||||
}
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
||||
|
@ -230,10 +203,7 @@ class MetaReferenceEvalImpl(
|
|||
raise ValueError(f"Invalid candidate type: {candidate.type}")
|
||||
|
||||
# scoring with generated_answer
|
||||
score_input_rows = [
|
||||
input_r | generated_r
|
||||
for input_r, generated_r in zip(input_rows, generations)
|
||||
]
|
||||
score_input_rows = [input_r | generated_r for input_r, generated_r in zip(input_rows, generations)]
|
||||
|
||||
if task_config.type == "app" and task_config.scoring_params is not None:
|
||||
scoring_functions_dict = {
|
||||
|
@ -241,9 +211,7 @@ class MetaReferenceEvalImpl(
|
|||
for scoring_fn_id in scoring_functions
|
||||
}
|
||||
else:
|
||||
scoring_functions_dict = {
|
||||
scoring_fn_id: None for scoring_fn_id in scoring_functions
|
||||
}
|
||||
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
|
||||
|
||||
score_response = await self.scoring_api.score(
|
||||
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
||||
|
|
|
@ -40,9 +40,7 @@ class MetaReferenceInferenceConfig(BaseModel):
|
|||
repos = [m.huggingface_repo for m in permitted_models]
|
||||
if model not in (descriptors + repos):
|
||||
model_list = "\n\t".join(repos)
|
||||
raise ValueError(
|
||||
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
||||
)
|
||||
raise ValueError(f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]")
|
||||
return model
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -83,9 +83,7 @@ class TokenResult(BaseModel):
|
|||
class Llama:
|
||||
@staticmethod
|
||||
def build(
|
||||
config: Union[
|
||||
MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
|
||||
],
|
||||
config: Union[MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig],
|
||||
model_id: str,
|
||||
llama_model: Model,
|
||||
):
|
||||
|
@ -150,9 +148,9 @@ class Llama:
|
|||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
assert model_parallel_size == len(checkpoints), (
|
||||
f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
)
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
|
@ -168,9 +166,9 @@ class Llama:
|
|||
)
|
||||
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
assert model_args.vocab_size == tokenizer.n_words, (
|
||||
f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
)
|
||||
|
||||
if isinstance(config, MetaReferenceQuantizedInferenceConfig):
|
||||
if isinstance(config.quantization, Fp8QuantizationConfig):
|
||||
|
@ -193,10 +191,7 @@ class Llama:
|
|||
model = convert_to_int4_quantized_model(model, model_args, config)
|
||||
model.load_state_dict(state_dict, strict=True)
|
||||
|
||||
if (
|
||||
model_args.quantization_args is not None
|
||||
and model_args.quantization_args.spinquant
|
||||
):
|
||||
if model_args.quantization_args is not None and model_args.quantization_args.spinquant:
|
||||
# Add a wrapper for adding hadamard transform for spinquant.
|
||||
# This needs to be done after loading the state dict otherwise an error will be raised while
|
||||
# loading the state dict.
|
||||
|
@ -206,9 +201,7 @@ class Llama:
|
|||
|
||||
add_hadamard_transform_for_spinquant(model)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Currently int4 and fp8 are the only supported quantization methods."
|
||||
)
|
||||
raise NotImplementedError("Currently int4 and fp8 are the only supported quantization methods.")
|
||||
else:
|
||||
if device == "cuda":
|
||||
if torch.cuda.is_bf16_supported():
|
||||
|
@ -262,10 +255,7 @@ class Llama:
|
|||
params = self.model.params
|
||||
|
||||
if print_input_tokens:
|
||||
input_tokens = [
|
||||
self.formatter.vision_token if t == 128256 else t
|
||||
for t in model_input.tokens
|
||||
]
|
||||
input_tokens = [self.formatter.vision_token if t == 128256 else t for t in model_input.tokens]
|
||||
log.info("Input to model -> " + self.tokenizer.decode(input_tokens))
|
||||
prompt_tokens = [model_input.tokens]
|
||||
|
||||
|
@ -287,12 +277,10 @@ class Llama:
|
|||
mask = model_input.vision.mask if model_input.vision is not None else []
|
||||
|
||||
# the method works for bsz > 1 so add a batch dimension
|
||||
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = (
|
||||
self.model.compute_vision_tokens_masks(
|
||||
batch_images=[images],
|
||||
batch_masks=[mask],
|
||||
total_len=total_len,
|
||||
)
|
||||
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
|
||||
batch_images=[images],
|
||||
batch_masks=[mask],
|
||||
total_len=total_len,
|
||||
)
|
||||
|
||||
pad_id = self.tokenizer.pad_id
|
||||
|
@ -340,9 +328,7 @@ class Llama:
|
|||
|
||||
next_token = next_token.reshape(-1)
|
||||
# only replace token if prompt has already been generated
|
||||
next_token = torch.where(
|
||||
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
||||
)
|
||||
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
||||
tokens[:, cur_pos] = next_token
|
||||
|
||||
target = tokens[:, prev_pos + 1 : cur_pos + 1]
|
||||
|
@ -365,17 +351,11 @@ class Llama:
|
|||
reduction="none",
|
||||
ignore_index=pad_id,
|
||||
)
|
||||
eos_reached |= (~input_text_mask[:, cur_pos]) & (
|
||||
torch.isin(next_token, stop_tokens)
|
||||
)
|
||||
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
|
||||
yield TokenResult(
|
||||
token=next_token[0].item(),
|
||||
text=self.tokenizer.decode(next_token.tolist()),
|
||||
logprobs=(
|
||||
token_logprobs[:, cur_pos : cur_pos + 1][0].tolist()
|
||||
if logprobs
|
||||
else None
|
||||
),
|
||||
logprobs=(token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None),
|
||||
)
|
||||
|
||||
prev_pos = cur_pos
|
||||
|
@ -388,11 +368,7 @@ class Llama:
|
|||
) -> Generator:
|
||||
sampling_params = request.sampling_params
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
or max_gen_len >= self.model.params.max_seq_len
|
||||
):
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
model_input = self.formatter.encode_content(request.content)
|
||||
|
@ -417,11 +393,7 @@ class Llama:
|
|||
) -> Generator:
|
||||
sampling_params = request.sampling_params
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
or max_gen_len >= self.model.params.max_seq_len
|
||||
):
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
|
@ -473,9 +445,7 @@ class LogitsProcessor:
|
|||
self.token_enforcer = token_enforcer
|
||||
self.mask: Optional[torch.Tensor] = None
|
||||
|
||||
def process_logits(
|
||||
self, tokens: torch.Tensor, scores: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
def process_logits(self, tokens: torch.Tensor, scores: torch.Tensor) -> torch.Tensor:
|
||||
token_sequence = tokens[0, :].tolist()
|
||||
allowed_tokens = self.token_enforcer.get_allowed_tokens(token_sequence)
|
||||
|
||||
|
@ -510,9 +480,7 @@ def get_logits_processor(
|
|||
return LogitsProcessor(token_enforcer)
|
||||
|
||||
|
||||
def _build_regular_tokens_list(
|
||||
tokenizer: Tokenizer, vocab_size: int
|
||||
) -> List[Tuple[int, str, bool]]:
|
||||
def _build_regular_tokens_list(tokenizer: Tokenizer, vocab_size: int) -> List[Tuple[int, str, bool]]:
|
||||
token_0 = tokenizer.encode("0", bos=False, eos=False)[-1]
|
||||
regular_tokens = []
|
||||
|
||||
|
|
|
@ -80,9 +80,7 @@ class MetaReferenceInferenceImpl(
|
|||
async def load_model(self, model_id, llama_model) -> None:
|
||||
log.info(f"Loading model `{model_id}`")
|
||||
if self.config.create_distributed_process_group:
|
||||
self.generator = LlamaModelParallelGenerator(
|
||||
self.config, model_id, llama_model
|
||||
)
|
||||
self.generator = LlamaModelParallelGenerator(self.config, model_id, llama_model)
|
||||
self.generator.start()
|
||||
else:
|
||||
self.generator = Llama.build(self.config, model_id, llama_model)
|
||||
|
@ -100,9 +98,7 @@ class MetaReferenceInferenceImpl(
|
|||
"No avaible model yet, please register your requested model or add your model in the resouces first"
|
||||
)
|
||||
elif request.model != self.model_id:
|
||||
raise RuntimeError(
|
||||
f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}"
|
||||
)
|
||||
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
@ -184,13 +180,7 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs = [
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
]
|
||||
logprobs = [TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})]
|
||||
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=text,
|
||||
|
@ -212,9 +202,7 @@ class MetaReferenceInferenceImpl(
|
|||
for x in impl():
|
||||
yield x
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
@ -231,13 +219,7 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
@ -289,9 +271,7 @@ class MetaReferenceInferenceImpl(
|
|||
self.check_model(request)
|
||||
|
||||
# augment and rewrite messages depending on the model
|
||||
request.messages = chat_completion_request_to_messages(
|
||||
request, self.llama_model.core_model_id.value
|
||||
)
|
||||
request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value)
|
||||
# download media and convert to raw content so we can send it to the model
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
|
@ -304,9 +284,7 @@ class MetaReferenceInferenceImpl(
|
|||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
@ -323,20 +301,12 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
raw_message = self.generator.formatter.decode_assistant_message(
|
||||
tokens, stop_reason
|
||||
)
|
||||
raw_message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=raw_message.content,
|
||||
|
@ -352,9 +322,7 @@ class MetaReferenceInferenceImpl(
|
|||
else:
|
||||
return impl()
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
def impl():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -405,13 +373,7 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
|
@ -424,9 +386,7 @@ class MetaReferenceInferenceImpl(
|
|||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
message = self.generator.formatter.decode_assistant_message(
|
||||
tokens, stop_reason
|
||||
)
|
||||
message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
|
|
|
@ -91,9 +91,7 @@ class LlamaModelParallelGenerator:
|
|||
|
||||
self.group = ModelParallelProcessGroup(
|
||||
model_parallel_size,
|
||||
init_model_cb=partial(
|
||||
init_model_cb, self.config, self.model_id, self.llama_model
|
||||
),
|
||||
init_model_cb=partial(init_model_cb, self.config, self.model_id, self.llama_model),
|
||||
)
|
||||
self.group.start()
|
||||
return self
|
||||
|
|
|
@ -55,47 +55,33 @@ class ProcessingMessageName(str, Enum):
|
|||
|
||||
|
||||
class ReadyRequest(BaseModel):
|
||||
type: Literal[ProcessingMessageName.ready_request] = (
|
||||
ProcessingMessageName.ready_request
|
||||
)
|
||||
type: Literal[ProcessingMessageName.ready_request] = ProcessingMessageName.ready_request
|
||||
|
||||
|
||||
class ReadyResponse(BaseModel):
|
||||
type: Literal[ProcessingMessageName.ready_response] = (
|
||||
ProcessingMessageName.ready_response
|
||||
)
|
||||
type: Literal[ProcessingMessageName.ready_response] = ProcessingMessageName.ready_response
|
||||
|
||||
|
||||
class EndSentinel(BaseModel):
|
||||
type: Literal[ProcessingMessageName.end_sentinel] = (
|
||||
ProcessingMessageName.end_sentinel
|
||||
)
|
||||
type: Literal[ProcessingMessageName.end_sentinel] = ProcessingMessageName.end_sentinel
|
||||
|
||||
|
||||
class CancelSentinel(BaseModel):
|
||||
type: Literal[ProcessingMessageName.cancel_sentinel] = (
|
||||
ProcessingMessageName.cancel_sentinel
|
||||
)
|
||||
type: Literal[ProcessingMessageName.cancel_sentinel] = ProcessingMessageName.cancel_sentinel
|
||||
|
||||
|
||||
class TaskRequest(BaseModel):
|
||||
type: Literal[ProcessingMessageName.task_request] = (
|
||||
ProcessingMessageName.task_request
|
||||
)
|
||||
type: Literal[ProcessingMessageName.task_request] = ProcessingMessageName.task_request
|
||||
task: Union[CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent]
|
||||
|
||||
|
||||
class TaskResponse(BaseModel):
|
||||
type: Literal[ProcessingMessageName.task_response] = (
|
||||
ProcessingMessageName.task_response
|
||||
)
|
||||
type: Literal[ProcessingMessageName.task_response] = ProcessingMessageName.task_response
|
||||
result: TokenResult
|
||||
|
||||
|
||||
class ExceptionResponse(BaseModel):
|
||||
type: Literal[ProcessingMessageName.exception_response] = (
|
||||
ProcessingMessageName.exception_response
|
||||
)
|
||||
type: Literal[ProcessingMessageName.exception_response] = ProcessingMessageName.exception_response
|
||||
error: str
|
||||
|
||||
|
||||
|
@ -189,9 +175,7 @@ def retrieve_requests(reply_socket_url: str):
|
|||
group=get_model_parallel_group(),
|
||||
)
|
||||
if isinstance(updates[0], CancelSentinel):
|
||||
log.info(
|
||||
"quitting generation loop because request was cancelled"
|
||||
)
|
||||
log.info("quitting generation loop because request was cancelled")
|
||||
break
|
||||
|
||||
if mp_rank_0():
|
||||
|
@ -350,9 +334,7 @@ class ModelParallelProcessGroup:
|
|||
|
||||
def run_inference(
|
||||
self,
|
||||
req: Union[
|
||||
CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent
|
||||
],
|
||||
req: Union[CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
assert not self.running, "inference already running"
|
||||
|
||||
|
|
|
@ -19,9 +19,7 @@ try:
|
|||
|
||||
log.info("Using efficient FP8 operators in FBGEMM.")
|
||||
except ImportError:
|
||||
log.error(
|
||||
"No efficient FP8 operators. Please install FBGEMM in fp8_requirements.txt."
|
||||
)
|
||||
log.error("No efficient FP8 operators. Please install FBGEMM in fp8_requirements.txt.")
|
||||
raise
|
||||
|
||||
import torch
|
||||
|
@ -60,14 +58,8 @@ def ffn_swiglu(
|
|||
num_tokens: Optional[Tensor] = None,
|
||||
is_memory_bounded: bool = False,
|
||||
) -> Tensor:
|
||||
if (
|
||||
isinstance(w1, Fp8ScaledWeights)
|
||||
and isinstance(w3, Fp8ScaledWeights)
|
||||
and isinstance(w2, Fp8ScaledWeights)
|
||||
):
|
||||
return ffn_swiglu_fp8_dynamic(
|
||||
x, w1, w3, w2, w1.activation_scale_ub, num_tokens, is_memory_bounded
|
||||
)
|
||||
if isinstance(w1, Fp8ScaledWeights) and isinstance(w3, Fp8ScaledWeights) and isinstance(w2, Fp8ScaledWeights):
|
||||
return ffn_swiglu_fp8_dynamic(x, w1, w3, w2, w1.activation_scale_ub, num_tokens, is_memory_bounded)
|
||||
|
||||
(B, T, D) = x.shape # noqa: N806
|
||||
(HD_L, D_) = w1.shape # noqa: N806
|
||||
|
@ -146,12 +138,8 @@ def fc_fp8_dynamic(
|
|||
Single w8a8 fc layer with dynamic row-wise scaling.
|
||||
"""
|
||||
if isinstance(w, Fp8RowwiseWeights):
|
||||
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(
|
||||
x, num_tokens, activation_scale_ub
|
||||
)
|
||||
y = torch.ops.fbgemm.f8f8bf16_rowwise(
|
||||
xq, w.weight, x_scale, w.scale, use_fast_accum=True
|
||||
)
|
||||
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(x, num_tokens, activation_scale_ub)
|
||||
y = torch.ops.fbgemm.f8f8bf16_rowwise(xq, w.weight, x_scale, w.scale, use_fast_accum=True)
|
||||
del xq
|
||||
return y
|
||||
|
||||
|
|
|
@ -17,8 +17,7 @@ from torch import Tensor
|
|||
|
||||
|
||||
@unittest.skipIf(
|
||||
not torch.cuda.is_available()
|
||||
or torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
|
||||
not torch.cuda.is_available() or torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
|
||||
"Skip when H100 is not available",
|
||||
)
|
||||
class FP8Tests(unittest.TestCase):
|
||||
|
|
|
@ -57,9 +57,7 @@ class HadamardModule(torch.nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
def add_hadamard_transform_for_spinquant(
|
||||
model: torch.nn.Module, prefix: str = ""
|
||||
) -> None:
|
||||
def add_hadamard_transform_for_spinquant(model: torch.nn.Module, prefix: str = "") -> None:
|
||||
"""
|
||||
Adds a Hadamard transform to the last linear layer of each feedforward network (FFN) in the model.
|
||||
This function recursively traverses the model's children and looks for layers that match the pattern
|
||||
|
@ -81,12 +79,8 @@ def add_hadamard_transform_for_spinquant(
|
|||
for module_name, module in model.named_children():
|
||||
child_full_name = prefix + "." + module_name
|
||||
if re.search(pattern_last_linear_ffn, child_full_name):
|
||||
new_module = nn.Sequential(
|
||||
HadamardModule(group_size=module.in_features), module
|
||||
)
|
||||
new_module = nn.Sequential(HadamardModule(group_size=module.in_features), module)
|
||||
del module
|
||||
setattr(model, module_name, new_module)
|
||||
else:
|
||||
add_hadamard_transform_for_spinquant(
|
||||
module, (prefix + "." if prefix else prefix) + module_name
|
||||
)
|
||||
add_hadamard_transform_for_spinquant(module, (prefix + "." if prefix else prefix) + module_name)
|
||||
|
|
|
@ -63,12 +63,8 @@ def convert_to_fp8_quantized_model(
|
|||
# Move weights to GPU with quantization
|
||||
if llama_model.quantization_format == CheckpointQuantizationFormat.fp8_mixed.value:
|
||||
log.info("Loading fp8 scales...")
|
||||
fp8_scales_path = os.path.join(
|
||||
checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
assert os.path.isfile(
|
||||
fp8_scales_path
|
||||
), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
||||
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt")
|
||||
assert os.path.isfile(fp8_scales_path), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
||||
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
|
||||
|
||||
for block in model.layers:
|
||||
|
@ -81,9 +77,7 @@ def convert_to_fp8_quantized_model(
|
|||
param = getattr(block.feed_forward, key)
|
||||
param.weight = load_fp8(
|
||||
param.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.{key}_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.{key}_{get_model_parallel_rank()}"],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
else:
|
||||
|
@ -172,9 +166,7 @@ class Int8DynActInt4WeightLinearLoRA(Int8DynActInt4WeightLinear):
|
|||
if prefix + "zeros" not in state_dict:
|
||||
# Zero-point may not be saved in the state dict. In this case, we assume it's zero.
|
||||
assert prefix + "scales" in state_dict
|
||||
state_dict[prefix + "zeros"] = torch.zeros_like(
|
||||
state_dict[prefix + "scales"]
|
||||
)
|
||||
state_dict[prefix + "zeros"] = torch.zeros_like(state_dict[prefix + "scales"])
|
||||
|
||||
def forward(self, input_: torch.Tensor) -> torch.Tensor:
|
||||
module_out = super().forward(input_)
|
||||
|
@ -229,9 +221,7 @@ class Int8WeightLinear(torch.nn.Linear):
|
|||
bias: Whether to use bias.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_features: int, out_features: int, bias: bool = True, device=None
|
||||
) -> None:
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None) -> None:
|
||||
super().__init__(in_features, out_features, bias, device=device)
|
||||
|
||||
self._register_load_state_dict_pre_hook(self.load_hook)
|
||||
|
@ -295,9 +285,7 @@ def _prepare_model_int4_weight_int8_dynamic_activation(
|
|||
del module
|
||||
setattr(model, module_name, quantized_module)
|
||||
else:
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(
|
||||
module, group_size, lora_rank, lora_scale
|
||||
)
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(module, group_size, lora_rank, lora_scale)
|
||||
|
||||
return model
|
||||
|
||||
|
@ -321,9 +309,7 @@ def convert_to_int4_quantized_model(
|
|||
|
||||
group_size = model_args.quantization_args.group_size
|
||||
if group_size is None:
|
||||
raise ValueError(
|
||||
"'group_size' cannot be None in 'quantization_args'. Please specify it."
|
||||
)
|
||||
raise ValueError("'group_size' cannot be None in 'quantization_args'. Please specify it.")
|
||||
|
||||
if model_args.lora_args is None:
|
||||
# Certain quantized models (e.g., SpinQuant) may not have LoRA.
|
||||
|
@ -333,8 +319,6 @@ def convert_to_int4_quantized_model(
|
|||
lora_rank = model_args.lora_args.rank
|
||||
lora_scale = model_args.lora_args.scale
|
||||
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(
|
||||
model, group_size, lora_rank, lora_scale
|
||||
)
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(model, group_size, lora_rank, lora_scale)
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
return model.to(device)
|
||||
|
|
|
@ -76,9 +76,9 @@ def main(
|
|||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
assert model_parallel_size == len(checkpoints), (
|
||||
f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
)
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
|
@ -90,9 +90,9 @@ def main(
|
|||
**params,
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
assert model_args.vocab_size == tokenizer.n_words, (
|
||||
f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
)
|
||||
|
||||
# load on CPU in bf16 so that fp8 conversion does not find an unexpected (fp32, e.g.) datatype
|
||||
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
||||
|
@ -106,9 +106,7 @@ def main(
|
|||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
|
||||
log.info(ckpt_path)
|
||||
assert (
|
||||
quantized_ckpt_dir is not None
|
||||
), "QUantized checkpoint directory should not be None"
|
||||
assert quantized_ckpt_dir is not None, "QUantized checkpoint directory should not be None"
|
||||
fp8_scales = {}
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
|
@ -122,9 +120,7 @@ def main(
|
|||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w1.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"] = fp8_weight.scale
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
|
@ -133,9 +129,7 @@ def main(
|
|||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w3.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"] = fp8_weight.scale
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
|
@ -144,13 +138,9 @@ def main(
|
|||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w2.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"] = fp8_weight.scale
|
||||
|
||||
fp8_scales_path = os.path.join(
|
||||
quantized_ckpt_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
fp8_scales_path = os.path.join(quantized_ckpt_dir, f"fp8_scales_{get_model_parallel_rank()}.pt")
|
||||
torch.save(fp8_scales, fp8_scales_path)
|
||||
|
||||
ckpt_path = os.path.join(
|
||||
|
|
|
@ -10,7 +10,6 @@ from pydantic import BaseModel
|
|||
|
||||
|
||||
class SentenceTransformersInferenceConfig(BaseModel):
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
@ -53,7 +53,5 @@ class VLLMConfig(BaseModel):
|
|||
repos = [m.huggingface_repo for m in permitted_models]
|
||||
if model not in (descriptors + repos):
|
||||
model_list = "\n\t".join(repos)
|
||||
raise ValueError(
|
||||
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
||||
)
|
||||
raise ValueError(f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]")
|
||||
return model
|
||||
|
|
|
@ -176,13 +176,9 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
log.info("Sampling params: %s", sampling_params)
|
||||
request_id = _random_uuid()
|
||||
|
||||
prompt = await chat_completion_request_to_prompt(
|
||||
request, self.config.model, self.formatter
|
||||
)
|
||||
prompt = await chat_completion_request_to_prompt(request, self.config.model, self.formatter)
|
||||
vllm_sampling_params = self._sampling_params(request.sampling_params)
|
||||
results_generator = self.engine.generate(
|
||||
prompt, vllm_sampling_params, request_id
|
||||
)
|
||||
results_generator = self.engine.generate(prompt, vllm_sampling_params, request_id)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, results_generator)
|
||||
else:
|
||||
|
@ -230,12 +226,8 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
async for chunk in process_chat_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
async def embeddings(
|
||||
self, model_id: str, contents: List[InterleavedContent]
|
||||
) -> EmbeddingsResponse:
|
||||
async def embeddings(self, model_id: str, contents: List[InterleavedContent]) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -47,6 +47,4 @@ async def validate_input_dataset_schema(
|
|||
if dataset_type not in EXPECTED_DATASET_SCHEMA:
|
||||
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
||||
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, EXPECTED_DATASET_SCHEMA[dataset_type]
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, EXPECTED_DATASET_SCHEMA[dataset_type])
|
||||
|
|
|
@ -42,9 +42,7 @@ class TorchtuneCheckpointer:
|
|||
self._model_type = ModelType[model_type]
|
||||
self._output_dir = output_dir
|
||||
# get ckpt paths
|
||||
self._checkpoint_path = Path.joinpath(
|
||||
self._checkpoint_dir, self._checkpoint_file
|
||||
)
|
||||
self._checkpoint_path = Path.joinpath(self._checkpoint_dir, self._checkpoint_file)
|
||||
|
||||
def load_checkpoint(self) -> Dict[str, Any]:
|
||||
"""
|
||||
|
@ -57,13 +55,9 @@ class TorchtuneCheckpointer:
|
|||
llama3_vision_meta_to_tune,
|
||||
)
|
||||
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_meta_to_tune(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_meta_to_tune(model_state_dict)
|
||||
else:
|
||||
state_dict[training.MODEL_KEY] = convert_weights.meta_to_tune(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = convert_weights.meta_to_tune(model_state_dict)
|
||||
|
||||
# llama3_2 has tied weights, so we need to remove the output.weight key
|
||||
if self._model_type == ModelType.LLAMA3_2:
|
||||
|
@ -82,10 +76,7 @@ class TorchtuneCheckpointer:
|
|||
epoch: int,
|
||||
adapter_only: bool = False,
|
||||
) -> str:
|
||||
model_file_path = (
|
||||
Path(self._output_dir)
|
||||
/ f"{self._model_id}-{self._training_algorithm}-{epoch}"
|
||||
)
|
||||
model_file_path = Path(self._output_dir) / f"{self._model_id}-{self._training_algorithm}-{epoch}"
|
||||
|
||||
model_file_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
@ -116,22 +107,13 @@ class TorchtuneCheckpointer:
|
|||
llama3_vision_tune_to_meta,
|
||||
)
|
||||
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_tune_to_meta(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_tune_to_meta(model_state_dict)
|
||||
else:
|
||||
# llama3_2 has tied weights, so we need to add the output.weight key
|
||||
if (
|
||||
self._model_type == ModelType.LLAMA3_2
|
||||
and "output.weight" not in model_state_dict
|
||||
):
|
||||
model_state_dict["output.weight"] = model_state_dict[
|
||||
"tok_embeddings.weight"
|
||||
]
|
||||
if self._model_type == ModelType.LLAMA3_2 and "output.weight" not in model_state_dict:
|
||||
model_state_dict["output.weight"] = model_state_dict["tok_embeddings.weight"]
|
||||
|
||||
state_dict[training.MODEL_KEY] = convert_weights.tune_to_meta(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = convert_weights.tune_to_meta(model_state_dict)
|
||||
|
||||
model_file_name = Path.joinpath(model_file_path, "consolidated.00.pth")
|
||||
|
||||
|
|
|
@ -15,18 +15,13 @@ from typing import Any, Mapping
|
|||
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
|
||||
|
||||
|
||||
def llama_stack_instruct_to_torchtune_instruct(
|
||||
sample: Mapping[str, Any]
|
||||
) -> Mapping[str, Any]:
|
||||
assert (
|
||||
ColumnName.chat_completion_input.value in sample
|
||||
and ColumnName.expected_answer.value in sample
|
||||
), "Invalid input row"
|
||||
def llama_stack_instruct_to_torchtune_instruct(sample: Mapping[str, Any]) -> Mapping[str, Any]:
|
||||
assert ColumnName.chat_completion_input.value in sample and ColumnName.expected_answer.value in sample, (
|
||||
"Invalid input row"
|
||||
)
|
||||
input_messages = eval(str(sample[ColumnName.chat_completion_input.value]))
|
||||
|
||||
assert (
|
||||
len(input_messages) == 1
|
||||
), "llama stack intruct dataset format only supports 1 user message"
|
||||
assert len(input_messages) == 1, "llama stack intruct dataset format only supports 1 user message"
|
||||
input_message = input_messages[0]
|
||||
|
||||
assert "content" in input_message, "content not found in input message"
|
||||
|
@ -48,13 +43,9 @@ def llama_stack_chat_to_torchtune_chat(sample: Mapping[str, Any]) -> Mapping[str
|
|||
roles = []
|
||||
conversations = []
|
||||
for message in dialog:
|
||||
assert (
|
||||
"role" in message and "content" in message
|
||||
), "role and content must in message"
|
||||
assert "role" in message and "content" in message, "role and content must in message"
|
||||
roles.append(message["role"])
|
||||
conversations.append(
|
||||
{"from": role_map[message["role"]], "value": message["content"]}
|
||||
)
|
||||
conversations.append({"from": role_map[message["role"]], "value": message["content"]})
|
||||
|
||||
assert roles[0] == "user", "first message must be from user"
|
||||
assert "assistant" in roles, "at least 1 message should be from assistant"
|
||||
|
|
|
@ -61,8 +61,7 @@ class SFTDataset(Dataset):
|
|||
if not ("tokens" in tokenized_dict and "mask" in tokenized_dict):
|
||||
keys_str = ", ".join(tokenized_dict.keys())
|
||||
error_message = (
|
||||
"model_transform returned the following keys: "
|
||||
f"{keys_str}. Must return 'tokens' and 'mask' as keys."
|
||||
f"model_transform returned the following keys: {keys_str}. Must return 'tokens' and 'mask' as keys."
|
||||
)
|
||||
raise ValueError(error_message)
|
||||
|
||||
|
|
|
@ -119,9 +119,7 @@ class TorchtunePostTrainingImpl:
|
|||
return ListPostTrainingJobsResponse(data=self.jobs_list)
|
||||
|
||||
@webmethod(route="/post-training/job/status")
|
||||
async def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> Optional[PostTrainingJobStatusResponse]:
|
||||
async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]:
|
||||
if job_uuid in self.jobs_status:
|
||||
return self.jobs_status[job_uuid]
|
||||
return None
|
||||
|
@ -131,12 +129,8 @@ class TorchtunePostTrainingImpl:
|
|||
raise NotImplementedError("Job cancel is not implemented yet")
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts")
|
||||
async def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> Optional[PostTrainingJobArtifactsResponse]:
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]:
|
||||
if job_uuid in self.checkpoints_dict:
|
||||
checkpoints = self.checkpoints_dict.get(job_uuid, [])
|
||||
return PostTrainingJobArtifactsResponse(
|
||||
job_uuid=job_uuid, checkpoints=checkpoints
|
||||
)
|
||||
return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=checkpoints)
|
||||
return None
|
||||
|
|
|
@ -94,9 +94,7 @@ class LoraFinetuningSingleDevice:
|
|||
self.job_uuid = job_uuid
|
||||
self.training_config = training_config
|
||||
if not isinstance(algorithm_config, LoraFinetuningConfig):
|
||||
raise ValueError(
|
||||
"You need to speicifc LoraFinetuningConfig for LoRA finetuning"
|
||||
)
|
||||
raise ValueError("You need to speicifc LoraFinetuningConfig for LoRA finetuning")
|
||||
self.algorithm_config = algorithm_config
|
||||
self._device = torchtune_utils.get_device(device="cuda")
|
||||
self._dtype = training.get_dtype(training_config.dtype, device=self._device)
|
||||
|
@ -105,10 +103,7 @@ class LoraFinetuningSingleDevice:
|
|||
def model_checkpoint_dir(model) -> str:
|
||||
checkpoint_dir = Path(model_local_dir(model.descriptor()))
|
||||
|
||||
paths = [
|
||||
Path(checkpoint_dir / f"consolidated.{ext}")
|
||||
for ext in ["pth", "00.pth"]
|
||||
]
|
||||
paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]]
|
||||
if not any(p.exists() for p in paths):
|
||||
checkpoint_dir = checkpoint_dir / "original"
|
||||
|
||||
|
@ -123,9 +118,7 @@ class LoraFinetuningSingleDevice:
|
|||
else:
|
||||
model = resolve_model(self.model_id)
|
||||
if model is None:
|
||||
raise ValueError(
|
||||
f"{self.model_id} not found. Your model id should be in the llama models SKU list"
|
||||
)
|
||||
raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list")
|
||||
self.checkpoint_dir = model_checkpoint_dir(model)
|
||||
|
||||
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
|
||||
|
@ -196,9 +189,7 @@ class LoraFinetuningSingleDevice:
|
|||
self._tokenizer = await self._setup_tokenizer()
|
||||
log.info("Tokenizer is initialized.")
|
||||
|
||||
self._optimizer = await self._setup_optimizer(
|
||||
optimizer_config=self.training_config.optimizer_config
|
||||
)
|
||||
self._optimizer = await self._setup_optimizer(optimizer_config=self.training_config.optimizer_config)
|
||||
log.info("Optimizer is initialized.")
|
||||
|
||||
self._loss_fn = CEWithChunkedOutputLoss()
|
||||
|
@ -226,13 +217,8 @@ class LoraFinetuningSingleDevice:
|
|||
# by the dataloader and the max_steps_per_epoch param set by the user and is used
|
||||
# for logging and tracking training state. This should be computed after the dataloader
|
||||
# has been setup
|
||||
self._steps_per_epoch = (
|
||||
len(self._training_dataloader) // self._gradient_accumulation_steps
|
||||
)
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and self.max_steps_per_epoch < self._steps_per_epoch
|
||||
):
|
||||
self._steps_per_epoch = len(self._training_dataloader) // self._gradient_accumulation_steps
|
||||
if self.max_steps_per_epoch is not None and self.max_steps_per_epoch < self._steps_per_epoch:
|
||||
self._steps_per_epoch = self.max_steps_per_epoch
|
||||
self.global_step = self.epochs_run * self._steps_per_epoch
|
||||
|
||||
|
@ -246,9 +232,7 @@ class LoraFinetuningSingleDevice:
|
|||
log.info("Learning rate scheduler is initialized.")
|
||||
|
||||
# Used to ignore labels for loss computation
|
||||
self.ignore_labels_cache = torch.full(
|
||||
(self._batch_size, 1), self._loss_fn.ignore_index, device=self._device
|
||||
)
|
||||
self.ignore_labels_cache = torch.full((self._batch_size, 1), self._loss_fn.ignore_index, device=self._device)
|
||||
|
||||
async def _setup_model(
|
||||
self,
|
||||
|
@ -282,13 +266,9 @@ class LoraFinetuningSingleDevice:
|
|||
set_trainable_params(model, self.adapter_params)
|
||||
|
||||
if enable_activation_checkpointing:
|
||||
training.set_activation_checkpointing(
|
||||
model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
|
||||
)
|
||||
training.set_activation_checkpointing(model, auto_wrap_policy={modules.TransformerSelfAttentionLayer})
|
||||
|
||||
base_missing, base_unexpected = model.load_state_dict(
|
||||
base_model_state_dict, strict=False
|
||||
)
|
||||
base_missing, base_unexpected = model.load_state_dict(base_model_state_dict, strict=False)
|
||||
|
||||
# This is for any adapters that need to be initialized after base weights
|
||||
# have been loaded (e.g. DoRA).
|
||||
|
@ -297,9 +277,7 @@ class LoraFinetuningSingleDevice:
|
|||
if hasattr(m, "initialize_dora_magnitude"):
|
||||
m.initialize_dora_magnitude()
|
||||
if lora_weights_state_dict:
|
||||
lora_missing, lora_unexpected = model.load_state_dict(
|
||||
lora_weights_state_dict, strict=False
|
||||
)
|
||||
lora_missing, lora_unexpected = model.load_state_dict(lora_weights_state_dict, strict=False)
|
||||
else:
|
||||
lora_missing, lora_unexpected = None, None
|
||||
validate_missing_and_unexpected_for_lora(
|
||||
|
@ -313,14 +291,10 @@ class LoraFinetuningSingleDevice:
|
|||
)
|
||||
|
||||
# Validate model adapter params were loaded in with the expected dtype
|
||||
training.validate_expected_param_dtype(
|
||||
self.adapter_params.items(), dtype=self._dtype
|
||||
)
|
||||
training.validate_expected_param_dtype(self.adapter_params.items(), dtype=self._dtype)
|
||||
|
||||
# activation offloading
|
||||
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(
|
||||
model, enable_activation_offloading
|
||||
)
|
||||
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(model, enable_activation_offloading)
|
||||
|
||||
memory_stats = training.get_memory_stats(device=self._device)
|
||||
training.log_memory_stats(memory_stats)
|
||||
|
@ -456,9 +430,7 @@ class LoraFinetuningSingleDevice:
|
|||
# Shift labels to compute loss
|
||||
# equivalent to doing labels[..., 1:] and logits[..., :-1, :]
|
||||
# But this way we dont need to slice the logits. We just add an ignore index to labels.
|
||||
labels = torch.hstack(
|
||||
(labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]])
|
||||
)
|
||||
labels = torch.hstack((labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]]))
|
||||
if not isinstance(logits, list):
|
||||
labels = labels.reshape(-1)
|
||||
logits = logits.reshape(-1, logits.size(-1))
|
||||
|
@ -487,9 +459,7 @@ class LoraFinetuningSingleDevice:
|
|||
for curr_epoch in range(self.epochs_run, self.total_epochs):
|
||||
# Update the sampler to ensure data is correctly shuffled across epochs
|
||||
# in case shuffle is True
|
||||
metric_logger = DiskLogger(
|
||||
log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}"
|
||||
)
|
||||
metric_logger = DiskLogger(log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}")
|
||||
self._training_sampler.set_epoch(curr_epoch)
|
||||
loss_to_log = 0.0
|
||||
|
||||
|
@ -497,8 +467,7 @@ class LoraFinetuningSingleDevice:
|
|||
for idx, batch in enumerate(self._training_dataloader):
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and (idx // self._gradient_accumulation_steps)
|
||||
== self.max_steps_per_epoch
|
||||
and (idx // self._gradient_accumulation_steps) == self.max_steps_per_epoch
|
||||
):
|
||||
break
|
||||
|
||||
|
@ -506,9 +475,7 @@ class LoraFinetuningSingleDevice:
|
|||
|
||||
# Calculate the number of unmasked tokens in the current batch
|
||||
# and increment the total number of tokens seen in the step
|
||||
current_num_tokens = (
|
||||
batch["labels"] != self._loss_fn.ignore_index
|
||||
).sum()
|
||||
current_num_tokens = (batch["labels"] != self._loss_fn.ignore_index).sum()
|
||||
num_tokens += current_num_tokens
|
||||
|
||||
# Loss is normalized by default so we multiply by the number of tokens
|
||||
|
@ -533,9 +500,7 @@ class LoraFinetuningSingleDevice:
|
|||
loss_to_log = running_loss.item() / num_tokens
|
||||
|
||||
pbar.update(1)
|
||||
pbar.set_description(
|
||||
f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}"
|
||||
)
|
||||
pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}")
|
||||
|
||||
time_per_step = time.perf_counter() - t0
|
||||
log_dict = {
|
||||
|
|
|
@ -67,10 +67,6 @@ class MetaReferenceCodeScannerSafetyImpl(Safety):
|
|||
violation = SafetyViolation(
|
||||
violation_level=(ViolationLevel.ERROR),
|
||||
user_message="Sorry, I found security concerns in the code.",
|
||||
metadata={
|
||||
"violation_type": ",".join(
|
||||
[issue.pattern_id for issue in result.issues_found]
|
||||
)
|
||||
},
|
||||
metadata={"violation_type": ",".join([issue.pattern_id for issue in result.issues_found])},
|
||||
)
|
||||
return RunShieldResponse(violation=violation)
|
||||
|
|
|
@ -10,9 +10,7 @@ from .config import LlamaGuardConfig
|
|||
async def get_provider_impl(config: LlamaGuardConfig, deps):
|
||||
from .llama_guard import LlamaGuardSafetyImpl
|
||||
|
||||
assert isinstance(
|
||||
config, LlamaGuardConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
assert isinstance(config, LlamaGuardConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = LlamaGuardSafetyImpl(config, deps)
|
||||
await impl.initialize()
|
||||
|
|
|
@ -102,8 +102,7 @@ LLAMA_GUARD_MODEL_IDS = {
|
|||
}
|
||||
|
||||
MODEL_TO_SAFETY_CATEGORIES_MAP = {
|
||||
"meta-llama/Llama-Guard-3-8B": DEFAULT_LG_V3_SAFETY_CATEGORIES
|
||||
+ [CAT_CODE_INTERPRETER_ABUSE],
|
||||
"meta-llama/Llama-Guard-3-8B": DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE],
|
||||
"meta-llama/Llama-Guard-3-1B": DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
"meta-llama/Llama-Guard-3-11B-Vision": DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
}
|
||||
|
@ -133,9 +132,7 @@ Provide your safety assessment for ONLY THE LAST $agent_type message in the abov
|
|||
- If unsafe, a second line must include a comma-separated list of violated categories."""
|
||||
|
||||
|
||||
PROMPT_TEMPLATE = Template(
|
||||
f"{PROMPT_TASK}{SAFETY_CATEGORIES}{PROMPT_CONVERSATION}{PROMPT_INSTRUCTIONS}"
|
||||
)
|
||||
PROMPT_TEMPLATE = Template(f"{PROMPT_TASK}{SAFETY_CATEGORIES}{PROMPT_CONVERSATION}{PROMPT_INSTRUCTIONS}")
|
||||
|
||||
|
||||
class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
||||
|
@ -233,9 +230,7 @@ class LlamaGuardShield:
|
|||
if messages[0].role != Role.user.value:
|
||||
raise ValueError("Messages must start with user")
|
||||
|
||||
if len(messages) >= 2 and (
|
||||
messages[0].role == Role.user.value and messages[1].role == Role.user.value
|
||||
):
|
||||
if len(messages) >= 2 and (messages[0].role == Role.user.value and messages[1].role == Role.user.value):
|
||||
messages = messages[1:]
|
||||
|
||||
for i in range(1, len(messages)):
|
||||
|
@ -263,10 +258,7 @@ class LlamaGuardShield:
|
|||
stream=True,
|
||||
):
|
||||
event = chunk.event
|
||||
if (
|
||||
event.event_type == ChatCompletionResponseEventType.progress
|
||||
and event.delta.type == "text"
|
||||
):
|
||||
if event.event_type == ChatCompletionResponseEventType.progress and event.delta.type == "text":
|
||||
content += event.delta.text
|
||||
|
||||
content = content.strip()
|
||||
|
@ -313,10 +305,7 @@ class LlamaGuardShield:
|
|||
categories = self.get_safety_categories()
|
||||
categories_str = "\n".join(categories)
|
||||
conversations_str = "\n\n".join(
|
||||
[
|
||||
f"{m.role.capitalize()}: {interleaved_content_as_str(m.content)}"
|
||||
for m in messages
|
||||
]
|
||||
[f"{m.role.capitalize()}: {interleaved_content_as_str(m.content)}" for m in messages]
|
||||
)
|
||||
return PROMPT_TEMPLATE.substitute(
|
||||
agent_type=messages[-1].role.capitalize(),
|
||||
|
|
|
@ -46,9 +46,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
if shield.provider_resource_id != PROMPT_GUARD_MODEL:
|
||||
raise ValueError(
|
||||
f"Only {PROMPT_GUARD_MODEL} is supported for Prompt Guard. "
|
||||
)
|
||||
raise ValueError(f"Only {PROMPT_GUARD_MODEL} is supported for Prompt Guard. ")
|
||||
|
||||
async def run_shield(
|
||||
self,
|
||||
|
@ -71,9 +69,7 @@ class PromptGuardShield:
|
|||
threshold: float = 0.9,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
assert (
|
||||
model_dir is not None
|
||||
), "Must provide a model directory for prompt injection shield"
|
||||
assert model_dir is not None, "Must provide a model directory for prompt injection shield"
|
||||
if temperature <= 0:
|
||||
raise ValueError("Temperature must be greater than 0")
|
||||
|
||||
|
@ -85,9 +81,7 @@ class PromptGuardShield:
|
|||
|
||||
# load model and tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_dir, device_map=self.device
|
||||
)
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(model_dir, device_map=self.device)
|
||||
|
||||
async def run(self, messages: List[Message]) -> RunShieldResponse:
|
||||
message = messages[-1]
|
||||
|
@ -117,10 +111,7 @@ class PromptGuardShield:
|
|||
"violation_type": f"prompt_injection:embedded={score_embedded},malicious={score_malicious}",
|
||||
},
|
||||
)
|
||||
elif (
|
||||
self.config.guard_type == PromptGuardType.jailbreak.value
|
||||
and score_malicious > self.threshold
|
||||
):
|
||||
elif self.config.guard_type == PromptGuardType.jailbreak.value and score_malicious > self.threshold:
|
||||
violation = SafetyViolation(
|
||||
violation_level=ViolationLevel.ERROR,
|
||||
violation_type=f"prompt_injection:malicious={score_malicious}",
|
||||
|
|
|
@ -54,15 +54,11 @@ class BasicScoringImpl(
|
|||
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = [
|
||||
fn_def
|
||||
for impl in self.scoring_fn_id_impls.values()
|
||||
for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
]
|
||||
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith(
|
||||
"basic"
|
||||
), "All basic scoring fn must have identifier prefixed with 'basic'! "
|
||||
assert f.identifier.startswith("basic"), "All basic scoring fn must have identifier prefixed with 'basic'! "
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
|
@ -76,9 +72,7 @@ class BasicScoringImpl(
|
|||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
|
@ -108,12 +102,8 @@ class BasicScoringImpl(
|
|||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
||||
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
||||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(
|
||||
score_results, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
@ -32,9 +32,7 @@ class EqualityScoringFn(RegisteredBaseScoringFn):
|
|||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert "expected_answer" in input_row, "Expected answer not found in input row."
|
||||
assert (
|
||||
"generated_answer" in input_row
|
||||
), "Generated answer not found in input row."
|
||||
assert "generated_answer" in input_row, "Generated answer not found in input row."
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
|
|
@ -18,7 +18,5 @@ equality = ScoringFn(
|
|||
provider_id="basic",
|
||||
provider_resource_id="equality",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.accuracy]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
||||
|
|
|
@ -55,9 +55,7 @@ MULTILINGUAL_ANSWER_REGEXES = [
|
|||
r"Àṣàyàn\s*:",
|
||||
]
|
||||
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
|
||||
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
)
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
|
||||
regex_parser_multiple_choice_answer = ScoringFn(
|
||||
identifier="basic::regex_parser_multiple_choice_answer",
|
||||
|
@ -66,10 +64,7 @@ regex_parser_multiple_choice_answer = ScoringFn(
|
|||
provider_id="basic",
|
||||
provider_resource_id="regex-parser-multiple-choice-answer",
|
||||
params=RegexParserScoringFnParams(
|
||||
parsing_regexes=[
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
|
||||
for x in MULTILINGUAL_ANSWER_REGEXES
|
||||
],
|
||||
parsing_regexes=[MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x) for x in MULTILINGUAL_ANSWER_REGEXES],
|
||||
aggregation_functions=[AggregationFunctionType.accuracy],
|
||||
),
|
||||
)
|
||||
|
|
|
@ -18,7 +18,5 @@ subset_of = ScoringFn(
|
|||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="subset-of",
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.accuracy]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
||||
|
|
|
@ -33,17 +33,14 @@ class RegexParserScoringFn(RegisteredBaseScoringFn):
|
|||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert (
|
||||
scoring_fn_identifier is not None
|
||||
), "Scoring function identifier not found."
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
assert (
|
||||
fn_def.params is not None
|
||||
and fn_def.params.type == ScoringFnParamsType.regex_parser.value
|
||||
), f"RegexParserScoringFnParams not found for {fn_def}."
|
||||
assert fn_def.params is not None and fn_def.params.type == ScoringFnParamsType.regex_parser.value, (
|
||||
f"RegexParserScoringFnParams not found for {fn_def}."
|
||||
)
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
|
|
@ -124,12 +124,10 @@ class BraintrustScoringImpl(
|
|||
self.datasets_api = datasets_api
|
||||
|
||||
self.braintrust_evaluators = {
|
||||
entry.identifier: entry.evaluator
|
||||
for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
entry.identifier: entry.evaluator for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
}
|
||||
self.supported_fn_defs_registry = {
|
||||
entry.identifier: entry.fn_def
|
||||
for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
entry.identifier: entry.fn_def for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
@ -139,16 +137,14 @@ class BraintrustScoringImpl(
|
|||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = [x for x in self.supported_fn_defs_registry.values()]
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith(
|
||||
"braintrust"
|
||||
), "All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
|
||||
assert f.identifier.startswith("braintrust"), (
|
||||
"All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
|
||||
)
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None:
|
||||
raise NotImplementedError(
|
||||
"Registering scoring function not allowed for braintrust provider"
|
||||
)
|
||||
raise NotImplementedError("Registering scoring function not allowed for braintrust provider")
|
||||
|
||||
async def set_api_key(self) -> None:
|
||||
# api key is in the request headers
|
||||
|
@ -171,17 +167,13 @@ class BraintrustScoringImpl(
|
|||
await self.set_api_key()
|
||||
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=-1,
|
||||
)
|
||||
res = await self.score(
|
||||
input_rows=all_rows.rows, scoring_functions=scoring_functions
|
||||
)
|
||||
res = await self.score(input_rows=all_rows.rows, scoring_functions=scoring_functions)
|
||||
if save_results_dataset:
|
||||
# TODO: persist and register dataset on to server for reading
|
||||
# self.datasets_api.register_dataset()
|
||||
|
@ -222,13 +214,8 @@ class BraintrustScoringImpl(
|
|||
if scoring_fn_id not in self.supported_fn_defs_registry:
|
||||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
|
||||
score_results = [
|
||||
await self.score_row(input_row, scoring_fn_id)
|
||||
for input_row in input_rows
|
||||
]
|
||||
aggregation_functions = self.supported_fn_defs_registry[
|
||||
scoring_fn_id
|
||||
].params.aggregation_functions
|
||||
score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows]
|
||||
aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions
|
||||
|
||||
# override scoring_fn params if provided
|
||||
if scoring_functions[scoring_fn_id] is not None:
|
||||
|
|
|
@ -21,7 +21,5 @@ answer_correctness_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="answer-correctness",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ answer_relevancy_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="answer-relevancy",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ answer_similarity_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="answer-similarity",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue