refactor: remove dead code from openai_compat utility

Removed 9 unused functions and their associated imports (~210 lines):
- `openai_content_to_content()` and content type converters
- Sampling parameter converters (`get_sampling_options`, `_convert_openai_sampling_params`, etc.)
- OpenAI request/response format converters
- Stop reason and finish reason converters
- Tool and tool call converters

These functions had no callers in the codebase and were accumulating
technical debt. The removal also eliminates a potential future issue
where `openai_content_to_content()` would raise `ValueError` on the
newly introduced `OpenAIFile` content type.

Test Plan:
- All 120 provider utils unit tests pass
- Ruff linting passes
This commit is contained in:
Ashwin Bharambe 2025-11-19 11:14:24 -08:00
parent 72ea95e2e0
commit 34af80675e

View file

@ -3,23 +3,10 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Iterable
from typing import (
Any,
)
from openai.types.chat import (
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam,
)
try:
from openai.types.chat import (
ChatCompletionMessageFunctionToolCall as OpenAIChatCompletionMessageFunctionToolCall,
)
except ImportError:
from openai.types.chat.chat_completion_message_tool_call import (
ChatCompletionMessageToolCall as OpenAIChatCompletionMessageFunctionToolCall,
)
from openai.types.chat import (
ChatCompletionMessageToolCall,
)
@ -32,18 +19,6 @@ from llama_stack.models.llama.datatypes import (
ToolCall,
ToolDefinition,
)
from llama_stack_api import (
URL,
GreedySamplingStrategy,
ImageContentItem,
JsonSchemaResponseFormat,
OpenAIResponseFormatParam,
SamplingParams,
TextContentItem,
TopKSamplingStrategy,
TopPSamplingStrategy,
_URLOrData,
)
logger = get_logger(name=__name__, category="providers::utils")
@ -73,42 +48,6 @@ class OpenAICompatCompletionResponse(BaseModel):
choices: list[OpenAICompatCompletionChoice]
def get_sampling_strategy_options(params: SamplingParams) -> dict:
options = {}
if isinstance(params.strategy, GreedySamplingStrategy):
options["temperature"] = 0.0
elif isinstance(params.strategy, TopPSamplingStrategy):
if params.strategy.temperature is not None:
options["temperature"] = params.strategy.temperature
if params.strategy.top_p is not None:
options["top_p"] = params.strategy.top_p
elif isinstance(params.strategy, TopKSamplingStrategy):
options["top_k"] = params.strategy.top_k
else:
raise ValueError(f"Unsupported sampling strategy: {params.strategy}")
return options
def get_sampling_options(params: SamplingParams | None) -> dict:
if not params:
return {}
options = {}
if params:
options.update(get_sampling_strategy_options(params))
if params.max_tokens:
options["max_tokens"] = params.max_tokens
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
options["repeat_penalty"] = params.repetition_penalty
if params.stop is not None:
options["stop"] = params.stop
return options
def text_from_choice(choice) -> str:
if hasattr(choice, "delta") and choice.delta:
return choice.delta.content # type: ignore[no-any-return] # external OpenAI types lack precise annotations
@ -253,154 +192,6 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
return out
def _convert_stop_reason_to_openai_finish_reason(stop_reason: StopReason) -> str:
"""
Convert a StopReason to an OpenAI chat completion finish_reason.
"""
return {
StopReason.end_of_turn: "stop",
StopReason.end_of_message: "tool_calls",
StopReason.out_of_tokens: "length",
}.get(stop_reason, "stop")
def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
"""
Convert an OpenAI chat completion finish_reason to a StopReason.
finish_reason: Literal["stop", "length", "tool_calls", ...]
- stop: model hit a natural stop point or a provided stop sequence
- length: maximum number of tokens specified in the request was reached
- tool_calls: model called a tool
->
class StopReason(Enum):
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
# TODO(mf): are end_of_turn and end_of_message semantics correct?
return {
"stop": StopReason.end_of_turn,
"length": StopReason.out_of_tokens,
"tool_calls": StopReason.end_of_message,
}.get(finish_reason, StopReason.end_of_turn)
def _convert_openai_request_tools(tools: list[dict[str, Any]] | None = None) -> list[ToolDefinition]:
lls_tools: list[ToolDefinition] = []
if not tools:
return lls_tools
for tool in tools:
tool_fn = tool.get("function", {})
tool_name = tool_fn.get("name", None)
tool_desc = tool_fn.get("description", None)
tool_params = tool_fn.get("parameters", None)
lls_tool = ToolDefinition(
tool_name=tool_name,
description=tool_desc,
input_schema=tool_params, # Pass through entire JSON Schema
)
lls_tools.append(lls_tool)
return lls_tools
def _convert_openai_request_response_format(
response_format: OpenAIResponseFormatParam | None = None,
):
if not response_format:
return None
# response_format can be a dict or a pydantic model
response_format_dict = dict(response_format) # type: ignore[arg-type] # OpenAIResponseFormatParam union needs dict conversion
if response_format_dict.get("type", "") == "json_schema":
return JsonSchemaResponseFormat(
type="json_schema", # type: ignore[arg-type] # Literal["json_schema"] incompatible with expected type
json_schema=response_format_dict.get("json_schema", {}).get("schema", ""),
)
return None
def _convert_openai_tool_calls(
tool_calls: list[OpenAIChatCompletionMessageFunctionToolCall],
) -> list[ToolCall]:
"""
Convert an OpenAI ChatCompletionMessageToolCall list into a list of ToolCall.
OpenAI ChatCompletionMessageToolCall:
id: str
function: Function
type: Literal["function"]
OpenAI Function:
arguments: str
name: str
->
ToolCall:
call_id: str
tool_name: str
arguments: Dict[str, ...]
"""
if not tool_calls:
return [] # CompletionMessage tool_calls is not optional
return [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=call.function.arguments,
)
for call in tool_calls
]
def _convert_openai_sampling_params(
max_tokens: int | None = None,
temperature: float | None = None,
top_p: float | None = None,
) -> SamplingParams:
sampling_params = SamplingParams()
if max_tokens:
sampling_params.max_tokens = max_tokens
# Map an explicit temperature of 0 to greedy sampling
if temperature == 0:
sampling_params.strategy = GreedySamplingStrategy()
else:
# OpenAI defaults to 1.0 for temperature and top_p if unset
if temperature is None:
temperature = 1.0
if top_p is None:
top_p = 1.0
sampling_params.strategy = TopPSamplingStrategy(temperature=temperature, top_p=top_p) # type: ignore[assignment] # SamplingParams.strategy union accepts this type
return sampling_params
def openai_content_to_content(content: str | Iterable[OpenAIChatCompletionContentPartParam] | None):
if content is None:
return ""
if isinstance(content, str):
return content
elif isinstance(content, list):
return [openai_content_to_content(c) for c in content]
elif hasattr(content, "type"):
if content.type == "text":
return TextContentItem(type="text", text=content.text) # type: ignore[attr-defined] # Iterable narrowed by hasattr check but mypy doesn't track
elif content.type == "image_url":
return ImageContentItem(type="image", image=_URLOrData(url=URL(uri=content.image_url.url))) # type: ignore[attr-defined] # Iterable narrowed by hasattr check but mypy doesn't track
else:
raise ValueError(f"Unknown content type: {content.type}")
else:
raise ValueError(f"Unknown content type: {content}")
async def prepare_openai_completion_params(**params):
async def _prepare_value(value: Any) -> Any:
new_value = value