mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-12 16:16:09 +00:00
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
parent
4773092dd1
commit
34ab7a3b6c
217 changed files with 981 additions and 2681 deletions
|
@ -11,9 +11,7 @@ from llama_stack.distribution.datatypes import Api, ProviderSpec
|
|||
from .config import MetaReferenceAgentsImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: MetaReferenceAgentsImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .agents import MetaReferenceAgentsImpl
|
||||
|
||||
impl = MetaReferenceAgentsImpl(
|
||||
|
|
|
@ -74,9 +74,7 @@ log = logging.getLogger(__name__)
|
|||
|
||||
|
||||
def make_random_string(length: int = 8):
|
||||
return "".join(
|
||||
secrets.choice(string.ascii_letters + string.digits) for _ in range(length)
|
||||
)
|
||||
return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length))
|
||||
|
||||
|
||||
TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})")
|
||||
|
@ -153,9 +151,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
async def create_session(self, name: str) -> str:
|
||||
return await self.storage.create_session(name)
|
||||
|
||||
async def create_and_execute_turn(
|
||||
self, request: AgentTurnCreateRequest
|
||||
) -> AsyncGenerator:
|
||||
async def create_and_execute_turn(self, request: AgentTurnCreateRequest) -> AsyncGenerator:
|
||||
with tracing.span("create_and_execute_turn") as span:
|
||||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("agent_id", self.agent_id)
|
||||
|
@ -206,14 +202,9 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
output_message = chunk
|
||||
continue
|
||||
|
||||
assert isinstance(
|
||||
chunk, AgentTurnResponseStreamChunk
|
||||
), f"Unexpected type {type(chunk)}"
|
||||
assert isinstance(chunk, AgentTurnResponseStreamChunk), f"Unexpected type {type(chunk)}"
|
||||
event = chunk.event
|
||||
if (
|
||||
event.payload.event_type
|
||||
== AgentTurnResponseEventType.step_complete.value
|
||||
):
|
||||
if event.payload.event_type == AgentTurnResponseEventType.step_complete.value:
|
||||
steps.append(event.payload.step_details)
|
||||
|
||||
yield chunk
|
||||
|
@ -388,9 +379,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
tool_defs, tool_to_group = await self._get_tool_defs(toolgroups_for_turn)
|
||||
if documents:
|
||||
await self.handle_documents(
|
||||
session_id, documents, input_messages, tool_defs
|
||||
)
|
||||
await self.handle_documents(session_id, documents, input_messages, tool_defs)
|
||||
|
||||
if RAG_TOOL_GROUP in toolgroups and len(input_messages) > 0:
|
||||
with tracing.span(MEMORY_QUERY_TOOL) as span:
|
||||
|
@ -408,9 +397,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
vector_db_ids = args.get("vector_db_ids", [])
|
||||
query_config = args.get("query_config")
|
||||
if query_config:
|
||||
query_config = TypeAdapter(RAGQueryConfig).validate_python(
|
||||
query_config
|
||||
)
|
||||
query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config)
|
||||
else:
|
||||
# handle someone passing an empty dict
|
||||
query_config = RAGQueryConfig()
|
||||
|
@ -438,9 +425,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
result = await self.tool_runtime_api.rag_tool.query(
|
||||
content=concat_interleaved_content(
|
||||
[msg.content for msg in input_messages]
|
||||
),
|
||||
content=concat_interleaved_content([msg.content for msg in input_messages]),
|
||||
vector_db_ids=vector_db_ids,
|
||||
query_config=query_config,
|
||||
)
|
||||
|
@ -472,9 +457,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute("input", [m.model_dump_json() for m in input_messages])
|
||||
span.set_attribute("output", retrieved_context)
|
||||
span.set_attribute("tool_name", MEMORY_QUERY_TOOL)
|
||||
|
||||
|
@ -511,9 +494,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
self.agent_config.model,
|
||||
input_messages,
|
||||
tools=[
|
||||
tool
|
||||
for tool in tool_defs.values()
|
||||
if tool_to_group.get(tool.tool_name, None) != RAG_TOOL_GROUP
|
||||
tool for tool in tool_defs.values() if tool_to_group.get(tool.tool_name, None) != RAG_TOOL_GROUP
|
||||
],
|
||||
tool_prompt_format=self.agent_config.tool_prompt_format,
|
||||
response_format=self.agent_config.response_format,
|
||||
|
@ -560,12 +541,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
if event.stop_reason is not None:
|
||||
stop_reason = event.stop_reason
|
||||
span.set_attribute("stop_reason", stop_reason)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute(
|
||||
"output", f"content: {content} tool_calls: {tool_calls}"
|
||||
)
|
||||
span.set_attribute("input", [m.model_dump_json() for m in input_messages])
|
||||
span.set_attribute("output", f"content: {content} tool_calls: {tool_calls}")
|
||||
|
||||
stop_reason = stop_reason or StopReason.out_of_tokens
|
||||
|
||||
|
@ -667,9 +644,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
toolgroup_args,
|
||||
tool_to_group,
|
||||
)
|
||||
assert (
|
||||
len(result_messages) == 1
|
||||
), "Currently not supporting multiple messages"
|
||||
assert len(result_messages) == 1, "Currently not supporting multiple messages"
|
||||
result_message = result_messages[0]
|
||||
span.set_attribute("output", result_message.model_dump_json())
|
||||
|
||||
|
@ -697,9 +672,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# TODO: add tool-input touchpoint and a "start" event for this step also
|
||||
# but that needs a lot more refactoring of Tool code potentially
|
||||
|
||||
if out_attachment := _interpret_content_as_attachment(
|
||||
result_message.content
|
||||
):
|
||||
if out_attachment := _interpret_content_as_attachment(result_message.content):
|
||||
# NOTE: when we push this message back to the model, the model may ignore the
|
||||
# attached file path etc. since the model is trained to only provide a user message
|
||||
# with the summary. We keep all generated attachments and then attach them to final message
|
||||
|
@ -714,22 +687,14 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
) -> Tuple[Dict[str, ToolDefinition], Dict[str, str]]:
|
||||
# Determine which tools to include
|
||||
agent_config_toolgroups = set(
|
||||
(
|
||||
toolgroup.name
|
||||
if isinstance(toolgroup, AgentToolGroupWithArgs)
|
||||
else toolgroup
|
||||
)
|
||||
(toolgroup.name if isinstance(toolgroup, AgentToolGroupWithArgs) else toolgroup)
|
||||
for toolgroup in self.agent_config.toolgroups
|
||||
)
|
||||
toolgroups_for_turn_set = (
|
||||
agent_config_toolgroups
|
||||
if toolgroups_for_turn is None
|
||||
else {
|
||||
(
|
||||
toolgroup.name
|
||||
if isinstance(toolgroup, AgentToolGroupWithArgs)
|
||||
else toolgroup
|
||||
)
|
||||
(toolgroup.name if isinstance(toolgroup, AgentToolGroupWithArgs) else toolgroup)
|
||||
for toolgroup in toolgroups_for_turn
|
||||
}
|
||||
)
|
||||
|
@ -759,10 +724,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
continue
|
||||
tools = await self.tool_groups_api.list_tools(toolgroup_id=toolgroup_name)
|
||||
for tool_def in tools.data:
|
||||
if (
|
||||
toolgroup_name.startswith("builtin")
|
||||
and toolgroup_name != RAG_TOOL_GROUP
|
||||
):
|
||||
if toolgroup_name.startswith("builtin") and toolgroup_name != RAG_TOOL_GROUP:
|
||||
tool_name = tool_def.identifier
|
||||
built_in_type = BuiltinTool.brave_search
|
||||
if tool_name == "web_search":
|
||||
|
@ -773,9 +735,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
if tool_def_map.get(built_in_type, None):
|
||||
raise ValueError(f"Tool {built_in_type} already exists")
|
||||
|
||||
tool_def_map[built_in_type] = ToolDefinition(
|
||||
tool_name=built_in_type
|
||||
)
|
||||
tool_def_map[built_in_type] = ToolDefinition(tool_name=built_in_type)
|
||||
tool_to_group[built_in_type] = tool_def.toolgroup_id
|
||||
continue
|
||||
|
||||
|
@ -821,9 +781,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
|
||||
if code_interpreter_tool:
|
||||
for c in content_items:
|
||||
temp_file_path = os.path.join(
|
||||
self.tempdir, f"{make_random_string()}.txt"
|
||||
)
|
||||
temp_file_path = os.path.join(self.tempdir, f"{make_random_string()}.txt")
|
||||
with open(temp_file_path, "w") as temp_file:
|
||||
temp_file.write(c.content)
|
||||
url_items.append(URL(uri=f"file://{temp_file_path}"))
|
||||
|
@ -849,8 +807,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# we try to load the data from the URLs and content items as a message to inference
|
||||
# and add it to the last message's context
|
||||
input_messages[-1].context = "\n".join(
|
||||
[doc.content for doc in content_items]
|
||||
+ await load_data_from_urls(url_items)
|
||||
[doc.content for doc in content_items] + await load_data_from_urls(url_items)
|
||||
)
|
||||
|
||||
async def _ensure_vector_db(self, session_id: str) -> str:
|
||||
|
@ -874,9 +831,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
return vector_db_id
|
||||
|
||||
async def add_to_session_vector_db(
|
||||
self, session_id: str, data: List[Document]
|
||||
) -> None:
|
||||
async def add_to_session_vector_db(self, session_id: str, data: List[Document]) -> None:
|
||||
vector_db_id = await self._ensure_vector_db(session_id)
|
||||
documents = [
|
||||
RAGDocument(
|
||||
|
@ -931,11 +886,7 @@ async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessa
|
|||
else:
|
||||
raise ValueError(f"Unsupported URL {url}")
|
||||
|
||||
content.append(
|
||||
TextContentItem(
|
||||
text=f'# There is a file accessible to you at "{filepath}"\n'
|
||||
)
|
||||
)
|
||||
content.append(TextContentItem(text=f'# There is a file accessible to you at "{filepath}"\n'))
|
||||
|
||||
return ToolResponseMessage(
|
||||
call_id="",
|
||||
|
|
|
@ -94,16 +94,12 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
try:
|
||||
agent_config = json.loads(agent_config)
|
||||
except json.JSONDecodeError as e:
|
||||
raise ValueError(
|
||||
f"Could not JSON decode agent config for {agent_id}"
|
||||
) from e
|
||||
raise ValueError(f"Could not JSON decode agent config for {agent_id}") from e
|
||||
|
||||
try:
|
||||
agent_config = AgentConfig(**agent_config)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"Could not validate(?) agent config for {agent_id}"
|
||||
) from e
|
||||
raise ValueError(f"Could not validate(?) agent config for {agent_id}") from e
|
||||
|
||||
return ChatAgent(
|
||||
agent_id=agent_id,
|
||||
|
@ -115,9 +111,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
tool_runtime_api=self.tool_runtime_api,
|
||||
tool_groups_api=self.tool_groups_api,
|
||||
persistence_store=(
|
||||
self.persistence_store
|
||||
if agent_config.enable_session_persistence
|
||||
else self.in_memory_store
|
||||
self.persistence_store if agent_config.enable_session_persistence else self.in_memory_store
|
||||
),
|
||||
)
|
||||
|
||||
|
@ -168,22 +162,14 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
async for event in agent.create_and_execute_turn(request):
|
||||
yield event
|
||||
|
||||
async def get_agents_turn(
|
||||
self, agent_id: str, session_id: str, turn_id: str
|
||||
) -> Turn:
|
||||
turn = await self.persistence_store.get(
|
||||
f"session:{agent_id}:{session_id}:{turn_id}"
|
||||
)
|
||||
async def get_agents_turn(self, agent_id: str, session_id: str, turn_id: str) -> Turn:
|
||||
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
||||
turn = json.loads(turn)
|
||||
turn = Turn(**turn)
|
||||
return turn
|
||||
|
||||
async def get_agents_step(
|
||||
self, agent_id: str, session_id: str, turn_id: str, step_id: str
|
||||
) -> AgentStepResponse:
|
||||
turn = await self.persistence_store.get(
|
||||
f"session:{agent_id}:{session_id}:{turn_id}"
|
||||
)
|
||||
async def get_agents_step(self, agent_id: str, session_id: str, turn_id: str, step_id: str) -> AgentStepResponse:
|
||||
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
||||
turn = json.loads(turn)
|
||||
turn = Turn(**turn)
|
||||
steps = turn.steps
|
||||
|
@ -203,9 +189,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
turns = []
|
||||
if turn_ids:
|
||||
for turn_id in turn_ids:
|
||||
turn = await self.persistence_store.get(
|
||||
f"session:{agent_id}:{session_id}:{turn_id}"
|
||||
)
|
||||
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
||||
turn = json.loads(turn)
|
||||
turn = Turn(**turn)
|
||||
turns.append(turn)
|
||||
|
|
|
@ -33,9 +33,7 @@ class ShieldRunnerMixin:
|
|||
self.input_shields = input_shields
|
||||
self.output_shields = output_shields
|
||||
|
||||
async def run_multiple_shields(
|
||||
self, messages: List[Message], identifiers: List[str]
|
||||
) -> None:
|
||||
async def run_multiple_shields(self, messages: List[Message], identifiers: List[str]) -> None:
|
||||
responses = await asyncio.gather(
|
||||
*[
|
||||
self.safety_api.run_shield(
|
||||
|
|
|
@ -64,9 +64,7 @@ class MockInferenceAPI:
|
|||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
|
||||
]:
|
||||
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
||||
async def stream_response():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -104,9 +102,7 @@ class MockInferenceAPI:
|
|||
|
||||
|
||||
class MockSafetyAPI:
|
||||
async def run_shield(
|
||||
self, shield_id: str, messages: List[Message]
|
||||
) -> RunShieldResponse:
|
||||
async def run_shield(self, shield_id: str, messages: List[Message]) -> RunShieldResponse:
|
||||
return RunShieldResponse(violation=None)
|
||||
|
||||
|
||||
|
@ -129,9 +125,7 @@ class MockVectorIOAPI:
|
|||
|
||||
|
||||
class MockToolGroupsAPI:
|
||||
async def register_tool_group(
|
||||
self, toolgroup_id: str, provider_id: str, mcp_endpoint=None, args=None
|
||||
) -> None:
|
||||
async def register_tool_group(self, toolgroup_id: str, provider_id: str, mcp_endpoint=None, args=None) -> None:
|
||||
pass
|
||||
|
||||
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
|
||||
|
@ -341,26 +335,21 @@ async def test_chat_agent_complex_turn(get_chat_agent):
|
|||
assert len(responses) > 0
|
||||
|
||||
step_types = [
|
||||
response.event.payload.step_type
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "step_type")
|
||||
response.event.payload.step_type for response in responses if hasattr(response.event.payload, "step_type")
|
||||
]
|
||||
|
||||
assert StepType.shield_call in step_types, "Shield call step is missing"
|
||||
assert StepType.inference in step_types, "Inference step is missing"
|
||||
|
||||
event_types = [
|
||||
response.event.payload.event_type
|
||||
for response in responses
|
||||
if hasattr(response.event.payload, "event_type")
|
||||
response.event.payload.event_type for response in responses if hasattr(response.event.payload, "event_type")
|
||||
]
|
||||
assert "turn_start" in event_types, "Start event is missing"
|
||||
assert "turn_complete" in event_types, "Complete event is missing"
|
||||
|
||||
assert any(
|
||||
isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload)
|
||||
for response in responses
|
||||
), "Turn complete event is missing"
|
||||
assert any(isinstance(response.event.payload, AgentTurnResponseTurnCompletePayload) for response in responses), (
|
||||
"Turn complete event is missing"
|
||||
)
|
||||
turn_complete_payload = next(
|
||||
response.event.payload
|
||||
for response in responses
|
||||
|
@ -380,9 +369,7 @@ async def test_chat_agent_complex_turn(get_chat_agent):
|
|||
([MEMORY_TOOLGROUP, CODE_INTERPRETER_TOOLGROUP], True, True), # all tools
|
||||
],
|
||||
)
|
||||
async def test_chat_agent_tools(
|
||||
get_agents_impl, toolgroups, expected_memory, expected_code_interpreter
|
||||
):
|
||||
async def test_chat_agent_tools(get_agents_impl, toolgroups, expected_memory, expected_code_interpreter):
|
||||
impl = await get_agents_impl
|
||||
agent_config = AgentConfig(
|
||||
model="test_model",
|
||||
|
|
|
@ -172,9 +172,7 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
|
||||
new_rows_df = pandas.DataFrame(rows)
|
||||
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
|
||||
dataset_impl.df = pandas.concat(
|
||||
[dataset_impl.df, new_rows_df], ignore_index=True
|
||||
)
|
||||
dataset_impl.df = pandas.concat([dataset_impl.df, new_rows_df], ignore_index=True)
|
||||
|
||||
url = str(dataset_info.dataset_def.url)
|
||||
parsed_url = urlparse(url)
|
||||
|
@ -189,12 +187,8 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
raise ValueError("Data URL must be a base64-encoded CSV")
|
||||
|
||||
csv_buffer = dataset_impl.df.to_csv(index=False)
|
||||
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
|
||||
"utf-8"
|
||||
)
|
||||
dataset_info.dataset_def.url = URL(
|
||||
uri=f"data:text/csv;base64,{base64_content}"
|
||||
)
|
||||
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode("utf-8")
|
||||
dataset_info.dataset_def.url = URL(uri=f"data:text/csv;base64,{base64_content}")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
|
||||
|
|
|
@ -91,14 +91,10 @@ class MetaReferenceEvalImpl(
|
|||
candidate = task_config.eval_candidate
|
||||
scoring_functions = task_def.scoring_functions
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value))
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=(
|
||||
-1 if task_config.num_examples is None else task_config.num_examples
|
||||
),
|
||||
rows_in_page=(-1 if task_config.num_examples is None else task_config.num_examples),
|
||||
)
|
||||
res = await self.evaluate_rows(
|
||||
task_id=task_id,
|
||||
|
@ -127,9 +123,7 @@ class MetaReferenceEvalImpl(
|
|||
input_messages = [UserMessage(**x) for x in input_messages]
|
||||
|
||||
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
|
||||
session_create_response = await self.agents_api.create_agent_session(
|
||||
agent_id, f"session-{i}"
|
||||
)
|
||||
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
|
||||
session_id = session_create_response.session_id
|
||||
|
||||
turn_request = dict(
|
||||
|
@ -138,12 +132,7 @@ class MetaReferenceEvalImpl(
|
|||
messages=input_messages,
|
||||
stream=True,
|
||||
)
|
||||
turn_response = [
|
||||
chunk
|
||||
async for chunk in await self.agents_api.create_agent_turn(
|
||||
**turn_request
|
||||
)
|
||||
]
|
||||
turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)]
|
||||
final_event = turn_response[-1].event.payload
|
||||
|
||||
# check if there's a memory retrieval step and extract the context
|
||||
|
@ -152,14 +141,10 @@ class MetaReferenceEvalImpl(
|
|||
if step.step_type == StepType.tool_execution.value:
|
||||
for tool_response in step.tool_responses:
|
||||
if tool_response.tool_name == MEMORY_QUERY_TOOL:
|
||||
memory_rag_context = " ".join(
|
||||
x.text for x in tool_response.content
|
||||
)
|
||||
memory_rag_context = " ".join(x.text for x in tool_response.content)
|
||||
|
||||
agent_generation = {}
|
||||
agent_generation[ColumnName.generated_answer.value] = (
|
||||
final_event.turn.output_message.content
|
||||
)
|
||||
agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content
|
||||
if memory_rag_context:
|
||||
agent_generation[ColumnName.context.value] = memory_rag_context
|
||||
|
||||
|
@ -171,9 +156,7 @@ class MetaReferenceEvalImpl(
|
|||
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = task_config.eval_candidate
|
||||
assert (
|
||||
candidate.sampling_params.max_tokens is not None
|
||||
), "SamplingParams.max_tokens must be provided"
|
||||
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
|
||||
|
||||
generations = []
|
||||
for x in tqdm(input_rows):
|
||||
|
@ -184,15 +167,9 @@ class MetaReferenceEvalImpl(
|
|||
content=input_content,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: response.completion_message.content
|
||||
}
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
chat_completion_input_str = str(
|
||||
x[ColumnName.chat_completion_input.value]
|
||||
)
|
||||
chat_completion_input_str = str(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = eval(chat_completion_input_str)
|
||||
input_messages = [UserMessage(**x) for x in input_messages]
|
||||
messages = []
|
||||
|
@ -204,11 +181,7 @@ class MetaReferenceEvalImpl(
|
|||
messages=messages,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: response.completion_message.content
|
||||
}
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
||||
|
@ -230,10 +203,7 @@ class MetaReferenceEvalImpl(
|
|||
raise ValueError(f"Invalid candidate type: {candidate.type}")
|
||||
|
||||
# scoring with generated_answer
|
||||
score_input_rows = [
|
||||
input_r | generated_r
|
||||
for input_r, generated_r in zip(input_rows, generations)
|
||||
]
|
||||
score_input_rows = [input_r | generated_r for input_r, generated_r in zip(input_rows, generations)]
|
||||
|
||||
if task_config.type == "app" and task_config.scoring_params is not None:
|
||||
scoring_functions_dict = {
|
||||
|
@ -241,9 +211,7 @@ class MetaReferenceEvalImpl(
|
|||
for scoring_fn_id in scoring_functions
|
||||
}
|
||||
else:
|
||||
scoring_functions_dict = {
|
||||
scoring_fn_id: None for scoring_fn_id in scoring_functions
|
||||
}
|
||||
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
|
||||
|
||||
score_response = await self.scoring_api.score(
|
||||
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
||||
|
|
|
@ -40,9 +40,7 @@ class MetaReferenceInferenceConfig(BaseModel):
|
|||
repos = [m.huggingface_repo for m in permitted_models]
|
||||
if model not in (descriptors + repos):
|
||||
model_list = "\n\t".join(repos)
|
||||
raise ValueError(
|
||||
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
||||
)
|
||||
raise ValueError(f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]")
|
||||
return model
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -83,9 +83,7 @@ class TokenResult(BaseModel):
|
|||
class Llama:
|
||||
@staticmethod
|
||||
def build(
|
||||
config: Union[
|
||||
MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
|
||||
],
|
||||
config: Union[MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig],
|
||||
model_id: str,
|
||||
llama_model: Model,
|
||||
):
|
||||
|
@ -150,9 +148,9 @@ class Llama:
|
|||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
assert model_parallel_size == len(checkpoints), (
|
||||
f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
)
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
|
@ -168,9 +166,9 @@ class Llama:
|
|||
)
|
||||
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
assert model_args.vocab_size == tokenizer.n_words, (
|
||||
f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
)
|
||||
|
||||
if isinstance(config, MetaReferenceQuantizedInferenceConfig):
|
||||
if isinstance(config.quantization, Fp8QuantizationConfig):
|
||||
|
@ -193,10 +191,7 @@ class Llama:
|
|||
model = convert_to_int4_quantized_model(model, model_args, config)
|
||||
model.load_state_dict(state_dict, strict=True)
|
||||
|
||||
if (
|
||||
model_args.quantization_args is not None
|
||||
and model_args.quantization_args.spinquant
|
||||
):
|
||||
if model_args.quantization_args is not None and model_args.quantization_args.spinquant:
|
||||
# Add a wrapper for adding hadamard transform for spinquant.
|
||||
# This needs to be done after loading the state dict otherwise an error will be raised while
|
||||
# loading the state dict.
|
||||
|
@ -206,9 +201,7 @@ class Llama:
|
|||
|
||||
add_hadamard_transform_for_spinquant(model)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Currently int4 and fp8 are the only supported quantization methods."
|
||||
)
|
||||
raise NotImplementedError("Currently int4 and fp8 are the only supported quantization methods.")
|
||||
else:
|
||||
if device == "cuda":
|
||||
if torch.cuda.is_bf16_supported():
|
||||
|
@ -262,10 +255,7 @@ class Llama:
|
|||
params = self.model.params
|
||||
|
||||
if print_input_tokens:
|
||||
input_tokens = [
|
||||
self.formatter.vision_token if t == 128256 else t
|
||||
for t in model_input.tokens
|
||||
]
|
||||
input_tokens = [self.formatter.vision_token if t == 128256 else t for t in model_input.tokens]
|
||||
log.info("Input to model -> " + self.tokenizer.decode(input_tokens))
|
||||
prompt_tokens = [model_input.tokens]
|
||||
|
||||
|
@ -287,12 +277,10 @@ class Llama:
|
|||
mask = model_input.vision.mask if model_input.vision is not None else []
|
||||
|
||||
# the method works for bsz > 1 so add a batch dimension
|
||||
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = (
|
||||
self.model.compute_vision_tokens_masks(
|
||||
batch_images=[images],
|
||||
batch_masks=[mask],
|
||||
total_len=total_len,
|
||||
)
|
||||
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
|
||||
batch_images=[images],
|
||||
batch_masks=[mask],
|
||||
total_len=total_len,
|
||||
)
|
||||
|
||||
pad_id = self.tokenizer.pad_id
|
||||
|
@ -340,9 +328,7 @@ class Llama:
|
|||
|
||||
next_token = next_token.reshape(-1)
|
||||
# only replace token if prompt has already been generated
|
||||
next_token = torch.where(
|
||||
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
||||
)
|
||||
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
||||
tokens[:, cur_pos] = next_token
|
||||
|
||||
target = tokens[:, prev_pos + 1 : cur_pos + 1]
|
||||
|
@ -365,17 +351,11 @@ class Llama:
|
|||
reduction="none",
|
||||
ignore_index=pad_id,
|
||||
)
|
||||
eos_reached |= (~input_text_mask[:, cur_pos]) & (
|
||||
torch.isin(next_token, stop_tokens)
|
||||
)
|
||||
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
|
||||
yield TokenResult(
|
||||
token=next_token[0].item(),
|
||||
text=self.tokenizer.decode(next_token.tolist()),
|
||||
logprobs=(
|
||||
token_logprobs[:, cur_pos : cur_pos + 1][0].tolist()
|
||||
if logprobs
|
||||
else None
|
||||
),
|
||||
logprobs=(token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None),
|
||||
)
|
||||
|
||||
prev_pos = cur_pos
|
||||
|
@ -388,11 +368,7 @@ class Llama:
|
|||
) -> Generator:
|
||||
sampling_params = request.sampling_params
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
or max_gen_len >= self.model.params.max_seq_len
|
||||
):
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
model_input = self.formatter.encode_content(request.content)
|
||||
|
@ -417,11 +393,7 @@ class Llama:
|
|||
) -> Generator:
|
||||
sampling_params = request.sampling_params
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
or max_gen_len >= self.model.params.max_seq_len
|
||||
):
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len:
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
|
@ -473,9 +445,7 @@ class LogitsProcessor:
|
|||
self.token_enforcer = token_enforcer
|
||||
self.mask: Optional[torch.Tensor] = None
|
||||
|
||||
def process_logits(
|
||||
self, tokens: torch.Tensor, scores: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
def process_logits(self, tokens: torch.Tensor, scores: torch.Tensor) -> torch.Tensor:
|
||||
token_sequence = tokens[0, :].tolist()
|
||||
allowed_tokens = self.token_enforcer.get_allowed_tokens(token_sequence)
|
||||
|
||||
|
@ -510,9 +480,7 @@ def get_logits_processor(
|
|||
return LogitsProcessor(token_enforcer)
|
||||
|
||||
|
||||
def _build_regular_tokens_list(
|
||||
tokenizer: Tokenizer, vocab_size: int
|
||||
) -> List[Tuple[int, str, bool]]:
|
||||
def _build_regular_tokens_list(tokenizer: Tokenizer, vocab_size: int) -> List[Tuple[int, str, bool]]:
|
||||
token_0 = tokenizer.encode("0", bos=False, eos=False)[-1]
|
||||
regular_tokens = []
|
||||
|
||||
|
|
|
@ -80,9 +80,7 @@ class MetaReferenceInferenceImpl(
|
|||
async def load_model(self, model_id, llama_model) -> None:
|
||||
log.info(f"Loading model `{model_id}`")
|
||||
if self.config.create_distributed_process_group:
|
||||
self.generator = LlamaModelParallelGenerator(
|
||||
self.config, model_id, llama_model
|
||||
)
|
||||
self.generator = LlamaModelParallelGenerator(self.config, model_id, llama_model)
|
||||
self.generator.start()
|
||||
else:
|
||||
self.generator = Llama.build(self.config, model_id, llama_model)
|
||||
|
@ -100,9 +98,7 @@ class MetaReferenceInferenceImpl(
|
|||
"No avaible model yet, please register your requested model or add your model in the resouces first"
|
||||
)
|
||||
elif request.model != self.model_id:
|
||||
raise RuntimeError(
|
||||
f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}"
|
||||
)
|
||||
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
@ -184,13 +180,7 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs = [
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
]
|
||||
logprobs = [TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})]
|
||||
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=text,
|
||||
|
@ -212,9 +202,7 @@ class MetaReferenceInferenceImpl(
|
|||
for x in impl():
|
||||
yield x
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
@ -231,13 +219,7 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
@ -289,9 +271,7 @@ class MetaReferenceInferenceImpl(
|
|||
self.check_model(request)
|
||||
|
||||
# augment and rewrite messages depending on the model
|
||||
request.messages = chat_completion_request_to_messages(
|
||||
request, self.llama_model.core_model_id.value
|
||||
)
|
||||
request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value)
|
||||
# download media and convert to raw content so we can send it to the model
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
|
@ -304,9 +284,7 @@ class MetaReferenceInferenceImpl(
|
|||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
def impl():
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
@ -323,20 +301,12 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
raw_message = self.generator.formatter.decode_assistant_message(
|
||||
tokens, stop_reason
|
||||
)
|
||||
raw_message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=raw_message.content,
|
||||
|
@ -352,9 +322,7 @@ class MetaReferenceInferenceImpl(
|
|||
else:
|
||||
return impl()
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
def impl():
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -405,13 +373,7 @@ class MetaReferenceInferenceImpl(
|
|||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs.append(
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
token_result.text: token_result.logprobs[0]
|
||||
}
|
||||
)
|
||||
)
|
||||
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
|
@ -424,9 +386,7 @@ class MetaReferenceInferenceImpl(
|
|||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
message = self.generator.formatter.decode_assistant_message(
|
||||
tokens, stop_reason
|
||||
)
|
||||
message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
|
|
|
@ -91,9 +91,7 @@ class LlamaModelParallelGenerator:
|
|||
|
||||
self.group = ModelParallelProcessGroup(
|
||||
model_parallel_size,
|
||||
init_model_cb=partial(
|
||||
init_model_cb, self.config, self.model_id, self.llama_model
|
||||
),
|
||||
init_model_cb=partial(init_model_cb, self.config, self.model_id, self.llama_model),
|
||||
)
|
||||
self.group.start()
|
||||
return self
|
||||
|
|
|
@ -55,47 +55,33 @@ class ProcessingMessageName(str, Enum):
|
|||
|
||||
|
||||
class ReadyRequest(BaseModel):
|
||||
type: Literal[ProcessingMessageName.ready_request] = (
|
||||
ProcessingMessageName.ready_request
|
||||
)
|
||||
type: Literal[ProcessingMessageName.ready_request] = ProcessingMessageName.ready_request
|
||||
|
||||
|
||||
class ReadyResponse(BaseModel):
|
||||
type: Literal[ProcessingMessageName.ready_response] = (
|
||||
ProcessingMessageName.ready_response
|
||||
)
|
||||
type: Literal[ProcessingMessageName.ready_response] = ProcessingMessageName.ready_response
|
||||
|
||||
|
||||
class EndSentinel(BaseModel):
|
||||
type: Literal[ProcessingMessageName.end_sentinel] = (
|
||||
ProcessingMessageName.end_sentinel
|
||||
)
|
||||
type: Literal[ProcessingMessageName.end_sentinel] = ProcessingMessageName.end_sentinel
|
||||
|
||||
|
||||
class CancelSentinel(BaseModel):
|
||||
type: Literal[ProcessingMessageName.cancel_sentinel] = (
|
||||
ProcessingMessageName.cancel_sentinel
|
||||
)
|
||||
type: Literal[ProcessingMessageName.cancel_sentinel] = ProcessingMessageName.cancel_sentinel
|
||||
|
||||
|
||||
class TaskRequest(BaseModel):
|
||||
type: Literal[ProcessingMessageName.task_request] = (
|
||||
ProcessingMessageName.task_request
|
||||
)
|
||||
type: Literal[ProcessingMessageName.task_request] = ProcessingMessageName.task_request
|
||||
task: Union[CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent]
|
||||
|
||||
|
||||
class TaskResponse(BaseModel):
|
||||
type: Literal[ProcessingMessageName.task_response] = (
|
||||
ProcessingMessageName.task_response
|
||||
)
|
||||
type: Literal[ProcessingMessageName.task_response] = ProcessingMessageName.task_response
|
||||
result: TokenResult
|
||||
|
||||
|
||||
class ExceptionResponse(BaseModel):
|
||||
type: Literal[ProcessingMessageName.exception_response] = (
|
||||
ProcessingMessageName.exception_response
|
||||
)
|
||||
type: Literal[ProcessingMessageName.exception_response] = ProcessingMessageName.exception_response
|
||||
error: str
|
||||
|
||||
|
||||
|
@ -189,9 +175,7 @@ def retrieve_requests(reply_socket_url: str):
|
|||
group=get_model_parallel_group(),
|
||||
)
|
||||
if isinstance(updates[0], CancelSentinel):
|
||||
log.info(
|
||||
"quitting generation loop because request was cancelled"
|
||||
)
|
||||
log.info("quitting generation loop because request was cancelled")
|
||||
break
|
||||
|
||||
if mp_rank_0():
|
||||
|
@ -350,9 +334,7 @@ class ModelParallelProcessGroup:
|
|||
|
||||
def run_inference(
|
||||
self,
|
||||
req: Union[
|
||||
CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent
|
||||
],
|
||||
req: Union[CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
assert not self.running, "inference already running"
|
||||
|
||||
|
|
|
@ -19,9 +19,7 @@ try:
|
|||
|
||||
log.info("Using efficient FP8 operators in FBGEMM.")
|
||||
except ImportError:
|
||||
log.error(
|
||||
"No efficient FP8 operators. Please install FBGEMM in fp8_requirements.txt."
|
||||
)
|
||||
log.error("No efficient FP8 operators. Please install FBGEMM in fp8_requirements.txt.")
|
||||
raise
|
||||
|
||||
import torch
|
||||
|
@ -60,14 +58,8 @@ def ffn_swiglu(
|
|||
num_tokens: Optional[Tensor] = None,
|
||||
is_memory_bounded: bool = False,
|
||||
) -> Tensor:
|
||||
if (
|
||||
isinstance(w1, Fp8ScaledWeights)
|
||||
and isinstance(w3, Fp8ScaledWeights)
|
||||
and isinstance(w2, Fp8ScaledWeights)
|
||||
):
|
||||
return ffn_swiglu_fp8_dynamic(
|
||||
x, w1, w3, w2, w1.activation_scale_ub, num_tokens, is_memory_bounded
|
||||
)
|
||||
if isinstance(w1, Fp8ScaledWeights) and isinstance(w3, Fp8ScaledWeights) and isinstance(w2, Fp8ScaledWeights):
|
||||
return ffn_swiglu_fp8_dynamic(x, w1, w3, w2, w1.activation_scale_ub, num_tokens, is_memory_bounded)
|
||||
|
||||
(B, T, D) = x.shape # noqa: N806
|
||||
(HD_L, D_) = w1.shape # noqa: N806
|
||||
|
@ -146,12 +138,8 @@ def fc_fp8_dynamic(
|
|||
Single w8a8 fc layer with dynamic row-wise scaling.
|
||||
"""
|
||||
if isinstance(w, Fp8RowwiseWeights):
|
||||
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(
|
||||
x, num_tokens, activation_scale_ub
|
||||
)
|
||||
y = torch.ops.fbgemm.f8f8bf16_rowwise(
|
||||
xq, w.weight, x_scale, w.scale, use_fast_accum=True
|
||||
)
|
||||
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(x, num_tokens, activation_scale_ub)
|
||||
y = torch.ops.fbgemm.f8f8bf16_rowwise(xq, w.weight, x_scale, w.scale, use_fast_accum=True)
|
||||
del xq
|
||||
return y
|
||||
|
||||
|
|
|
@ -17,8 +17,7 @@ from torch import Tensor
|
|||
|
||||
|
||||
@unittest.skipIf(
|
||||
not torch.cuda.is_available()
|
||||
or torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
|
||||
not torch.cuda.is_available() or torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
|
||||
"Skip when H100 is not available",
|
||||
)
|
||||
class FP8Tests(unittest.TestCase):
|
||||
|
|
|
@ -57,9 +57,7 @@ class HadamardModule(torch.nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
def add_hadamard_transform_for_spinquant(
|
||||
model: torch.nn.Module, prefix: str = ""
|
||||
) -> None:
|
||||
def add_hadamard_transform_for_spinquant(model: torch.nn.Module, prefix: str = "") -> None:
|
||||
"""
|
||||
Adds a Hadamard transform to the last linear layer of each feedforward network (FFN) in the model.
|
||||
This function recursively traverses the model's children and looks for layers that match the pattern
|
||||
|
@ -81,12 +79,8 @@ def add_hadamard_transform_for_spinquant(
|
|||
for module_name, module in model.named_children():
|
||||
child_full_name = prefix + "." + module_name
|
||||
if re.search(pattern_last_linear_ffn, child_full_name):
|
||||
new_module = nn.Sequential(
|
||||
HadamardModule(group_size=module.in_features), module
|
||||
)
|
||||
new_module = nn.Sequential(HadamardModule(group_size=module.in_features), module)
|
||||
del module
|
||||
setattr(model, module_name, new_module)
|
||||
else:
|
||||
add_hadamard_transform_for_spinquant(
|
||||
module, (prefix + "." if prefix else prefix) + module_name
|
||||
)
|
||||
add_hadamard_transform_for_spinquant(module, (prefix + "." if prefix else prefix) + module_name)
|
||||
|
|
|
@ -63,12 +63,8 @@ def convert_to_fp8_quantized_model(
|
|||
# Move weights to GPU with quantization
|
||||
if llama_model.quantization_format == CheckpointQuantizationFormat.fp8_mixed.value:
|
||||
log.info("Loading fp8 scales...")
|
||||
fp8_scales_path = os.path.join(
|
||||
checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
assert os.path.isfile(
|
||||
fp8_scales_path
|
||||
), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
||||
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt")
|
||||
assert os.path.isfile(fp8_scales_path), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
||||
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
|
||||
|
||||
for block in model.layers:
|
||||
|
@ -81,9 +77,7 @@ def convert_to_fp8_quantized_model(
|
|||
param = getattr(block.feed_forward, key)
|
||||
param.weight = load_fp8(
|
||||
param.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.{key}_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.{key}_{get_model_parallel_rank()}"],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
else:
|
||||
|
@ -172,9 +166,7 @@ class Int8DynActInt4WeightLinearLoRA(Int8DynActInt4WeightLinear):
|
|||
if prefix + "zeros" not in state_dict:
|
||||
# Zero-point may not be saved in the state dict. In this case, we assume it's zero.
|
||||
assert prefix + "scales" in state_dict
|
||||
state_dict[prefix + "zeros"] = torch.zeros_like(
|
||||
state_dict[prefix + "scales"]
|
||||
)
|
||||
state_dict[prefix + "zeros"] = torch.zeros_like(state_dict[prefix + "scales"])
|
||||
|
||||
def forward(self, input_: torch.Tensor) -> torch.Tensor:
|
||||
module_out = super().forward(input_)
|
||||
|
@ -229,9 +221,7 @@ class Int8WeightLinear(torch.nn.Linear):
|
|||
bias: Whether to use bias.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_features: int, out_features: int, bias: bool = True, device=None
|
||||
) -> None:
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None) -> None:
|
||||
super().__init__(in_features, out_features, bias, device=device)
|
||||
|
||||
self._register_load_state_dict_pre_hook(self.load_hook)
|
||||
|
@ -295,9 +285,7 @@ def _prepare_model_int4_weight_int8_dynamic_activation(
|
|||
del module
|
||||
setattr(model, module_name, quantized_module)
|
||||
else:
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(
|
||||
module, group_size, lora_rank, lora_scale
|
||||
)
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(module, group_size, lora_rank, lora_scale)
|
||||
|
||||
return model
|
||||
|
||||
|
@ -321,9 +309,7 @@ def convert_to_int4_quantized_model(
|
|||
|
||||
group_size = model_args.quantization_args.group_size
|
||||
if group_size is None:
|
||||
raise ValueError(
|
||||
"'group_size' cannot be None in 'quantization_args'. Please specify it."
|
||||
)
|
||||
raise ValueError("'group_size' cannot be None in 'quantization_args'. Please specify it.")
|
||||
|
||||
if model_args.lora_args is None:
|
||||
# Certain quantized models (e.g., SpinQuant) may not have LoRA.
|
||||
|
@ -333,8 +319,6 @@ def convert_to_int4_quantized_model(
|
|||
lora_rank = model_args.lora_args.rank
|
||||
lora_scale = model_args.lora_args.scale
|
||||
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(
|
||||
model, group_size, lora_rank, lora_scale
|
||||
)
|
||||
_prepare_model_int4_weight_int8_dynamic_activation(model, group_size, lora_rank, lora_scale)
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
return model.to(device)
|
||||
|
|
|
@ -76,9 +76,9 @@ def main(
|
|||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
assert model_parallel_size == len(checkpoints), (
|
||||
f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
)
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
|
@ -90,9 +90,9 @@ def main(
|
|||
**params,
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
assert model_args.vocab_size == tokenizer.n_words, (
|
||||
f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
)
|
||||
|
||||
# load on CPU in bf16 so that fp8 conversion does not find an unexpected (fp32, e.g.) datatype
|
||||
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
||||
|
@ -106,9 +106,7 @@ def main(
|
|||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
|
||||
log.info(ckpt_path)
|
||||
assert (
|
||||
quantized_ckpt_dir is not None
|
||||
), "QUantized checkpoint directory should not be None"
|
||||
assert quantized_ckpt_dir is not None, "QUantized checkpoint directory should not be None"
|
||||
fp8_scales = {}
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
|
@ -122,9 +120,7 @@ def main(
|
|||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w1.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"] = fp8_weight.scale
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
|
@ -133,9 +129,7 @@ def main(
|
|||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w3.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"] = fp8_weight.scale
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
|
@ -144,13 +138,9 @@ def main(
|
|||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w2.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
fp8_scales[f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"] = fp8_weight.scale
|
||||
|
||||
fp8_scales_path = os.path.join(
|
||||
quantized_ckpt_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
fp8_scales_path = os.path.join(quantized_ckpt_dir, f"fp8_scales_{get_model_parallel_rank()}.pt")
|
||||
torch.save(fp8_scales, fp8_scales_path)
|
||||
|
||||
ckpt_path = os.path.join(
|
||||
|
|
|
@ -10,7 +10,6 @@ from pydantic import BaseModel
|
|||
|
||||
|
||||
class SentenceTransformersInferenceConfig(BaseModel):
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
@ -53,7 +53,5 @@ class VLLMConfig(BaseModel):
|
|||
repos = [m.huggingface_repo for m in permitted_models]
|
||||
if model not in (descriptors + repos):
|
||||
model_list = "\n\t".join(repos)
|
||||
raise ValueError(
|
||||
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
||||
)
|
||||
raise ValueError(f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]")
|
||||
return model
|
||||
|
|
|
@ -176,13 +176,9 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
log.info("Sampling params: %s", sampling_params)
|
||||
request_id = _random_uuid()
|
||||
|
||||
prompt = await chat_completion_request_to_prompt(
|
||||
request, self.config.model, self.formatter
|
||||
)
|
||||
prompt = await chat_completion_request_to_prompt(request, self.config.model, self.formatter)
|
||||
vllm_sampling_params = self._sampling_params(request.sampling_params)
|
||||
results_generator = self.engine.generate(
|
||||
prompt, vllm_sampling_params, request_id
|
||||
)
|
||||
results_generator = self.engine.generate(prompt, vllm_sampling_params, request_id)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, results_generator)
|
||||
else:
|
||||
|
@ -230,12 +226,8 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
async for chunk in process_chat_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
async def embeddings(
|
||||
self, model_id: str, contents: List[InterleavedContent]
|
||||
) -> EmbeddingsResponse:
|
||||
async def embeddings(self, model_id: str, contents: List[InterleavedContent]) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -47,6 +47,4 @@ async def validate_input_dataset_schema(
|
|||
if dataset_type not in EXPECTED_DATASET_SCHEMA:
|
||||
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
||||
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, EXPECTED_DATASET_SCHEMA[dataset_type]
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, EXPECTED_DATASET_SCHEMA[dataset_type])
|
||||
|
|
|
@ -42,9 +42,7 @@ class TorchtuneCheckpointer:
|
|||
self._model_type = ModelType[model_type]
|
||||
self._output_dir = output_dir
|
||||
# get ckpt paths
|
||||
self._checkpoint_path = Path.joinpath(
|
||||
self._checkpoint_dir, self._checkpoint_file
|
||||
)
|
||||
self._checkpoint_path = Path.joinpath(self._checkpoint_dir, self._checkpoint_file)
|
||||
|
||||
def load_checkpoint(self) -> Dict[str, Any]:
|
||||
"""
|
||||
|
@ -57,13 +55,9 @@ class TorchtuneCheckpointer:
|
|||
llama3_vision_meta_to_tune,
|
||||
)
|
||||
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_meta_to_tune(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_meta_to_tune(model_state_dict)
|
||||
else:
|
||||
state_dict[training.MODEL_KEY] = convert_weights.meta_to_tune(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = convert_weights.meta_to_tune(model_state_dict)
|
||||
|
||||
# llama3_2 has tied weights, so we need to remove the output.weight key
|
||||
if self._model_type == ModelType.LLAMA3_2:
|
||||
|
@ -82,10 +76,7 @@ class TorchtuneCheckpointer:
|
|||
epoch: int,
|
||||
adapter_only: bool = False,
|
||||
) -> str:
|
||||
model_file_path = (
|
||||
Path(self._output_dir)
|
||||
/ f"{self._model_id}-{self._training_algorithm}-{epoch}"
|
||||
)
|
||||
model_file_path = Path(self._output_dir) / f"{self._model_id}-{self._training_algorithm}-{epoch}"
|
||||
|
||||
model_file_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
@ -116,22 +107,13 @@ class TorchtuneCheckpointer:
|
|||
llama3_vision_tune_to_meta,
|
||||
)
|
||||
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_tune_to_meta(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = llama3_vision_tune_to_meta(model_state_dict)
|
||||
else:
|
||||
# llama3_2 has tied weights, so we need to add the output.weight key
|
||||
if (
|
||||
self._model_type == ModelType.LLAMA3_2
|
||||
and "output.weight" not in model_state_dict
|
||||
):
|
||||
model_state_dict["output.weight"] = model_state_dict[
|
||||
"tok_embeddings.weight"
|
||||
]
|
||||
if self._model_type == ModelType.LLAMA3_2 and "output.weight" not in model_state_dict:
|
||||
model_state_dict["output.weight"] = model_state_dict["tok_embeddings.weight"]
|
||||
|
||||
state_dict[training.MODEL_KEY] = convert_weights.tune_to_meta(
|
||||
model_state_dict
|
||||
)
|
||||
state_dict[training.MODEL_KEY] = convert_weights.tune_to_meta(model_state_dict)
|
||||
|
||||
model_file_name = Path.joinpath(model_file_path, "consolidated.00.pth")
|
||||
|
||||
|
|
|
@ -15,18 +15,13 @@ from typing import Any, Mapping
|
|||
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
|
||||
|
||||
|
||||
def llama_stack_instruct_to_torchtune_instruct(
|
||||
sample: Mapping[str, Any]
|
||||
) -> Mapping[str, Any]:
|
||||
assert (
|
||||
ColumnName.chat_completion_input.value in sample
|
||||
and ColumnName.expected_answer.value in sample
|
||||
), "Invalid input row"
|
||||
def llama_stack_instruct_to_torchtune_instruct(sample: Mapping[str, Any]) -> Mapping[str, Any]:
|
||||
assert ColumnName.chat_completion_input.value in sample and ColumnName.expected_answer.value in sample, (
|
||||
"Invalid input row"
|
||||
)
|
||||
input_messages = eval(str(sample[ColumnName.chat_completion_input.value]))
|
||||
|
||||
assert (
|
||||
len(input_messages) == 1
|
||||
), "llama stack intruct dataset format only supports 1 user message"
|
||||
assert len(input_messages) == 1, "llama stack intruct dataset format only supports 1 user message"
|
||||
input_message = input_messages[0]
|
||||
|
||||
assert "content" in input_message, "content not found in input message"
|
||||
|
@ -48,13 +43,9 @@ def llama_stack_chat_to_torchtune_chat(sample: Mapping[str, Any]) -> Mapping[str
|
|||
roles = []
|
||||
conversations = []
|
||||
for message in dialog:
|
||||
assert (
|
||||
"role" in message and "content" in message
|
||||
), "role and content must in message"
|
||||
assert "role" in message and "content" in message, "role and content must in message"
|
||||
roles.append(message["role"])
|
||||
conversations.append(
|
||||
{"from": role_map[message["role"]], "value": message["content"]}
|
||||
)
|
||||
conversations.append({"from": role_map[message["role"]], "value": message["content"]})
|
||||
|
||||
assert roles[0] == "user", "first message must be from user"
|
||||
assert "assistant" in roles, "at least 1 message should be from assistant"
|
||||
|
|
|
@ -61,8 +61,7 @@ class SFTDataset(Dataset):
|
|||
if not ("tokens" in tokenized_dict and "mask" in tokenized_dict):
|
||||
keys_str = ", ".join(tokenized_dict.keys())
|
||||
error_message = (
|
||||
"model_transform returned the following keys: "
|
||||
f"{keys_str}. Must return 'tokens' and 'mask' as keys."
|
||||
f"model_transform returned the following keys: {keys_str}. Must return 'tokens' and 'mask' as keys."
|
||||
)
|
||||
raise ValueError(error_message)
|
||||
|
||||
|
|
|
@ -119,9 +119,7 @@ class TorchtunePostTrainingImpl:
|
|||
return ListPostTrainingJobsResponse(data=self.jobs_list)
|
||||
|
||||
@webmethod(route="/post-training/job/status")
|
||||
async def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> Optional[PostTrainingJobStatusResponse]:
|
||||
async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]:
|
||||
if job_uuid in self.jobs_status:
|
||||
return self.jobs_status[job_uuid]
|
||||
return None
|
||||
|
@ -131,12 +129,8 @@ class TorchtunePostTrainingImpl:
|
|||
raise NotImplementedError("Job cancel is not implemented yet")
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts")
|
||||
async def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> Optional[PostTrainingJobArtifactsResponse]:
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]:
|
||||
if job_uuid in self.checkpoints_dict:
|
||||
checkpoints = self.checkpoints_dict.get(job_uuid, [])
|
||||
return PostTrainingJobArtifactsResponse(
|
||||
job_uuid=job_uuid, checkpoints=checkpoints
|
||||
)
|
||||
return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=checkpoints)
|
||||
return None
|
||||
|
|
|
@ -94,9 +94,7 @@ class LoraFinetuningSingleDevice:
|
|||
self.job_uuid = job_uuid
|
||||
self.training_config = training_config
|
||||
if not isinstance(algorithm_config, LoraFinetuningConfig):
|
||||
raise ValueError(
|
||||
"You need to speicifc LoraFinetuningConfig for LoRA finetuning"
|
||||
)
|
||||
raise ValueError("You need to speicifc LoraFinetuningConfig for LoRA finetuning")
|
||||
self.algorithm_config = algorithm_config
|
||||
self._device = torchtune_utils.get_device(device="cuda")
|
||||
self._dtype = training.get_dtype(training_config.dtype, device=self._device)
|
||||
|
@ -105,10 +103,7 @@ class LoraFinetuningSingleDevice:
|
|||
def model_checkpoint_dir(model) -> str:
|
||||
checkpoint_dir = Path(model_local_dir(model.descriptor()))
|
||||
|
||||
paths = [
|
||||
Path(checkpoint_dir / f"consolidated.{ext}")
|
||||
for ext in ["pth", "00.pth"]
|
||||
]
|
||||
paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]]
|
||||
if not any(p.exists() for p in paths):
|
||||
checkpoint_dir = checkpoint_dir / "original"
|
||||
|
||||
|
@ -123,9 +118,7 @@ class LoraFinetuningSingleDevice:
|
|||
else:
|
||||
model = resolve_model(self.model_id)
|
||||
if model is None:
|
||||
raise ValueError(
|
||||
f"{self.model_id} not found. Your model id should be in the llama models SKU list"
|
||||
)
|
||||
raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list")
|
||||
self.checkpoint_dir = model_checkpoint_dir(model)
|
||||
|
||||
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
|
||||
|
@ -196,9 +189,7 @@ class LoraFinetuningSingleDevice:
|
|||
self._tokenizer = await self._setup_tokenizer()
|
||||
log.info("Tokenizer is initialized.")
|
||||
|
||||
self._optimizer = await self._setup_optimizer(
|
||||
optimizer_config=self.training_config.optimizer_config
|
||||
)
|
||||
self._optimizer = await self._setup_optimizer(optimizer_config=self.training_config.optimizer_config)
|
||||
log.info("Optimizer is initialized.")
|
||||
|
||||
self._loss_fn = CEWithChunkedOutputLoss()
|
||||
|
@ -226,13 +217,8 @@ class LoraFinetuningSingleDevice:
|
|||
# by the dataloader and the max_steps_per_epoch param set by the user and is used
|
||||
# for logging and tracking training state. This should be computed after the dataloader
|
||||
# has been setup
|
||||
self._steps_per_epoch = (
|
||||
len(self._training_dataloader) // self._gradient_accumulation_steps
|
||||
)
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and self.max_steps_per_epoch < self._steps_per_epoch
|
||||
):
|
||||
self._steps_per_epoch = len(self._training_dataloader) // self._gradient_accumulation_steps
|
||||
if self.max_steps_per_epoch is not None and self.max_steps_per_epoch < self._steps_per_epoch:
|
||||
self._steps_per_epoch = self.max_steps_per_epoch
|
||||
self.global_step = self.epochs_run * self._steps_per_epoch
|
||||
|
||||
|
@ -246,9 +232,7 @@ class LoraFinetuningSingleDevice:
|
|||
log.info("Learning rate scheduler is initialized.")
|
||||
|
||||
# Used to ignore labels for loss computation
|
||||
self.ignore_labels_cache = torch.full(
|
||||
(self._batch_size, 1), self._loss_fn.ignore_index, device=self._device
|
||||
)
|
||||
self.ignore_labels_cache = torch.full((self._batch_size, 1), self._loss_fn.ignore_index, device=self._device)
|
||||
|
||||
async def _setup_model(
|
||||
self,
|
||||
|
@ -282,13 +266,9 @@ class LoraFinetuningSingleDevice:
|
|||
set_trainable_params(model, self.adapter_params)
|
||||
|
||||
if enable_activation_checkpointing:
|
||||
training.set_activation_checkpointing(
|
||||
model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
|
||||
)
|
||||
training.set_activation_checkpointing(model, auto_wrap_policy={modules.TransformerSelfAttentionLayer})
|
||||
|
||||
base_missing, base_unexpected = model.load_state_dict(
|
||||
base_model_state_dict, strict=False
|
||||
)
|
||||
base_missing, base_unexpected = model.load_state_dict(base_model_state_dict, strict=False)
|
||||
|
||||
# This is for any adapters that need to be initialized after base weights
|
||||
# have been loaded (e.g. DoRA).
|
||||
|
@ -297,9 +277,7 @@ class LoraFinetuningSingleDevice:
|
|||
if hasattr(m, "initialize_dora_magnitude"):
|
||||
m.initialize_dora_magnitude()
|
||||
if lora_weights_state_dict:
|
||||
lora_missing, lora_unexpected = model.load_state_dict(
|
||||
lora_weights_state_dict, strict=False
|
||||
)
|
||||
lora_missing, lora_unexpected = model.load_state_dict(lora_weights_state_dict, strict=False)
|
||||
else:
|
||||
lora_missing, lora_unexpected = None, None
|
||||
validate_missing_and_unexpected_for_lora(
|
||||
|
@ -313,14 +291,10 @@ class LoraFinetuningSingleDevice:
|
|||
)
|
||||
|
||||
# Validate model adapter params were loaded in with the expected dtype
|
||||
training.validate_expected_param_dtype(
|
||||
self.adapter_params.items(), dtype=self._dtype
|
||||
)
|
||||
training.validate_expected_param_dtype(self.adapter_params.items(), dtype=self._dtype)
|
||||
|
||||
# activation offloading
|
||||
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(
|
||||
model, enable_activation_offloading
|
||||
)
|
||||
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(model, enable_activation_offloading)
|
||||
|
||||
memory_stats = training.get_memory_stats(device=self._device)
|
||||
training.log_memory_stats(memory_stats)
|
||||
|
@ -456,9 +430,7 @@ class LoraFinetuningSingleDevice:
|
|||
# Shift labels to compute loss
|
||||
# equivalent to doing labels[..., 1:] and logits[..., :-1, :]
|
||||
# But this way we dont need to slice the logits. We just add an ignore index to labels.
|
||||
labels = torch.hstack(
|
||||
(labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]])
|
||||
)
|
||||
labels = torch.hstack((labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]]))
|
||||
if not isinstance(logits, list):
|
||||
labels = labels.reshape(-1)
|
||||
logits = logits.reshape(-1, logits.size(-1))
|
||||
|
@ -487,9 +459,7 @@ class LoraFinetuningSingleDevice:
|
|||
for curr_epoch in range(self.epochs_run, self.total_epochs):
|
||||
# Update the sampler to ensure data is correctly shuffled across epochs
|
||||
# in case shuffle is True
|
||||
metric_logger = DiskLogger(
|
||||
log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}"
|
||||
)
|
||||
metric_logger = DiskLogger(log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}")
|
||||
self._training_sampler.set_epoch(curr_epoch)
|
||||
loss_to_log = 0.0
|
||||
|
||||
|
@ -497,8 +467,7 @@ class LoraFinetuningSingleDevice:
|
|||
for idx, batch in enumerate(self._training_dataloader):
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and (idx // self._gradient_accumulation_steps)
|
||||
== self.max_steps_per_epoch
|
||||
and (idx // self._gradient_accumulation_steps) == self.max_steps_per_epoch
|
||||
):
|
||||
break
|
||||
|
||||
|
@ -506,9 +475,7 @@ class LoraFinetuningSingleDevice:
|
|||
|
||||
# Calculate the number of unmasked tokens in the current batch
|
||||
# and increment the total number of tokens seen in the step
|
||||
current_num_tokens = (
|
||||
batch["labels"] != self._loss_fn.ignore_index
|
||||
).sum()
|
||||
current_num_tokens = (batch["labels"] != self._loss_fn.ignore_index).sum()
|
||||
num_tokens += current_num_tokens
|
||||
|
||||
# Loss is normalized by default so we multiply by the number of tokens
|
||||
|
@ -533,9 +500,7 @@ class LoraFinetuningSingleDevice:
|
|||
loss_to_log = running_loss.item() / num_tokens
|
||||
|
||||
pbar.update(1)
|
||||
pbar.set_description(
|
||||
f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}"
|
||||
)
|
||||
pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}")
|
||||
|
||||
time_per_step = time.perf_counter() - t0
|
||||
log_dict = {
|
||||
|
|
|
@ -67,10 +67,6 @@ class MetaReferenceCodeScannerSafetyImpl(Safety):
|
|||
violation = SafetyViolation(
|
||||
violation_level=(ViolationLevel.ERROR),
|
||||
user_message="Sorry, I found security concerns in the code.",
|
||||
metadata={
|
||||
"violation_type": ",".join(
|
||||
[issue.pattern_id for issue in result.issues_found]
|
||||
)
|
||||
},
|
||||
metadata={"violation_type": ",".join([issue.pattern_id for issue in result.issues_found])},
|
||||
)
|
||||
return RunShieldResponse(violation=violation)
|
||||
|
|
|
@ -10,9 +10,7 @@ from .config import LlamaGuardConfig
|
|||
async def get_provider_impl(config: LlamaGuardConfig, deps):
|
||||
from .llama_guard import LlamaGuardSafetyImpl
|
||||
|
||||
assert isinstance(
|
||||
config, LlamaGuardConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
assert isinstance(config, LlamaGuardConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = LlamaGuardSafetyImpl(config, deps)
|
||||
await impl.initialize()
|
||||
|
|
|
@ -102,8 +102,7 @@ LLAMA_GUARD_MODEL_IDS = {
|
|||
}
|
||||
|
||||
MODEL_TO_SAFETY_CATEGORIES_MAP = {
|
||||
"meta-llama/Llama-Guard-3-8B": DEFAULT_LG_V3_SAFETY_CATEGORIES
|
||||
+ [CAT_CODE_INTERPRETER_ABUSE],
|
||||
"meta-llama/Llama-Guard-3-8B": DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE],
|
||||
"meta-llama/Llama-Guard-3-1B": DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
"meta-llama/Llama-Guard-3-11B-Vision": DEFAULT_LG_V3_SAFETY_CATEGORIES,
|
||||
}
|
||||
|
@ -133,9 +132,7 @@ Provide your safety assessment for ONLY THE LAST $agent_type message in the abov
|
|||
- If unsafe, a second line must include a comma-separated list of violated categories."""
|
||||
|
||||
|
||||
PROMPT_TEMPLATE = Template(
|
||||
f"{PROMPT_TASK}{SAFETY_CATEGORIES}{PROMPT_CONVERSATION}{PROMPT_INSTRUCTIONS}"
|
||||
)
|
||||
PROMPT_TEMPLATE = Template(f"{PROMPT_TASK}{SAFETY_CATEGORIES}{PROMPT_CONVERSATION}{PROMPT_INSTRUCTIONS}")
|
||||
|
||||
|
||||
class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
||||
|
@ -233,9 +230,7 @@ class LlamaGuardShield:
|
|||
if messages[0].role != Role.user.value:
|
||||
raise ValueError("Messages must start with user")
|
||||
|
||||
if len(messages) >= 2 and (
|
||||
messages[0].role == Role.user.value and messages[1].role == Role.user.value
|
||||
):
|
||||
if len(messages) >= 2 and (messages[0].role == Role.user.value and messages[1].role == Role.user.value):
|
||||
messages = messages[1:]
|
||||
|
||||
for i in range(1, len(messages)):
|
||||
|
@ -263,10 +258,7 @@ class LlamaGuardShield:
|
|||
stream=True,
|
||||
):
|
||||
event = chunk.event
|
||||
if (
|
||||
event.event_type == ChatCompletionResponseEventType.progress
|
||||
and event.delta.type == "text"
|
||||
):
|
||||
if event.event_type == ChatCompletionResponseEventType.progress and event.delta.type == "text":
|
||||
content += event.delta.text
|
||||
|
||||
content = content.strip()
|
||||
|
@ -313,10 +305,7 @@ class LlamaGuardShield:
|
|||
categories = self.get_safety_categories()
|
||||
categories_str = "\n".join(categories)
|
||||
conversations_str = "\n\n".join(
|
||||
[
|
||||
f"{m.role.capitalize()}: {interleaved_content_as_str(m.content)}"
|
||||
for m in messages
|
||||
]
|
||||
[f"{m.role.capitalize()}: {interleaved_content_as_str(m.content)}" for m in messages]
|
||||
)
|
||||
return PROMPT_TEMPLATE.substitute(
|
||||
agent_type=messages[-1].role.capitalize(),
|
||||
|
|
|
@ -46,9 +46,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
if shield.provider_resource_id != PROMPT_GUARD_MODEL:
|
||||
raise ValueError(
|
||||
f"Only {PROMPT_GUARD_MODEL} is supported for Prompt Guard. "
|
||||
)
|
||||
raise ValueError(f"Only {PROMPT_GUARD_MODEL} is supported for Prompt Guard. ")
|
||||
|
||||
async def run_shield(
|
||||
self,
|
||||
|
@ -71,9 +69,7 @@ class PromptGuardShield:
|
|||
threshold: float = 0.9,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
assert (
|
||||
model_dir is not None
|
||||
), "Must provide a model directory for prompt injection shield"
|
||||
assert model_dir is not None, "Must provide a model directory for prompt injection shield"
|
||||
if temperature <= 0:
|
||||
raise ValueError("Temperature must be greater than 0")
|
||||
|
||||
|
@ -85,9 +81,7 @@ class PromptGuardShield:
|
|||
|
||||
# load model and tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_dir, device_map=self.device
|
||||
)
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(model_dir, device_map=self.device)
|
||||
|
||||
async def run(self, messages: List[Message]) -> RunShieldResponse:
|
||||
message = messages[-1]
|
||||
|
@ -117,10 +111,7 @@ class PromptGuardShield:
|
|||
"violation_type": f"prompt_injection:embedded={score_embedded},malicious={score_malicious}",
|
||||
},
|
||||
)
|
||||
elif (
|
||||
self.config.guard_type == PromptGuardType.jailbreak.value
|
||||
and score_malicious > self.threshold
|
||||
):
|
||||
elif self.config.guard_type == PromptGuardType.jailbreak.value and score_malicious > self.threshold:
|
||||
violation = SafetyViolation(
|
||||
violation_level=ViolationLevel.ERROR,
|
||||
violation_type=f"prompt_injection:malicious={score_malicious}",
|
||||
|
|
|
@ -54,15 +54,11 @@ class BasicScoringImpl(
|
|||
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = [
|
||||
fn_def
|
||||
for impl in self.scoring_fn_id_impls.values()
|
||||
for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
]
|
||||
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith(
|
||||
"basic"
|
||||
), "All basic scoring fn must have identifier prefixed with 'basic'! "
|
||||
assert f.identifier.startswith("basic"), "All basic scoring fn must have identifier prefixed with 'basic'! "
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
|
@ -76,9 +72,7 @@ class BasicScoringImpl(
|
|||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
|
@ -108,12 +102,8 @@ class BasicScoringImpl(
|
|||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
||||
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
||||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(
|
||||
score_results, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
@ -32,9 +32,7 @@ class EqualityScoringFn(RegisteredBaseScoringFn):
|
|||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert "expected_answer" in input_row, "Expected answer not found in input row."
|
||||
assert (
|
||||
"generated_answer" in input_row
|
||||
), "Generated answer not found in input row."
|
||||
assert "generated_answer" in input_row, "Generated answer not found in input row."
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
|
|
@ -18,7 +18,5 @@ equality = ScoringFn(
|
|||
provider_id="basic",
|
||||
provider_resource_id="equality",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.accuracy]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
||||
|
|
|
@ -55,9 +55,7 @@ MULTILINGUAL_ANSWER_REGEXES = [
|
|||
r"Àṣàyàn\s*:",
|
||||
]
|
||||
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
|
||||
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
)
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
|
||||
regex_parser_multiple_choice_answer = ScoringFn(
|
||||
identifier="basic::regex_parser_multiple_choice_answer",
|
||||
|
@ -66,10 +64,7 @@ regex_parser_multiple_choice_answer = ScoringFn(
|
|||
provider_id="basic",
|
||||
provider_resource_id="regex-parser-multiple-choice-answer",
|
||||
params=RegexParserScoringFnParams(
|
||||
parsing_regexes=[
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
|
||||
for x in MULTILINGUAL_ANSWER_REGEXES
|
||||
],
|
||||
parsing_regexes=[MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x) for x in MULTILINGUAL_ANSWER_REGEXES],
|
||||
aggregation_functions=[AggregationFunctionType.accuracy],
|
||||
),
|
||||
)
|
||||
|
|
|
@ -18,7 +18,5 @@ subset_of = ScoringFn(
|
|||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="subset-of",
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.accuracy]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.accuracy]),
|
||||
)
|
||||
|
|
|
@ -33,17 +33,14 @@ class RegexParserScoringFn(RegisteredBaseScoringFn):
|
|||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert (
|
||||
scoring_fn_identifier is not None
|
||||
), "Scoring function identifier not found."
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
if scoring_params is not None:
|
||||
fn_def.params = scoring_params
|
||||
|
||||
assert (
|
||||
fn_def.params is not None
|
||||
and fn_def.params.type == ScoringFnParamsType.regex_parser.value
|
||||
), f"RegexParserScoringFnParams not found for {fn_def}."
|
||||
assert fn_def.params is not None and fn_def.params.type == ScoringFnParamsType.regex_parser.value, (
|
||||
f"RegexParserScoringFnParams not found for {fn_def}."
|
||||
)
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
|
|
@ -124,12 +124,10 @@ class BraintrustScoringImpl(
|
|||
self.datasets_api = datasets_api
|
||||
|
||||
self.braintrust_evaluators = {
|
||||
entry.identifier: entry.evaluator
|
||||
for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
entry.identifier: entry.evaluator for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
}
|
||||
self.supported_fn_defs_registry = {
|
||||
entry.identifier: entry.fn_def
|
||||
for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
entry.identifier: entry.fn_def for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY
|
||||
}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
@ -139,16 +137,14 @@ class BraintrustScoringImpl(
|
|||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = [x for x in self.supported_fn_defs_registry.values()]
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith(
|
||||
"braintrust"
|
||||
), "All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
|
||||
assert f.identifier.startswith("braintrust"), (
|
||||
"All braintrust scoring fn must have identifier prefixed with 'braintrust'! "
|
||||
)
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None:
|
||||
raise NotImplementedError(
|
||||
"Registering scoring function not allowed for braintrust provider"
|
||||
)
|
||||
raise NotImplementedError("Registering scoring function not allowed for braintrust provider")
|
||||
|
||||
async def set_api_key(self) -> None:
|
||||
# api key is in the request headers
|
||||
|
@ -171,17 +167,13 @@ class BraintrustScoringImpl(
|
|||
await self.set_api_key()
|
||||
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=-1,
|
||||
)
|
||||
res = await self.score(
|
||||
input_rows=all_rows.rows, scoring_functions=scoring_functions
|
||||
)
|
||||
res = await self.score(input_rows=all_rows.rows, scoring_functions=scoring_functions)
|
||||
if save_results_dataset:
|
||||
# TODO: persist and register dataset on to server for reading
|
||||
# self.datasets_api.register_dataset()
|
||||
|
@ -222,13 +214,8 @@ class BraintrustScoringImpl(
|
|||
if scoring_fn_id not in self.supported_fn_defs_registry:
|
||||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
|
||||
score_results = [
|
||||
await self.score_row(input_row, scoring_fn_id)
|
||||
for input_row in input_rows
|
||||
]
|
||||
aggregation_functions = self.supported_fn_defs_registry[
|
||||
scoring_fn_id
|
||||
].params.aggregation_functions
|
||||
score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows]
|
||||
aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions
|
||||
|
||||
# override scoring_fn params if provided
|
||||
if scoring_functions[scoring_fn_id] is not None:
|
||||
|
|
|
@ -21,7 +21,5 @@ answer_correctness_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="answer-correctness",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ answer_relevancy_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="answer-relevancy",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ answer_similarity_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="answer-similarity",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ context_entity_recall_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="context-entity-recall",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ context_precision_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="context-precision",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ context_recall_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="context-recall",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -14,13 +14,10 @@ from llama_stack.apis.scoring_functions import (
|
|||
context_relevancy_fn_def = ScoringFn(
|
||||
identifier="braintrust::context-relevancy",
|
||||
description=(
|
||||
"Assesses how relevant the provided context is to the given question. "
|
||||
"See: github.com/braintrustdata/autoevals"
|
||||
"Assesses how relevant the provided context is to the given question. See: github.com/braintrustdata/autoevals"
|
||||
),
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="context-relevancy",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -21,7 +21,5 @@ factuality_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="factuality",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -20,7 +20,5 @@ faithfulness_fn_def = ScoringFn(
|
|||
provider_id="braintrust",
|
||||
provider_resource_id="faithfulness",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.average]
|
||||
),
|
||||
params=BasicScoringFnParams(aggregation_functions=[AggregationFunctionType.average]),
|
||||
)
|
||||
|
|
|
@ -16,8 +16,6 @@ async def get_provider_impl(
|
|||
):
|
||||
from .scoring import LlmAsJudgeScoringImpl
|
||||
|
||||
impl = LlmAsJudgeScoringImpl(
|
||||
config, deps[Api.datasetio], deps[Api.datasets], deps[Api.inference]
|
||||
)
|
||||
impl = LlmAsJudgeScoringImpl(config, deps[Api.datasetio], deps[Api.datasets], deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -58,15 +58,13 @@ class LlmAsJudgeScoringImpl(
|
|||
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]:
|
||||
scoring_fn_defs_list = [
|
||||
fn_def
|
||||
for impl in self.scoring_fn_id_impls.values()
|
||||
for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs()
|
||||
]
|
||||
|
||||
for f in scoring_fn_defs_list:
|
||||
assert f.identifier.startswith(
|
||||
"llm-as-judge"
|
||||
), "All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! "
|
||||
assert f.identifier.startswith("llm-as-judge"), (
|
||||
"All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! "
|
||||
)
|
||||
|
||||
return scoring_fn_defs_list
|
||||
|
||||
|
@ -80,9 +78,7 @@ class LlmAsJudgeScoringImpl(
|
|||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
validate_dataset_schema(
|
||||
dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)
|
||||
)
|
||||
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
|
||||
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
|
@ -112,12 +108,8 @@ class LlmAsJudgeScoringImpl(
|
|||
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
|
||||
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
|
||||
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
|
||||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(
|
||||
score_results, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
@ -38,9 +38,7 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
|
|||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert (
|
||||
scoring_fn_identifier is not None
|
||||
), "Scoring function identifier not found."
|
||||
assert scoring_fn_identifier is not None, "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
|
||||
# override params if scoring_params is provided
|
||||
|
@ -48,12 +46,8 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
|
|||
fn_def.params = scoring_params
|
||||
|
||||
assert fn_def.params is not None, f"LLMAsJudgeparams not found for {fn_def}."
|
||||
assert (
|
||||
fn_def.params.prompt_template is not None
|
||||
), "LLM Judge prompt_template not found."
|
||||
assert (
|
||||
fn_def.params.judge_score_regexes is not None
|
||||
), "LLM Judge judge_score_regexes not found."
|
||||
assert fn_def.params.prompt_template is not None, "LLM Judge prompt_template not found."
|
||||
assert fn_def.params.judge_score_regexes is not None, "LLM Judge judge_score_regexes not found."
|
||||
|
||||
input_query = input_row["input_query"]
|
||||
expected_answer = input_row["expected_answer"]
|
||||
|
|
|
@ -44,15 +44,9 @@ class TelemetryConfig(BaseModel):
|
|||
return v
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls, __distro_dir__: str = "runtime", db_name: str = "trace_store.db"
|
||||
) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str = "runtime", db_name: str = "trace_store.db") -> Dict[str, Any]:
|
||||
return {
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:llama-stack}",
|
||||
"sinks": "${env.TELEMETRY_SINKS:console,sqlite}",
|
||||
"sqlite_db_path": "${env.SQLITE_DB_PATH:~/.llama/"
|
||||
+ __distro_dir__
|
||||
+ "/"
|
||||
+ db_name
|
||||
+ "}",
|
||||
"sqlite_db_path": "${env.SQLITE_DB_PATH:~/.llama/" + __distro_dir__ + "/" + db_name + "}",
|
||||
}
|
||||
|
|
|
@ -27,7 +27,6 @@ COLORS = {
|
|||
|
||||
|
||||
class ConsoleSpanProcessor(SpanProcessor):
|
||||
|
||||
def __init__(self, print_attributes: bool = False):
|
||||
self.print_attributes = print_attributes
|
||||
|
||||
|
@ -35,9 +34,7 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
if span.attributes and span.attributes.get("__autotraced__"):
|
||||
return
|
||||
|
||||
timestamp = datetime.utcfromtimestamp(span.start_time / 1e9).strftime(
|
||||
"%H:%M:%S.%f"
|
||||
)[:-3]
|
||||
timestamp = datetime.utcfromtimestamp(span.start_time / 1e9).strftime("%H:%M:%S.%f")[:-3]
|
||||
|
||||
print(
|
||||
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
|
||||
|
@ -49,9 +46,7 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
if span.attributes and span.attributes.get("__autotraced__"):
|
||||
return
|
||||
|
||||
timestamp = datetime.utcfromtimestamp(span.end_time / 1e9).strftime(
|
||||
"%H:%M:%S.%f"
|
||||
)[:-3]
|
||||
timestamp = datetime.utcfromtimestamp(span.end_time / 1e9).strftime("%H:%M:%S.%f")[:-3]
|
||||
|
||||
span_context = (
|
||||
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
|
||||
|
@ -79,9 +74,7 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
|
||||
|
||||
for event in span.events:
|
||||
event_time = datetime.utcfromtimestamp(event.timestamp / 1e9).strftime(
|
||||
"%H:%M:%S.%f"
|
||||
)[:-3]
|
||||
event_time = datetime.utcfromtimestamp(event.timestamp / 1e9).strftime("%H:%M:%S.%f")[:-3]
|
||||
|
||||
severity = event.attributes.get("severity", "info")
|
||||
message = event.attributes.get("message", event.name)
|
||||
|
@ -96,11 +89,7 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
}
|
||||
msg_color = severity_colors.get(severity, COLORS["white"])
|
||||
|
||||
print(
|
||||
f" {event_time} "
|
||||
f"{msg_color}[{severity.upper()}] "
|
||||
f"{message}{COLORS['reset']}"
|
||||
)
|
||||
print(f" {event_time} {msg_color}[{severity.upper()}] {message}{COLORS['reset']}")
|
||||
|
||||
if event.attributes:
|
||||
for key, value in event.attributes.items():
|
||||
|
|
|
@ -101,14 +101,10 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
endpoint=self.config.otel_endpoint,
|
||||
)
|
||||
)
|
||||
metric_provider = MeterProvider(
|
||||
resource=resource, metric_readers=[metric_reader]
|
||||
)
|
||||
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
if TelemetrySink.SQLITE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(
|
||||
SQLiteSpanProcessor(self.config.sqlite_db_path)
|
||||
)
|
||||
trace.get_tracer_provider().add_span_processor(SQLiteSpanProcessor(self.config.sqlite_db_path))
|
||||
if TelemetrySink.CONSOLE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
|
||||
|
||||
|
@ -154,9 +150,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
timestamp=timestamp_ns,
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"Warning: No active span found for span_id {span_id}. Dropping event: {event}"
|
||||
)
|
||||
print(f"Warning: No active span found for span_id {span_id}. Dropping event: {event}")
|
||||
|
||||
def _get_or_create_counter(self, name: str, unit: str) -> metrics.Counter:
|
||||
if name not in _GLOBAL_STORAGE["counters"]:
|
||||
|
@ -181,21 +175,15 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
counter = self._get_or_create_counter(event.metric, event.unit)
|
||||
counter.add(event.value, attributes=event.attributes)
|
||||
elif isinstance(event.value, float):
|
||||
up_down_counter = self._get_or_create_up_down_counter(
|
||||
event.metric, event.unit
|
||||
)
|
||||
up_down_counter = self._get_or_create_up_down_counter(event.metric, event.unit)
|
||||
up_down_counter.add(event.value, attributes=event.attributes)
|
||||
|
||||
def _get_or_create_up_down_counter(
|
||||
self, name: str, unit: str
|
||||
) -> metrics.UpDownCounter:
|
||||
def _get_or_create_up_down_counter(self, name: str, unit: str) -> metrics.UpDownCounter:
|
||||
if name not in _GLOBAL_STORAGE["up_down_counters"]:
|
||||
_GLOBAL_STORAGE["up_down_counters"][name] = (
|
||||
self.meter.create_up_down_counter(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"UpDownCounter for {name}",
|
||||
)
|
||||
_GLOBAL_STORAGE["up_down_counters"][name] = self.meter.create_up_down_counter(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"UpDownCounter for {name}",
|
||||
)
|
||||
return _GLOBAL_STORAGE["up_down_counters"][name]
|
||||
|
||||
|
|
|
@ -87,13 +87,9 @@ class CodeExecutor:
|
|||
scripts = req.scripts
|
||||
for i in range(len(scripts) - 1):
|
||||
if req.only_last_cell_stdouterr:
|
||||
scripts[i] = STDOUTERR_SINK_WRAPPER_TEMPLATE.format(
|
||||
code=textwrap.indent(scripts[i], " " * 4)
|
||||
)
|
||||
scripts[i] = STDOUTERR_SINK_WRAPPER_TEMPLATE.format(code=textwrap.indent(scripts[i], " " * 4))
|
||||
if req.only_last_cell_fail:
|
||||
scripts[i] = TRYEXCEPT_WRAPPER_TEMPLATE.format(
|
||||
code=textwrap.indent(scripts[i], " " * 4)
|
||||
)
|
||||
scripts[i] = TRYEXCEPT_WRAPPER_TEMPLATE.format(code=textwrap.indent(scripts[i], " " * 4))
|
||||
|
||||
# Seeds prefix:
|
||||
seed = req.seed
|
||||
|
@ -190,7 +186,7 @@ def execute_subprocess_request(request, ctx: CodeExecutionContext):
|
|||
if request["type"] == "matplotlib":
|
||||
return process_matplotlib_response(request, ctx.matplotlib_dump_dir)
|
||||
else:
|
||||
raise Exception(f'Unrecognised network request type: {request["type"]}')
|
||||
raise Exception(f"Unrecognised network request type: {request['type']}")
|
||||
|
||||
|
||||
def do_subprocess(*, cmd: list, env: dict, ctx: CodeExecutionContext):
|
||||
|
|
|
@ -59,9 +59,7 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
)
|
||||
]
|
||||
|
||||
async def invoke_tool(
|
||||
self, tool_name: str, kwargs: Dict[str, Any]
|
||||
) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
script = kwargs["code"]
|
||||
req = CodeExecutionRequest(scripts=[script])
|
||||
res = self.code_executor.execute(req)
|
||||
|
|
|
@ -39,9 +39,7 @@ log = logging.getLogger(__name__)
|
|||
|
||||
|
||||
def make_random_string(length: int = 8):
|
||||
return "".join(
|
||||
secrets.choice(string.ascii_letters + string.digits) for _ in range(length)
|
||||
)
|
||||
return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length))
|
||||
|
||||
|
||||
class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
||||
|
@ -120,9 +118,7 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
return RAGQueryResult(content=None)
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(
|
||||
*sorted(zip(chunks, scores), key=lambda x: x[1], reverse=True)
|
||||
)
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores), key=lambda x: x[1], reverse=True))
|
||||
|
||||
tokens = 0
|
||||
picked = []
|
||||
|
@ -169,9 +165,7 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
),
|
||||
]
|
||||
|
||||
async def invoke_tool(
|
||||
self, tool_name: str, kwargs: Dict[str, Any]
|
||||
) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
raise RuntimeError(
|
||||
"This toolgroup should not be called generically but only through specific methods of the RAGToolRuntime protocol"
|
||||
)
|
||||
|
|
|
@ -11,9 +11,7 @@ from llama_stack.providers.datatypes import Api, ProviderSpec
|
|||
from .config import ChromaInlineImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: ChromaInlineImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
async def get_provider_impl(config: ChromaInlineImplConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from llama_stack.providers.remote.vector_io.chroma.chroma import (
|
||||
ChromaVectorIOAdapter,
|
||||
)
|
||||
|
|
|
@ -13,9 +13,7 @@ from .config import FaissImplConfig
|
|||
async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .faiss import FaissVectorIOImpl
|
||||
|
||||
assert isinstance(
|
||||
config, FaissImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
assert isinstance(config, FaissImplConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = FaissVectorIOImpl(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
|
|
|
@ -59,10 +59,7 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
if stored_data:
|
||||
data = json.loads(stored_data)
|
||||
self.chunk_by_index = {
|
||||
int(k): Chunk.model_validate_json(v)
|
||||
for k, v in data["chunk_by_index"].items()
|
||||
}
|
||||
self.chunk_by_index = {int(k): Chunk.model_validate_json(v) for k, v in data["chunk_by_index"].items()}
|
||||
|
||||
buffer = io.BytesIO(base64.b64decode(data["faiss_index"]))
|
||||
self.index = faiss.deserialize_index(np.loadtxt(buffer, dtype=np.uint8))
|
||||
|
@ -75,9 +72,7 @@ class FaissIndex(EmbeddingIndex):
|
|||
buffer = io.BytesIO()
|
||||
np.savetxt(buffer, np_index)
|
||||
data = {
|
||||
"chunk_by_index": {
|
||||
k: v.model_dump_json() for k, v in self.chunk_by_index.items()
|
||||
},
|
||||
"chunk_by_index": {k: v.model_dump_json() for k, v in self.chunk_by_index.items()},
|
||||
"faiss_index": base64.b64encode(buffer.getvalue()).decode("utf-8"),
|
||||
}
|
||||
|
||||
|
@ -92,13 +87,9 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
# Add dimension check
|
||||
embedding_dim = (
|
||||
embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
|
||||
)
|
||||
embedding_dim = embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
|
||||
if embedding_dim != self.index.d:
|
||||
raise ValueError(
|
||||
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
|
||||
)
|
||||
raise ValueError(f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}")
|
||||
|
||||
indexlen = len(self.chunk_by_index)
|
||||
for i, chunk in enumerate(chunks):
|
||||
|
@ -109,12 +100,8 @@ class FaissIndex(EmbeddingIndex):
|
|||
# Save updated index
|
||||
await self._save_index()
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryChunksResponse:
|
||||
distances, indices = self.index.search(
|
||||
embedding.reshape(1, -1).astype(np.float32), k
|
||||
)
|
||||
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
distances, indices = self.index.search(embedding.reshape(1, -1).astype(np.float32), k)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
|
@ -145,9 +132,7 @@ class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
|
|||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = VectorDBWithIndex(
|
||||
vector_db,
|
||||
await FaissIndex.create(
|
||||
vector_db.embedding_dimension, self.kvstore, vector_db.identifier
|
||||
),
|
||||
await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
@ -169,9 +154,7 @@ class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
|
|||
# Store in cache
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=await FaissIndex.create(
|
||||
vector_db.embedding_dimension, self.kvstore, vector_db.identifier
|
||||
),
|
||||
index=await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
|
@ -195,9 +178,7 @@ class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
|
|||
) -> None:
|
||||
index = self.cache.get(vector_db_id)
|
||||
if index is None:
|
||||
raise ValueError(
|
||||
f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}"
|
||||
)
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue